UNIVERSITY OF KERALA

FOUR YEAR UNDERGRADUATE PROGRAMME (FYUGP)

SYLLABUS

MAJOR DISCIPLINE:

ENVIRONMENTAL SCIENCES

MAY 2024

About the programme:

Environmental science is an interdisciplinary field of study encompassing aspects of physics, chemistry, biology, geography, and other disciplines. It aims to understand the environment and how humans impact it. Environmental science is focused on a holistic understanding of Earth's systems, which aims to learn from the past, comprehend the present, and influence the future. It studies how physical, chemical and biological processes maintain and interact with life and how humans affect nature. In the era of global warvulming and climate change, this subject holds importance for solving the anthropogenic induced climate related issues. As Environmental Science is at the crossroads of the natural sciences, it provides an enriching alternative to a single-subject honours degree. It can open the door to an exciting range of career options. The FYUG programme in Environmental Science applies a broad interdisciplinary perspective to understanding how the world works. This approach enables us to tackle pressing problems, such as ensuring that human needs are met sustainably so that everyone has access to clean water and air and the resources required for agriculture and industrial activity.

No.	Program Outcomes (POs)	
PO-1	 Critical thinking analyze information objectively and make a reasorigudgment draw reasonable conclusions from a set of information and discriminate between useful and less useful details solve problems or make decisions identify logical flaws in the arguments of others evaluate data, facts, observable phenomena, and rese findings to draw valid and relevant results that domain-specific 	
PO-2	 Complex problem-solving solve different kinds of problems in familiar and no-familiar contexts and apply the learning to real-life situations analyze a problem, generate and implement a solution and to assess the success of the plan understand how the solution will affect both the people involved and the surrounding environment 	

PO-3	 Creativity produce or develop original work, theories and techniques think in multiple ways for making connections between seemingly unrelated concepts or phenomena add a unique perspective or improve existing ideas or solutions generate, develop and express original ideas that are useful or have values
PO-4	 Communication skills convey or share ideas or feelings effectively use words in delivering the intended message with utmost clarity engage the audience effectively be a good listener who can understand, respond and empathize with the speaker confidently share views and express himself/herself
PO-5	 Leadership qualities work effectively and lead respectfully with diverse teams build a team working towards a common goal motivate a group of people and make them achieve the best possible solution. help and support others in their difficult times to tide over the adverse situations with courage
PO-6	 Learning 'how to learn' skills acquire new knowledge and skills, including 'learning how to learn skills, that are necessary for pursuing learning activities throughout life, through self-paced and self-directed learning work independently, and identify appropriate resources required for further learning acquire organizational skills and time management to set self-defined goals and targets with timelines inculcate a healthy attitude to be a lifelong learner

	PROGRAM SPECIFIC OUTCOMES				
PSO1	Understanding	Students should demonstrate a comprehensive understanding of the Earth's environmental systems, including the atmosphere, hydrosphere, lithosphere, and biosphere, and their interactions.			
PSO2	Knowledge	Students should be able to identify and analyze contemporary environmental issues such as climate change, biodiversity loss, pollution, and resource depletion, and understand their underlying causes and consequences.			
PSO3	Analytical Skills	Graduates should possess strong analytical skills to collect, interpret, and evaluate environmental data using appropriate scientific methods and techniques.			
PSO4	Problem-Solving Skills	Students should be capable of developing and implementing solutions to environmental problems through critical thinking, creativity, and interdisciplinary approaches.			
PSO5	Policy regulations	Graduates should be familiar with environmental laws, regulations, and policies at local, national, and international levels, and understand their implications for environmental management and sustainability.			
PSO6	Scientific Communication	Graduates should be effective communicators capable of presenting complex environmental information clearly and persuasively to diverse audiences, including policymakers, stakeholders, and the general public.			

PROGRAM STRUCTURE Four Year Undergraduate Program in Environmental Sciences

Course Code	Course Title		Specialisation stream
	SEMESTER I		
UK1DSCENS100	Fundamentals of Environmental Science	3/0/2	
UK1DSCENS101	Ecology and Ecosystem Dynamics	3/0/2	
UK1DSCENS102	Fundamentals of Environmental Chemistry	3/0/2	
UK1MDCENS100	Ecological History	3/0/0	
UK1MDCENS101	Environmental Education	3/0/0	
	SEMESTER II		
UK2DSCENS100	Natural Resources and Conservation	3/0/2	
UK2DSCENS101	Environmental Geology	3/0/2	
UK2DSCENS102	Environmental Meteorology and Climate Change	3/0/2	
UK2MDCENS100	Environmental Ethics	3/0/0	
UK2MDCENS101	Intellectual Property Rights	3/0/0	
	SEMESTER III		
UK3DSCENS200	Environmental Microbiology and	3/0/2	
UK3DSCENS201	Biotechnology Environmental Pollution	3/0/2	
UK3DSCENS201 UK3DSCENS202	Energy and Environment	3/0/2	
UK3DSEENS200	Wetland Ecology	4/0/0	Ecology and Environment
UK3DSEENS201	Ecohydrology	3/0/2	Water ConservationandSustainableAgriculture
UK3DSEENS202	Forest Ecology	3/0/2	Ecology and Environment
UK3DSEENS203	Fundamentals of Climate Change	3/0/2	Climate Change and Sustainability
UK3DSEENS204	Solid Waste Management	3/0/2	Climate Change and Sustainability
UK3MDCENS200	Environmental Data Analytics	3/0/2	
UK3MDCENS201	Environmental Forensics	2/0/2	
UK3VACENS200	Green Architecture	3/0/0	
UK3VACENS201	Environmental Health and Safety	2/0/1	

	SEMESTER IV		
UK4DSCENS200	Biodiversity and Conservation	3/0/2	
UK4DSCENS201	Current Environmental Issues	3/0/2	
UK4DSEENS200		3/0/2	Water Conservation and Sustainable
	Natural and Integrated Farming	2/0/2	Agriculture
UK4DSEENS201	Waste Water Treatment Methods	3/0/2	Climate Change and Sustainability
UK4DSEENS202	Urban Ecology	3/0/2	Ecology and Environment
UK4DSEENS203	Marine Ecology	3/0/2	Ecology and Environment
UK4DSEENS204	Global Climate Change	4/0/0	Climate Change and Sustainability
UK4INTENS200	Summer Internship (Mandatory)		
UK4SECENS200	Fundamentals of Geospatial Technology	2/0/2	
UK4SECENS201	Water Quality Monitoring	2/0/2	
UK4VACENS200	Water Conservation Methods	2/0/2	
UK4VACENS201	Green Chemistry	2/0/2	
UK4VACENS203	Environmental Governance	3/0/0	
	SEMESTER V		
UK5DSCENS300	Environmental Impact Assessment	4/0/0	
UK5DSCENS301	Sustainable Development	4/0/0	
UK5DSCENS302	Environmental Hazards and Risk	3/0/2	
UK5DSCENS303	Management Environmental Planning	3/0/2	
UK5DSEENS300	Renewable Energy	3/0/2	Climate Change and Sustainability
UK5DSEENS301	Water Resource Management	3/0/2	Water Conservation and Sustainable Agriculture
UK5DSEENS302	Bioremediation	4/0/0	Climate Change and Sustainability
UK5SECENS300	Environmental Auditing	3/0/2	·
UK5SECENS301	Environment and Green Marketing	3/0/0	
	SEMESTER VI		
UK6DSCENS300	Environmental Toxicology	3/0/2	
UK6DSCENS301	Research Methods in Environmental Sciences	4/0/0	
UK6DSCENS302	Techniques in Environmental Sciences	3/0/2	
UK6DSCENS303	Wildlife Protection and Management	3/0/2	
UK6DSEENS300	Sustainable Agriculture	3/0/2	Water ConservationandSustainable

			Agriculture		
UK6DSEENS301	Green Products and	3/0/2	Climate Change and		
CIRODSELLIUSSUI	Entrepreneurship	5/0/2	Sustainability		
UK6DSEENS302	Restoration Ecology	3/0/2	Ecology and		
OROD SEE (5502		5/0/2	Environment		
UK6DSEENS303	Soil Conservation	3/0/2	Water Conservation		
CRODULLIUSUU		5/0/2	and Sustainable		
			Agriculture		
UK6DSEENS304	Waste to Energy	4/0/0	Climate Change and		
OROD SELET (550 T	Waste to Energy	1/0/0	Sustainability		
UK6SECENS301	Remote Sensing and Digital Image	3/0/2			
CHOSECENSSON	Processing	5/0/2			
UK6SECENS302	Applications of Environmental	4/0/0			
CIROBLELI (5502	Impact Assessment	1/0/0			
UK6SECENS303	Ecotourism	2/0/2			
UK6VACENS300	Environmental Management	2/0/2			
CIKO VIICEI (5500	Systems and ISO 14001	2/0/2			
	SEMESTER VII				
UK7DSCENS400	Ecological Modelling	4/0/0			
UK7DSCENS401	Pollution Management and	3/0/2			
OR/DSCENSION	Control	5/0/2			
UK7DSCENS402	Artificial Intelligence in	4/0/0			
OR/DSCENSIO2	Environmental Management	1/0/0			
UK7DSCENS403	Waste Management Techniques	3/0/2			
UK7DSCENS404	Environmental Economics	3/0/2			
UK7DSCENS405	Climate Change: Mitigation and	3/0/2			
	Adaptation				
UK7DSCENS406	Ecosystem Services	3/0/2			
UK7DSEENS400	Climate Risk and Vulnerability	3/0/2	Climate Change and		
			Sustainability		
UK7DSEENS401	Nanotechnology for	3/0/2	Climate Change and		
	Environmental Remediation		Sustainability		
UK7DSEENS402	Environmental and Geospatial	3/0/2			
	Data Analytics				
	SEMESTER VIII				
UK8RPHENS400	Research Project				
UK8CIPENS400	Internship Project				
Specialisation ma	y be given if the student completes	any fou	r courses in the Stream.		
A	Stream 1 Ecology				
UK3DSEENS200	Wetland Ecology				
UK3DSEENS202	Forest Ecology				
UK4DSEENS202	Urban Ecology				
UK4DSEENS203	Marine Ecology				
UK6DSEENS302	Restoration Ecology				
	Stream 2 Water Conservation	and Su	stainable Agriculture		
UK3DSEENS201	Ecohydrology				

UK4DSEENS200	Natural and Integrated Farming		
UK5DSEENS301	Water Resource Management		
UK6DSEENS300	Sustainable Agriculture		
UK6DSEENS303	Soil Conservation		
	Stream 3 Climate Change and Sustainability		
UK3DSEENS203	Fundamentals of Climate Change		
UK4DSEENS204	Global Climate Change		
UK5DSEENS300	Renewable Energy		
UK6DSEENS301	Green Products and Entrepreneurship		
UK7DSEENS400	Climate Risk and Vulnerability		
	Stream 4 Waste Management and Environmental Remediation		
UK3DSEENS204	Solid Waste Management		
UK4DSEENS201	Waste Water Treatment Methods		
UK5DSEENS302	Bioremediation		
UK6DSEENS304	Waste to Energy		
UK7DSEENS401	Nanotechnology for Environmental Remediation		

Semester I

Discipline	ENVIRONMENT	ENVIRONMENTAL SCIENCE					
Course Code	UK100DSCENV	UK100DSCENV					
Course Title	Fundamentals of E	Invironment	tal Science				
Type of Course	DSC						
Semester	First						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
	per week per week Hours/Week						
	4 3 hours - 2 hours 5						
Pre-requisites	1. Basic knowledge						
	2. Familiarity with e	environmenta	al issues at lo	cal, national,	and global		
	levels.						
Course	The Fundamentals			1			
Summary	with a foundation		•	U 1	1		
	environmental cha	•	•	•			
	1	experiences to develop practical skills for addressing real-world issues.					
	Through this course, students gain the knowledge and tools necessary for						
	pursuing careers in environmental science and sustainability. This course						
	addresses the need f	-					
	undergraduate stude			, as well as sci	ence teaching		
	and communication	with multip	e audiences				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Fundamentals of Environment	10
	1	Earth and surface process	1
	2	Physics and Chemistry of Environment	2
	3	Biosphere: Atmosphere, Hydrosphere and Lithosphere	2
	4	Energy and Environment	2
	5	Multidisciplinary areas: Geology, Economics, Microbiology, Remote	3
		sensing and GIS	
Π		Ecology and Ecosystems	12
	6	Ecosystem: Definition and Characteristics	1
	7	Structure and Functions of Ecosystems: Productivity and decomposition	3
	8	Ecosystem Energetics: Energy flow and nutrient cycling	3
	9	Ecosystem Dynamics: Population, community interactions, and	2
		ecological succession	
	10	Biodiversity and conservation	3
III		Environmental Pollution and Management	12
	11	Air Pollution and Management	3
	12	Water Pollution and Management	3
	13	Soil Pollution and Management	3
	14	Noise pollution and Management	2
	15	Global Environmental Issues	1
IV		Emerging trends in Environmental Science: Basics	12
	16	Disaster management	2
	17	Environmental Impact Assessment	2
	18	Environmental Biotechnology	2
	19	Environmental laws and policies	2
	20	Environment and Sustainable development	2
	21	Green initiative of environmental protection	2
V		Field and Laboratory Study	9
	22	Ecosystem study: Visit a nearby ecosystem to observe biodiversity and	3
		human impact.	
	23	Vegetation Analysis: Conduct a vegetation survey to identify plant	3
		species diversity.	
	24	Water Quality Monitoring: Monitor water quality in nearby rivers or	3
		streams to understand aquatic ecosystem health.	
	25	Open Ended	15

Books and References:

- 1. Bharucha, E. 2021. Text Book of Environmental Studies. University Press (India) Pvt. Ltd.,
- 2. Chiras, D.D. (2009). Environmental science. Jones & Bartlett Publishers.
- 3. Etherington, J.R. (1975). Environment and plant ecology. John Wiley & Sons Ltd.

- 4. Mishra D.D, 2010, Fundamental Concepts in Environmental Studies; S Chand & Company
- 5. Rajagopalan, 2015, Environmental studies, Oxford University Press
- 6. Mahua Basu and Xavier Savarimuthu SJ, 2017, Cambridge University Press
- 7. Purnima Das and Chubanaro Aier, 2023, Environmental Studies: for BA, B. Com and BSc. 1st semester of Nagaland university, Global net Publications
- 8. Krishna Gopal Bhattacharya, Arunima Sarma, 2015, Comprehensive environmental studies, Oxford, England: Alpha Science International Ltd.
- 9. Michael Allaby, 2000, Basics of environmental science, Routledge, London; New York
- 10. Y. K. Singh 2006, Environmental Sciences, New Age International Pvt. Ltd.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Demonstrate mastery of core ecological and physical science concepts. Understand different parts of the biosphere interact with and affect each other and provides the necessary environmental conditions for survival	R, U	PSO-1,2
CO-2	Analyse interactions within the context of specific habitats and judge how the habitat shapes the distribution and abundance of species. Judge how organism function, ecosystem context and interactions within and across trophic levels influence the flow of energy, recycling of matter in communities and ecosystems.	R, U	PSO-3,4
CO-3	Analyse the phenomena of climate change impacting human health by developing an understanding of different types of mitigation measures.	Ap, An	PSO-1,3,4
CO-4	Understand the need for interdisciplinary approaches to address complex environmental challenges. Prepare students to engage with current and future environmental issues effectively.	U, E	PSO-4,8,9
Co-5	Gain experience developing ecological hypotheses and designing observational and experimental studies in field and laboratory settings.	Ap, An, C	PSO-4,9

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course:	Credits: 3:0:1	(Lecture:Tutorial:Practical)
i and of the courset	010010000	

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Basic knowledge of environment	PSO-1,2	R, U	F, C	10	-
2	Status and dynamics of ecosystem study	PSO-3,4	R, U	С, Р	8	-
3	Current status of global environment	PSO- 1,3,4	Ap, An	С, М	12	-
4	Explain multidisciplinar y aspects of Environmental Sciences	PSO- 4,8,9	U, E	F, C, M	10	-
5	Field and laboratory exposure of students	PSO-4,9	Ap, An, C	Р, М	20	15

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	P O5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	3	-	-	-	-						
CO 2	3	3	-	-	-	-						
CO 3	-	-	3	-	2	2						

CO 4	3	3	-	2	-	-	2			
CO 5	-	1	-	-	-	-	3	3		
CO 6	3	3	-	-	-	-				

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark	\checkmark	\checkmark

Discipline	Environmental So	cience									
Course Code	UK1DSCENS10	1									
Course Title	Ecology and Ecos	Ecology and Ecosystem Dynamics									
Type of Course	DSC										
Semester	First										
Academic Level	100 to 199										
Course Details	Credit Lecture Tutorial Practical Total										
	per week per week Per week Hours/Week										
	4 3 hours - 2 hours 5										
Pre-requisites	1. Knowledge of	the basic co	ncepts of env	vironmental so	ciences						
	2. Knowledge of	biology and	zoology								
Course Summary	The main object	tive of this	course is to	impart kno	wledge on the						
	different ecologi										
	be introduced to	understand t	he ecosystem	i, population a	and community						
	ecology and its r	elevance for	the environm	nental segme	nts and factors.						
	The course intro	oduces the st	tudents to un	derstand the	interactions of						
	organisms and	their enviror	nments and	the conseque	ences of these						
	interactions for	population,	community,	and ecosyst	ems functional						
	dynamics. This	will help the	e students to	apply the fu	undamentals of						
	ecology for form	ning the foun	dation of ecc	logical theor	ies.						

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction to Ecology	8
	1	Ecology definition, Scope of ecology, concepts of ecology and environment	2
	2	Autecology; synecology; landscape, habitat, eco zones, biosphere, ecosystems	2
	3	Ecosystem stability, resistance and resilience	2
	4	Components of environment-atmosphere, hydrosphere, lithosphere, biosphere	2
II		Ecosystem	15
	5	Definition, concepts, characteristics, ecosystem Structure -abiotic components: light, temperature, pressure, precipitation, humidity, wind, fire; biotic components: producers, consumers and decomposers	4
	6	Ecosystem function -food chain, food web, ecological pyramids-pyramid of numbers, biomass, energy and inverted pyramids.	3
	7	Types of ecosystem: Terrestrial ecosystem –tundra, taiga, grassland; deserts, forests; their characteristics, flora and fauna	3
	8	Aquatic ecosystem-Fresh (lentic, lotic), Intertidal, and marine; their characteristics, flora and fauna.	5
III		Community ecology	15
	9	Characteristics of a community, composition, structure and development of community	2

	1.0		-
	10	Ecotone, edge effect, ecological dominance, niche, guild, ecological	2
		equivalence, key stone species,	
	11	Succession –definition, concept, causes of succession ;types of	3
		succession-primary, secondary, allogeneic, autogenic, autotrophic and	
		heterotrophic succession	
	12	General process of succession-nudation, invasion, competition, reaction,	3
		stabilization, Types of succession	
	13	Theories of succession-mono climax, poly climax and climax-pattern	1
		hypothesis	
	14	Concepts of adaptation under various environmental conditions,	2
		mechanism of adaptation to environmental stresses	
	15	Ecological adaptation of animals-hydrocoles, mesocoles and xerocoles	1
	16	Limiting factors-concept, laws of limiting factors,	1
IV		Population ecology and ecological interactions	10
	17	Population characteristics-Population size, density, dispersion, natality,	2
		mortality, age structure, life tables	
	18	Biotic potential, r and k selection, survivorship curve	2
	19	Population growth- geometric, exponential and logistic;	1
		density-dependant and density independent	
	20	Limits to growth; Concept of carrying capacity	2
	21	Ecological Interactions- Relationship among organisms, positive,	3
		negative and neutral interactions	
V		Restoration ecology	4
	22	Definition of Restoration Ecology ;Need for Restoration; Purpose of	1
		Ecological Restoration	
	23	Approaches to Ecological Restoration- Ecological and Agronomical,	3
		Socio-economic and cultural dimension, Revegetation and Regeneration	
	24	Practicum/Field visit	8
	25	Open Ended	15
	I	*	

References

- 1. Chapman, J.L. and Reiss, M.J.2005. Ecology, principles and applications, Cambridge University Press, London
- 2. Cooke, G. D. (2005). Restoration and management of lakes and reservoirs. 3rd edition. CRC Press, Boca Raton, FL.
- 3. Dash,M.C.(1994).Fundamentals of Ecology,Tata Mc Graw Hill,New Delhi.
- 4. Davy, A. J. and M. R. Perrow. (2002). Handbook of ecological restoration. Cambridge University Press, Cambridge, UK, New York.
- 5. Livingston, R. (2005). Restoration of aquatic systems. CRC Press.
- 6. Meethu Gupta.(2020).Fundamentals of Environmental Biology.Wiley India.
- 7. Odum, E.P. (1971). Fundamentals of Ecology, W.B. Saunder Company, Philadelphia
- 8. Sharma P.D. (1996) Environmental Biology, Rastogi Publications, Meerut

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Explain the basic concepts of ecology and components of environment	U	PSO-1,2
CO-2	Describe the structure, function and different types of ecosystem	R, U	PSO-1,2
CO-3	Explain the community ecology, succession and ecological adaptations	U,R,	PSO-3,5,6
CO-4	Explain the population characteristics, growth, carrying capacity and ecological interactions	U,R,A	PSO- 1,2,4,8
CO-5	Explain ecosystem management practices that can mitigate and restore systems that have been affected adversely by human activity.	R,U,Ap	PSO-8,9

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PS O	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)	Open Ended
CO- 1	Explain the basic concepts of ecology and components of environment	PSO- 1,2	U	U	9		3
CO- 2	Describe the structure, function and different	PSO- 1,2	R, U	R, U	10		3

	types of ecosystem						
CO- 3	Explain the community ecology, succession and ecological adaptations	PSO- 3,5,6	U,R,	U,R,	14		3
CO- 4	Explain the population characteristic, growth, carrying capacity and ecological interactions	PSO- 1,2,4,8	U,R,A	U,R,A	13		3
CO- 5	Explain ecosystem management practices that can mitigate and restore systems that have been affected adversely by human activity.	PSO- 8,9	R,U,Ap	R,U,Ap	6	8	3

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PO4	PO5	PO6
CO 1	3	3	-	-	-	-	-	-	-	-	-	-

CO 2	3	3	-	-	-	-	-	-	-	-	-	-
CO 3	-	-	3	-	2	2	-	-	-	-	-	-
CO 4	3	3	-	2	-	-	-	2	-	-	-	-
CO 5	-	1	-	-	-	-	-	3	3	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark

Discipline	ENVIRONMENTA	L SCIENCI	ES				
Course Code	UK1DSCENS102						
Course Title	Fundamentals of E	nvironment	al Chemistry	7			
Type of Course	DSC						
Semester	First						
Academic	100-199						
Level		•					
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	1. Basic knowledge						
	2. Understanding of	the concepts	of Environm	ental Science	s		
Course	In this course, the st	udents will s	tudy the cher	nistry of the a	air, water, and		
Summary	soil, and how anthro	1 0		1	• •		
	learn and understand						
	chemical species in	air, water, ar	nd soil enviro	onments, and	the effects of		
		technology thereon. After completing this course, the students will					
	acquire analytical skills with respect to different environmental spheres,						
	capacity building in undertaking different on site tasks entrusted to them.						
	The students can ex	1			0 0		
	environmental pollu	-	sign pilot pi	ojects related	d to pollution		
	monitoring and abate	ement.					

Detailed Syllabus:

Module	Unit	Content	Hrs				
Ι		Introduction to Environmental Chemistry					
	1	Concept and Scope of Environmental Chemistry	2				
	2 Major environmental segments						
	3	Natural cycles of the environment - Hydrological cycle, Carbon cycle,	3				
		Oxygen cycle, Nitrogen cycle, Phosphorous cycle, Sulphur cycle					
	4	Impact of man on nutrient cycles	2				
II		Atmosphere	15				
	5	Composition of the atmosphere, layers of the atmosphere	2				
	6 Earth's radiation balance						
	7 Particles, radicals and ions in the atmosphere						
	8 Stratospheric chemistry – Oxygen and ozone chemistry,						
	9	Greenhouse effect/ global warming, chlorofluorocarbons, Ozone	3				
		depletion, Minimizing future emissions of greenhouse gases.					
	10	Tropospheric chemistry - The principle of reactivity in the troposphere,	2				
		The tropospheric oxidation of methane					
	11	Photochemical smog, Rain, snow and fog chemistry, Formation and	3				
	composition of acid rain, Atmospheric aerosols						
	12	Oxidation of atmospheric SO2.	1				
III		Hydrosphere	15				
	13	Water resources, Global distribution of water	3				
	14	Gases in water, Organic matter in water.	3				

1.7		
		3
16	pH,pE and pH- pE diagrams of selected elements.	3
17	Complexation in natural water and waste water	3
	Lithosphere	10
18	Weathering of rocks- physical, chemical and biological processes	2
19	Factors controlling the formation of soil	2
20	Soil profile and classification of soil	2
21	Composition of soil-organic and inorganic components in soil, water and	2
	air in soil	
22	Micro and macro nutrients, nitrogen pathways and NPK in soil. Acid base	2
	and ion exchange reactions in soil	
	Toxic organic chemicals and heavy metals	10
23	Pesticides- classification, degradation, pollution due to pesticides.	5
	Organochlorine pesticides - structure and chemistry, DDT,	
24	Organophosphates and carbamate insecticides - structure and chemistry;	10
	Natural and Green insecticides -sources, target insects. Heavy metals -	
	Speciation and toxicity of heavy metals, Bioaccumulation of heavy	
	metals	
25	Open ended	15
	17 18 19 20 21 22 23 23 24	 16 pH,pE and pH- pE diagrams of selected elements. 17 Complexation in natural water and waste water Lithosphere 18 Weathering of rocks- physical, chemical and biological processes 19 Factors controlling the formation of soil 20 Soil profile and classification of soil 21 Composition of soil-organic and inorganic components in soil, water and air in soil 22 Micro and macro nutrients, nitrogen pathways and NPK in soil. Acid base and ion exchange reactions in soil 23 Pesticides- classification, degradation, pollution due to pesticides. Organochlorine pesticides - structure and chemistry, DDT, 24 Organophosphates and carbamate insecticides - structure and chemistry; Natural and Green insecticides -sources, target insects. Heavy metals - Speciation and toxicity of heavy metals, Bioaccumulation of heavy metals

REFERENCES

- 1. Barceló, Damià, Kostianoy, Andrey, G. (2020). The Handbook of Environmental Chemistry, Book series. Springer(Pub).
- 2. Dara, S.S. (1993). A Text Book of Environmental Chemistry and Pollution Control.S. Chand, NewDelhi
- 3. James E. Girard (2011), Principles of Environmental Chemistry, James and Bartlett, NewDelhi.
- 4. Spiro, T.S. and Stiglicini, W.M. (2002). Chemistry of the Environment, Prentice Hall of India Pvt.Ltd.
- 5. Environmental Chemistry by C. Baird, et al., (4th Edition), W. H. Freeman and Company, New York, 2009
- 6. Manahan, S. E. (2004), Environmental Chemistry, Lewis Publishers, New York.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the nature, reactivity and environmental fates of toxic organic chemicals, pollution due to pesticides		PSO1, PSO2
CO-2	Define the basic environmental conversion units	R	PSO1

CO3	Understand the chemistry of the stratospheric and tropospheric processes	U	PSO1, PSO2
CO4	Address major environmental issues such as ozone depletion, green house effect, anthropogenic climate change and air pollution	U	PSO4
CO5	Recognize the importance of environmental changes, demonstrate an understanding of theoretical and practical environmental issues	An	PSO3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Understand the nature, reactivity and environmental fates of toxic organic chemicals, pollution due to pesticides	PSO1, PSO2	U	F, C	L	Ρ
2	Define the basic environmental conversion units	PSO1	R	Р	L	
3	Understand the chemistry of the stratospheric and tropospheric processes	PSO1, PSO2	U	F, C	L	
4	Address major environmental issues such as ozone depletion, green house effect, anthropogenic climate change and air pollution	PSO4	U	М	L	

5	Recognize the importance of	PSO3	An	F	L	Р
	environmental					
	changes,					
	demonstrate an					
	understanding of theoretical and					
	practical					
	environmental					
	issues					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	I	-	1	-	-	-	-	-
CO 2	2	3	-	-	-	-	-	-	-	-	-	-
-CO 3	-	-	1	-	-	-	-	-	-	-	-	-
CO 4	-	-	2	3	-	-	-	2	-	1	1	-
CO 5	-	1	-	-	-	-	-	2	-	-	-	-
CO 6	-	-	-	3	-	-	-	-	-		-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments

• Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	L SCIENC	ES					
Course Code	UK1MDCENS100	UK1MDCENS100						
Course Title	ECOLOGICAL HI	STORY						
Type of Course	MDC							
Semester	First							
Academic	100 - 199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	3	3 hours	-	-	3			
Pre-requisites	The learner should b	e able to app	reciate the E	nvironment a	nd should			
	have the initiative to	understand t	the history of	Environmen	t and			
	Environment activiti	es						
Course	The course is intended	ed to mold th	he learner to	be concerned	about nature.			
Summary	It will help the learn	er to familia	rize with the	history of the	e environment			
	in global and Indian							
	diverse development							
		learner an idea about the various policies related to the environment at						
	various points in the	•		-				
	concerns about natu	re-human re	elationships a	and the impa	ects of human			
	activities on nature.							

Detailed Syllabus:

Module	Unit	Content		Hrs
Ι			Basics of Environmental History	4
				22

	1	Definition of Environmental History	1
	2	Emergence of Environmental History as a branch of History	1
	3	Political and Cultural Dimensions of Environmental History	1
	4	Geographical background of the Indian Subcontinent	1
II		The context of Colonial India and Medieval India	5
	5	Pre-colonial scenario	1
	6	Environmental Policies in Ancient India (Vedic culture,	2
	Ŭ	panchaphoothas, Kautilya's Arthasasthra, Manu's Forest	-
		protection, The Asoka's pillar Edicts) and drawbacks	
	7	Mughal Rulers (Nature parks, gardens, fruit orchards), Babar's	2
		Account, Abdul Qadir Badauni, Akbar's Efforts	
III		British India	8
	8	Plundering of resources, Legalized Exploitation	1
	9	Establishment of Industries	1
	10	Shore Nuisance (Bombay and Colaba) Act 1853	1
	11	The Oriental Gas Company Act, 1857, The North India Canal and	2
		Drainage Act, 1873	
	12	The Indian Easements Act, 1882, the Indian Fisheries Act, 1897,	2
		the Bombay Smoke Nuisance Act, 1912, and the Bengal Smoke	
		Nuisance Act, 1905	
	13	The Indian Penal Code (IPC), 1860 in Chapter 14 (Sections 268 to	1
		291), The Criminal Procedure Code (Sections 133 to 144)	
IV		Independent India	11
	14	Constitution of India	1
	15	The Factories Act, 1948, The Damodhar Valley Corporation	2
		(Prevention of Pollution of Water) Regulation Act, 1948, The	
		Mines Act, 1952, River Boards Act, 1956	
	16	United Nations Conference on Human Environment in 1972	1
	17	Pitamber Committee, National Committee on Environmental	2
		Planning and Coordination (NCEPC)	
	18	Department of Science and Technology by Ministry of Science	1
	10	and Technology	-
	19	Constitutional Mandates (Article 48-A, Article 51-A(g), Article	2
	20	21, Public Interest Litigations (PIL))	2
	20	Environmental Movements (Narmada Bachao Andolan, Save Silent Valley Movement, Jungle Bachao Andolan, Tehri Dam	2
		Movement)	
V		Modern India	17
•	21	National Council for Environmental Policy and Planning, 1972	3
	21	which evolved into MoEF and later MoEFCC, Central Pollution	5
		Control Board and SPCBs i.e. State Pollution Control Boards)	
	22	The Policy Statement for Abatement of Pollution and the National	2
		Conservation Strategy and Policy Statement on Environment and	
		Development, 1992	
			1
	23	The EAP (Environmental Action Programme) was formulated in	1

24	National Environmental Policy, 2006, Post-NEP 2006		
25	Open ended	9	

References

- 1. Cronon, W. (1993). The uses of environmental history. *Environmental history* review, 17(3), 1-22.
- 2. Fisher, M. H. (2018). An environmental history of India: from earliest times to the twenty-first century (Vol. 18). Cambridge University Press.
- 3. Gadgil, M., & Guha, R. (1993). *This fissured land: an ecological history of India*. Univ of California Press.
- 4. Hughes, J. D. (2016). What is environmental history? John Wiley & Sons.
- 5. McNeill, J. R. (2003). Observations on the nature and culture of environmental history. *History and theory*, 42(4), 5-43.
- 6. Ravi Rajan, S. (2014). A history of environmental justice in India. *Environmental Justice*, 7(5), 117-121.
- 7. Sivaramakrishnan, K. (2008). Science, environment and empire history: comparative perspectives from forests in colonial India. *Environment and History*, 14(1), 41-65.
- 8. Stein, B. (2010). A History of India (Vol. 9). John Wiley & Sons.

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Explain the history of developments related to the environment	R, U	PSO-1,2 PO-8
CO-2	Explain the environment in the context of ancient India	U, E	PSO-2 PO-8
CO-3	Describe the environment-related activities in Medieval and British India	U, Ap, An	PO- 1,8
CO-4	Discuss the various legal provisions and policies in independent India and describe the environmental movements	R, U	PSO- 1,2,4,5 PO- 2,3
CO-5	Explain the activities and governance related to the environment in modern India and categorize activities under relevant laws, rules and policies	U, Ap	PSO- 1,2,4,5 PO- 2,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 3:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Explain the	PSO-1,2	R, U	F, C	4	0

	history of developments related to the environment	PO-8				
CO-2	Explain the environment in the context of ancient India	PSO-2 PO-8	U, E	F, C	5	0
CO-3	Describe the environment- related activities in Medieval and British India	PO- 1,8	U, Ap, An	F, C	7	1
CO-4	Discuss the various legal provisions and policies in independent India and describe the environmental movements	PSO- 1,2,4,5 PO- 2,3	R, U	F, C	11	0
CO-5	Explain the activities and governance related to the environment in modern India and categorize activities under relevant laws, rules and policies	PSO- 1,2,4,5 PO- 2,3	U, Ap	F, C, P	8	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs and POs :

191	Mapping of COs with FSOs and FOS:											
	PSO	PSO	PSO	PSO4	PS	PSO	PO1	PO2	PO3	PO4	PO5	PO6
	1	2	3		05	6						
CO	2	3	-	-	-	-	-	-	-	-	-	-
1												
CO		3	-	-	-	-	-	-	-	-	-	-
2												

CO 3	-	-	-	-	-	-	3	-	-	-	-	-
CO 4	2	2	-	3	3	-	-	3	3	-	-	-
CO 5	2	2	-	3	3	-	-	3	3	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Visit to any legal firm and submit a report
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline **ENVIRONMENTAL SCIENCES** Course Code UK1MDCENS101 **ENVIRONMENTAL EDUCATION** Course Title Type of Course MDC Semester First 100 - 199 Academic Level **Course Details** Credit Lecture Tutorial Practical Total per week per week Hours/Week per week 3 hours 3 3 _ _ 1. A foundational understanding of basic ecological concepts and **Pre-requisites** ecosystem dynamics. 2. Familiarity with the principles of sustainable development and

	 environmental policies. 3. An interest in environmental issues, ethics, and global awareness. 4. Eagerness to engage in field-based learning and practical applications.
Course Summary	This course delves into the definition, scope, and principles of Environmental Education (EE), its historical evolution, and its role in sustainable development. It covers basic ecological concepts, environmental policy, governance, and the importance of government agencies and NGOs. Students will explore environmental ethics, justice, and cultural perspectives, and engage in debates on contemporary issues of environmental significance.

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction to Environmental Education	8
	1	Definition, scope, and objectives of Environmental Education	1
	2	The guiding principles and historical evolution of Environmental	2
		Education	
	3	Role of EE in sustainable development	1
	4	Modes of imparting Environmental Education (Formal and non-formal	2
		sectors of education)	
	5	Environmental Education in India (levels of implementation)	2
II		Role of Environmental Education in addressing	10
		Environmental Issues and Challenges	
	6	Introduction to Environmental issues and Challenges (Climate Change	2
		and Global Warming, Pollution and Waste Management, Biodiversity and	
		Conservation – their causes and impacts)	
	7	Duilding Further and the literature (survivours and 1 Assessments and	2
		Building Environmental Literacy (environmental Awareness and	
	8	Knowledge, Critical Thinking and Problem-Solving Promoting Sustainable Practices (Behavior Changes and Responsible	2
	0	Choices, Education for Sustainable Development (ESD), Green Economy	2
		and Circular Practices)	
	9	Environmental Policies and Governance (EPA, 1986, NEPA, National	2
	,	and international environmental policies, Role of government agencies	2
		and NGOs, Indian Constitution and Environmental Provisions)	
	10	Environmental Education in a Global Context (Cross-cultural exchange	2
	10	programs, International collaborations, Addressing global environmental	2
		challenges)	
III		Environmental Ethics and Values	10
	11	Ethical frameworks in environmental decision-making (Polluter-Pays	2
		Principle, Ability-to-Pay Principle, Equal-Per-Capita Principle,	
		Procedural-Involvement Principle)	
	12	Environmental justice and Cultural perspectives on nature (Key	2
		Principles of justice-equity, participation and recognition, Landscape and	
		Narratives, Traditional Ecological Knowledge, Indigenous Wisdom,	
		Historical and Spiritual Connection and advocacy)	

4.0		•
13		2
	and Non-Violence, Global Citizenship, Cultural Diversity)	
14	Anthropocentrism vs. Ecocentrism (perspectives and implications)	2
15	Debates on controversial environmental issues	2
	Environmental Education Pedagogy	12
16	Types and levels of EE (primary, secondary, tertiary)	2
17	Teaching methods and approaches (Innovative Model of EE integrating	3
	knowledge, values, ethics, skills, and evaluation, Seven Approaches to	
	Environmental Education)	
18	Field-based learning and experiential education (purpose, benefits, and	2
	applications with case studies in EE)	
19	Youth engagement and environmental leadership (Empowering Future	3
	Eco-Leaders through Student-Centered Activities, Platforms for Voices,	
	Meaningful Connections, Experiential Learning and Global Citizenship)	
20	Environmental organizations and agencies (International and National,	2
	Agencies and Programmes)	
	Case Studies, Field Work and Practical Applications	8
21	Field visits to natural habitats, conservation areas, and pollution sites.	2
22	Analyzing real-world environmental challenges (case studies).	2
23	Developing practical skills in data collection and analysis-surveying and	2
	field work	
24	Best Practices in Environmental Sustainability Education- real world	2
	examples	
25	Open Ended	12
	15 16 17 18 19 20 21 22 23 24	Sustainable Lifestyles, Human Rights, Gender Equality, Culture of Peace and Non-Violence, Global Citizenship, Cultural Diversity) 14 Anthropocentrism vs. Ecocentrism (perspectives and implications) 15 Debates on controversial environmental issues Environmental Education Pedagogy 16 Types and levels of EE (primary, secondary, tertiary) 17 Teaching methods and approaches (Innovative Model of EE integrating knowledge, values, ethics, skills, and evaluation, Seven Approaches to Environmental Education) 18 Field-based learning and experiential education (purpose, benefits, and applications with case studies in EE) 19 Youth engagement and environmental leadership (Empowering Future Eco-Leaders through Student-Centered Activities, Platforms for Voices, Meaningful Connections, Experiential Learning and Global Citizenship) 20 Environmental organizations and agencies (International and National, Agencies and Programmes) 21 Field visits to natural habitats, conservation areas, and pollution sites. 22 Analyzing real-world environmental challenges (case studies). 23 Developing practical skills in data collection and analysis-surveying and field work 24 Best Practices in Environmental Sustainability Education- real world examples

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed
CO-1	Explore the guiding principles that underpin effective environmental education, Understand ecosystem dynamics, including interactions between biotic and abiotic components.	U, An	PO-2 PSO-1,2
CO-2	Enhance critical thinking and problem-solving skills related to environmental issues.Address global environmental challenges through education and action.	U, An, Ap	PO-1,6 PSO-1,2,4
CO 3	Explore the concept of environmental justice and its relevance to marginalized communities, Engage in informed debates on topics such as climate change, deforestation, and animal rights, thereby Developing communication skills and analyzing differing	U, Ap	PO-1,8 PSO-1,2

	viewpoints and evidence.		
CO 4	Recognize the value of field trips, nature walks, and outdoor experiences in EE, Cultivate leadership skills related to environmental advocacy and stewardship, and design field-based activities that connect classroom learning to real-world contexts.	U, An	PO-3,5 PSO-1,2
CO 5	Learn about local biodiversity, ecosystem dynamics, and environmental threats, Gain proficiency in interpreting and presenting environmental data effectively.	U, Ap	PO-3,5 PSO-2,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

References

- 1. Wei-Ta Fang, Arba'at Hassan & Ben A. LePage. 2022. The Living Environmental Education, Springerlink,
- 2. Bhanu Paudel, Madan Koirala, Shyam Prasad Adhikari. 2009. A text book of Environmental Education, Ekta Books.
- 3. Singh, Sunil Kumar. 2008. Environmental Education and Ethics, Amrit Prakashan,
- 4. William P. Cunningham and Mary Ann Cunningham. 2008.
- 5. Principles of Environmental Science, Mc Graw Hill.
- 6. Linda R. Berg, Mary Catherine Hager, and David M. Hassenzahl. 2017. Visualizing Environmental Science, John Wiley and Sons.
- 7. Karmaoui, Ahmed, Ben Salem, Abdelkrim, Anees, Mohd Talha. 2021. Handbook of Research on Environmental Education Strategies for Addressing Climate Change and Sustainability. IGI Global.

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)	Open Ended (OE)
CO-1	Explore the guiding principles that underpin effective environmental education, Understand ecosystem dynamics, including	PO-2 PSO-1,2	U, An	F, C	10		2

Name of the Course: Credits: 3:0:0 (Lecture: Tutorial: Practical)

	interactions between biotic and abiotic components.					
CO-2	Enhance critical thinking and problem- solving skills related to environmental issues.Address global environmental challenges through education and action.	PO-1,6 PSO- 1,2,4	U, An, Ap	P,M	10	2
CO 3	Explore the concept of environmental justice and its relevance to marginalized communities, Engage in informed debates on topics such as climate change, deforestation, and animal rights, thereby Developing communication skills and analyzing differing viewpoints and evidence.	PO-1,8 PSO-1,2	U, Ap	F,P	10	2
CO 4	Recognize the value of field trips, nature walks, and outdoor	PO-3,5 PSO-1,2	U, An	С	10	2

	experiences in EE, Cultivate leadership skills related to environmental advocacy and stewardship, and design field-based activities that connect classroom learning to real- world contexts.					
CO 5	Learn about local biodiversity, ecosystem dynamics, and environmental threats, Gain proficiency in interpreting and presenting environmental data effectively.	PO-3,5 PSO-2,4	U, Ap	p	8	4

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	1	-	-	-	-	-	2	-	-	-	-
CO 2	1	3	-	1	-	-	2	-	-	-	-	2
CO 3	2	1	-	-	-	-	2	-	-	-	-	-
CO 4	2	3	-	-	-	-	-	-	1	-	3	-

CO 5	-	1	-	2	-	-	-	-	2	-	1	-	
---------	---	---	---	---	---	---	---	---	---	---	---	---	--

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

SEMESTER II

Discipline	ENVIRONMENTAL SCIENCES
Course Code	UK2DSCENS100
Course Title	NATURAL RESOURCES AND CONSERVATION
Type of Course	DSC
Semester	Second
Academic	100-199
Level	

Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	 The students should have background knowledge on the different resources on earth Students should have an overall idea regarding conservation strategies around the world. 							
Course Summary	Natural resource conservation is about supplying what humans need while trying to minimize the impacts of this on the environment. Natural resource conservation has greatly increased the carrying capacity of the Earth for humans. Upon completion of this course, the student will be able to describe the impact of world population growth on natural resource availability and management. Students will identify the major factors depleting natural resources and will be able to develop management strategies to conserve them.							

Detailed Syllabus:

Module	Unit		Hrs					
Ι		Introduction to Natural resources	10					
	1	Definition – Concept, classification of natural resources (Renewable and	3					
		non renewable resources) Renewable resources – Land / Soil resources –						
	2	Land as a resource, Land degradation, Causes of soil and land	3					
		degradation, Conservation measures						
	3	Soils of India	2					
	4	Waste lands, desertification	2					
II		Water and Forest resources	20					
	5	Sources of water, hydrological cycle, Use and exploitation of surface and	2					
	groundwater, conflict over water,6Management and conservation of water resources. Watershed 2							
	6	6	2					
		management: Concept, Objectives, planning and measures;	2					
	7 Land use planning for watershed management; Water harvesting and							
	recycling, role of state in water resources management							
	8 Importance of Forest - Ecological and Economic significance							
	9	Classification of Forest resources	1 2					
	10 Use and over exploitation, deforestation, Timber extraction, afforestation, basic causes of deforestation,							
	11	Management of forest resources	1					
	12	Plants and animal resources – over exploitation, species extinction,	2					
	10	control measures.						
	13	Social forestry – multipurpose tree species (MPTs), Nitrogen fixing Tree	3					
		species (NFTs) – characteristics; community participation; pattern of						
	1.4	planting (Field visit)	1					
	14	Eco-restoration of eroded hill slopes and degraded Jhum land	1					
	15	Agroforestry - origin and definition, types	1					
	16	Tree and crop management	1					
III		Non renewable and renewable Energy resources	10					

	17	Non renewable energy resources - Fossil fuels (Coal, Petroleum and	3						
		natural gas), nuclear fuel							
	18	Renewable energy resources (Biomass, Biofuel, Hydropower, Tidal	5						
		energy, wave energy, wind energy, geothermal energy, solar energy,							
		nagneto hydrodynamic power, Hydrogen energy (Field Visit)							
	19	Energy crisis, Management of energy resources	2						
IV	Mineral resources								
	20	Classification of Minerals, Minerals of India, Uses of economic	4						
		importance of minerals, Management of Mineral resources							
	21	Mineral wealth of our planet, Non renewable nature of mineral deposits, 4							
		The inexhaustible nature of mineral elements							
	22	Use and exploitation of mineral resources, Environmental effects of 4							
		extracting and using mineral resources, Remedial measures							
V		Food resources	8						
	23	World food problems, changes caused by agriculture and overgrazing,	4						
		effects of modern agriculture, merits of conventional agricultural system							
	24	World food supply, food security, Sustainable agriculture, Role of an	4						
		Individual in conservation of natural resources, equitable use of resources							
		for sustainable development.							
	25	Open Ended	15						

REFERENCES

- 1. Singh, C. K. 2018. Geospatial Applications for Natural Resources Management, CRC Press.
- 2. Anil Tyagi, Environmental Science, Danika publishing company, New Delhi, 2007.
- 3. Barrington EJW, Environmental Biology. Resource and Environmental Science series, Edward Arnold (pub) Ltd. London.
- 4. Purohit, S.S, Shammi, Q. Land Agarwal, A.K; A text book of Environmental science, student edition publishers, Jodhpur, 2004
- 5. Sudhakara Reddy, B.P. Balachandra. (2006). Energy, Environment and development, Narosa Publishing House Pvt. Ltd., New Delhi
- 6. Thapar, S. D. (1975). India's Forest Resource, Macmillan India, New Delhi
- 7. Biswas, A.K. (2007). Water resources: Environmental Planning, Management and Development, McGraw Hill, New Delhi
- 8. Daniel, D. Chiras and Reganold, John, P. (2009). Natural Resource Conservation: Management for a Sustainable future, Addison Wesley, Boston.

Course Outcomes

No. Upon completion of the course the graduate will be Cognitiv	e PO/PSO
---	----------

	able to	Level	addressed
CO-1	Understand the use, management, and protection of land and natural resources and prepare for careers in environmental management	U	PO1, PSO 1, PSO 2
CO-2	Promote responsible and conscientious stewardship of soil and mineral resources and thereby the reduce the deleterious effects of mining and soil erosion	Ар	PO2, PSO 3, PSO 4
CO-3	State and promote the knowledge of preservation and management strategies of natural resources	An	PO4, 5, PSO 6, PSO 5
CO-4	Analyze and appreciate the importance of energy efficiency and energy conservation strategy for sustainable environment	Е	PO6, PSO 6
CO- 5	Develop knowledge on the values and importance of water resources and thereby inculcate awareness on the detrimental effects of overuse and depletion of water resources	Ар	PO8, PSO 3, PSO 6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 3:0:1 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitiv e Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)	Open Ended
1	Understand the use, management, and protection of land and natural resources and prepare for careers in environmental management	PO1, PSO 1, PSO 2	U	F	10	2	3
2	Promote responsible and conscientious stewardship of soil and mineral resources and thereby the reduce the deleterious effects of mining and soil erosion	PO2, PSO 3, PSO 4	Ар	F	10		3
3	State and promote the knowledge of preservation and management	PO4, 5, PSO 6, PSO 5	An	F,M	10	2	3

	strategies of natural resources						
4	Analyze and appreciate the importance of energy efficiency and energy conservation strategy for sustainable environment	PO6, PSO 6	Ε	F	10	4	3
5	Develop knowledge on the values and importance of water resources and thereby inculcate awareness on the detrimental effects of overuse and depletion of water resources	PO8, PSO 3, PSO 6	Ар	F	12		3

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO 1	1	-	-	1	-	-	2	-	-	1	-	3	-	-
CO 2	2	3	-	-	-	-	3	2	-	-	2	-	-	-
CO 3	-	-	1	-	-	-	-	3	-	2	1	-	-	3
CO 4	1	-	2	-	-	-	-	1	1	-	-	3	1	-
CO 5	-	1	-	-	3	-	1	1	-	-	-	-	3	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low

2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark			\checkmark
CO 3				\checkmark
CO 4	\checkmark	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark	\checkmark

Discipline	ENVIRONMENTA	ENVIRONMENTAL SCIENCES						
Course Code	UK2DSCENS101							
Course Title	ENVIRONMENTA	L GEOLOO	GY					
Type of Course	DSC							
Semester	Second							
Academic	100-199	100-199						
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	1. The students should have a basic knowledge of the geo-physical							
	components of Earth and its processes.							
	2. The students should be aware of the disasters related to Earth and							
	Climate change issue	es						

Course	The course involves a study of earth processes and natural hazards and
Summary	their influences on life in ways that either affect or control man's environment. Furthermore, this is an introduction to geologic concepts as they relate to the environment we live in. Topics under discussion include earth's geologic environment, problems posed by various geologic phenomena and some of the ways that human activities have affected the planet.

Module	Unit	Content	Hrs				
Ι		Introduction to Environmental Geology	10				
	1	Origin and Evolutionary history of earth- Geological Time Scale	2				
	2	Origin of life, Speciation	2				
	3	Evolution of human settlement					
	4 Plate Tectonics – Seafloor spreading and continental drift						
	5	Forces acting on the surface of the Earth – tectonic and diastrophic	2				
		forces.					
II							
	6	Definition of rocks and minerals, Rock forming minerals and ore	3				
		forming minerals, Physical properties of minerals					
	7	Brief overview of formation; forms, textures, structures,	3				
		classification of Igneous rocks.					
	8	Brief overview of formation; forms, textures, structures,	3				
		classification of sedimentary rocks.					
	9	Brief overview of formation; forms, textures, structures,	3				
		classification of metamorphic rocks.					
	11	Environmental impacts of mining and mitigatory measures.	3				
III		Ecohydrology and Groundwater					
	12	Definition and Concept of Ecohydrology; hydrologic budget	1				
	13	Drainage basin – definition and characteristics	1				
	14	Stream classification and ordering	2				
	15	Source, occurrence and movement of groundwater; Water	2				
		Table					
	16	Geologic formations as aquifers; Aquifer types	2				
	17	Water Table fluctuations – environmental and anthropological	2				
		influences					
	18	Rainwater harvesting and groundwater recharging methods.	2				
IV		Geological Hazards	15				
	19	Earthquakes – causes, effects, distribution and prediction	3				
	20	Volcanoes –distribution, products of volcanic eruptions and their	3				
		environmental impacts					
	21	Landslides – slope stability, factors affecting slope stability, causes,	3				
		effects and prevention of landslides					
	22	Tsunami – causes, characteristics, effects	3				

	23	Avalanches – causes, types, effects; Cyclones - causes and effects	3					
	24	Preparation of case studies in each category mentioned in this module - 13						
		Participatory Action Learning (Open Ended)						
V		Maps (Practicum)	8					
	25	Identification of rocks and Minerals	4					
		Topographic and Geologic maps in Environmental Studies- Preparation						
		of maps (Experiential learning)	4					

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the basics of Environmental Geology	U	PSO 1
CO-2	Define the basic structures and identify geological features present on earth and its composition	R	PSO 2
CO3	Understand and identify the geological hazards	U	PSO 3
CO4	Address major environmental issues such as mining and its implications on the earth's surface	Ар	PSO 5
CO5	Interpret geological history, and solve geological problems	An	PSO 6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PS O	Cognitiv e Level	Knowledg e Category	Lecture (L)/Tutori al (T)	Practic al (P)	Open Ended
1	Understand the basics of Environmenta l Geology	PSO 1	U	U	10	1	3
2	Define the basic structures and identify geological features present on earth and its composition	PSO 2	R	F, C	10	3	3

3	Understand and identify the geological hazards	PSO 3	U	U	10	2	3
4	Address major environmenta l issues such as mining and its implications on the earth's surface	PSO 5	Ap	Ар	10	1	3
5	Interpret geological history, and solve geological problems	PSO 6	An	An	12	1	3

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO 2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO 1	1	-	-	1	-	-	-	1	-	1	-	1	-	1
CO 2	2	2	-	-	1	-	1	-	-	-	1	-	-	-
CO 3	-	-	1	-	-	-	-	-	2	-	-	-	2	-
CO 4	-	-	2	3	-	-	2	-	1	-	2	-	1	-
CO 5	-	1	-	-	-	-	-	-	1	2	-	-	1	2

REFERENCES

- 1. Duggal K. N. and J. P. Soni, (1996). Elements of water resource engineering; New Age International Publisher.
- 2. Read, H. H. Rutley's Elements of Mineralogy. John Wiley and Sons, New York.

- 3. Reghunath, H.M. (1996). Hydrology Principles, analysis and design, New Age international publisher.
- 4. Singh V.P (1994). Elementary Hydrology, Prentice Hall of India.
- 5. Strahler, A. N. and Strahler, A.H. (1987). Physical Geography, John Wiley and Sons, New York.
- 6. Strahler, A. V. and Strahler, A.A (1973). Environmental Geoscience, Wiley International.
- 7. Todd, D. K. and L.W. Mays (2005). Ground Water Hydrology, 3rd Edn. Wiley Inc.
- 8. Tyrell, G. W. (1978). Principles of Petrology. Chapman & Hall Ltd

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4			\checkmark	\checkmark
CO 5		\checkmark	\checkmark	\checkmark

Discipline	ENVIRONMENTA	L SCIENC	ES					
Course Code	UK2DSCENS102	UK2DSCENS102						
Course Title	ENVIRONMENTA	L METEO	ROLOGY					
Type of Course	DSC							
Semester	Second							
Academic	100 - 199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 h	-	2h	5			
Pre-requisites	A general concept of	f weather and	d climate and	climate chan	ige			
Course	This course is desig	gned to give	e the learner	a basic kno	wledge of the			
Summary	weather and climatic	c conditions.	It explains t	he elements of	of weather and			
	climate and the EMF	R and Energy	Budget of th	e earth. After	giving a detail			
	on the measuremen	t of various	meteorolog	ical paramete	ers, the course			
	describes the world of							
	overview of the influ	uence of the	Anthropocen	e on weather	and climate.			

Module	Unit	Content	Hrs
Ι		Elements of Weather and Climate	10
	1	Concept and elements of meteorology	2
	2	Vertical structure and composition of the atmosphere	4
	3	Change in the composition of the atmosphere (spatial and temporal)	4
II		Solar Radiation and Energy Budget	8
	4	Nature of solar radiation	1
	5	Laws of radiation	1
	6	Radiative heating and cooling, natural greenhouse effect	2
	7	Interactions of radiation with atmosphere, Terrestrial IR radiation	2
	8	Radiation and Heat Budget of Earth	2
		Meteorological Instruments (Practicum)	24
	9	Rain measurements (Rain and types of rain gauges)	2
III	10	Temperature measurements (construction and working of temperature	3
		scales, mercury thermometer, sensitivity, and accuracy, maximum and	
		minimum thermometer, thermograph)	
	11	Pressure measurements (construction and working of mercury barometer, aneroid barometer - construction and working, barograph)	3
	12	Wind measurements (construction and working of wind socks, wind vanes, anemometers, anemograph)	3
	13	Humidity measurements (construction and working of dry and wet bulb thermometers construction and working, psychrometric chart, hair hygrometer)	4

	14	Radiation measurements (Crooke's radiometer, Seebeck effect, thermopile, radiation pyrometer)	3				
	15	State-of the art technologies (Program Logical Circuit based)	4				
IV		World Climate System	6				
	16	Climates of hemispheres	2				
	17	Global distribution of temperatures	2				
	18	Global distribution of pressure	2				
V		Influence of Anthropocene in Weather and Climate					
	19	Preliminary Concepts - Climate Change and variability	2				
	20	Drivers of Climate Change	2				
	21	Response of living organisms to climate change	2				
	22	Biodiversity loss in the terrestrial environment due to climate change	2				
	23	Biodiversity loss in the aquatic environment due to climate change	2				
	24	Effect of climate change on natural resources	2				

References

- 1. Anthes, R. A. (2011). Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather. *Atmospheric Measurement Techniques*, 4(6), 1077-1103.
- 2. Barry, R. G., & Chorley, R. J. (2009). Atmosphere, weather and climate. Routledge.
- 3. Bridgman, H. A., & Oliver, J. E. (2014). *The global climate system: patterns, processes, and teleconnections*. Cambridge University Press.
- 4. Brock, F. V., & Richardson, S. J. (2001). *Meteorological measurement systems*. Oxford University Press, USA.
- 5. Carter, T. R. (1996). Developing scenarios of atmosphere, weather and climate for northern regions. *Agricultural and Food Science*, *5*(3), 235-249.
- Farmer, G. T., Cook, J., Farmer, G. T., & Cook, J. (2013). Earth's energy budget. *Climate Change Science: A Modern Synthesis: Volume 1-The Physical Climate*, 81-95.
- 7. GUIDE, A. (2007). Understanding weather and climate.
- 8. Harrison, G. (2014). *Meteorological measurements and instrumentation*. John Wiley & Sons.
- Kishan Varma, S., Agarwal, V., & Chandak, A. (2022). Implementation of Rule Based Testing for Digital Circuits Using Inductive Logic Programming. In *Inventive Communication and Computational Technologies: Proceedings of ICICCT 2021* (pp. 121-134). Springer Singapore.
- 10. LaMeres, B. J. (2023). *Introduction to logic circuits & logic design with VHDL*. Springer Nature.
- 11. Lala, P. K. (2022). An introduction to logic circuit testing. Springer Nature.
- 12. Lorenz, E. N. (1991). Dimension of weather and climate attractors. *Nature*, *353*(6341), 241-244.

- 13. Middleton, W. E. K., & Spilhaus, A. F. (1941). *Meteorological instruments*. University of Toronto Press.
- 14. Mooney, H., Larigauderie, A., Cesario, M., Elmquist, T., Hoegh-Guldberg, O., Lavorel, S., ... & Yahara, T. (2009). Biodiversity, climate change, and ecosystem services. *Current opinion in environmental sustainability*, 1(1), 46-54.
- 15. Moore, R. D., Spittlehouse, D. L., Whitfield, P. H., & Stahl, K. (2010). Weather and climate. *Compendium of forest hydrology and geomorphology in British Columbia*, *1*, 47-84.
- 16. Munasinghe, M., & Swart, R. (2005). Primer on climate change and sustainable development: facts, policy analysis, and applications (Vol. 3). Cambridge University Press.\
- 17. Vardavas, I., & Taylor, F. (2011). *Radiation and Climate: Atmospheric energy budget from satellite remote sensing* (Vol. 138). International Monographs on Ph.
- 18. Warren, R., Price, J., & Jenkins, R. (2021). Climate change and terrestrial biodiversity. In *The impacts of climate change* (pp. 85-114). Elsevier.

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Define and explain the elements of weather and climate	U	PSO-1,2
CO-2	Describe the electromagnetic spectrum, the rules and characteristics, and the Heat budget of the earth	R, U	PSO-1,2, 3
CO-3	Explain the various Meteorological Instruments	R	PSO 3, 9
CO-4	Describe the World Climate System	R, U	PSO 3, 4
CO-5	Analyze the possible causes of climate-related disasters	An	PSO 4, 8, 9 PO 1,2, 6

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of	of the	Course:	Credits:	3:0:1	(Lecture:T	utorial:	Practical)
					(

CO No.	со	PO/PSO	Cognitiv e Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Define and explain the elements of weather and climate	PSO- 1,2	U	F, C	10	-
CO-2	Describe the electromagnetic spectrum, the rules and characteristics, and the Heat budget of the earth	PSO- 1,2, 3	R, U	F, C	6	2

CO-3	Explain the various Meteorological Instruments	PSO 3, 9	R	F, C, P	20	4
CO-4	Describe the World Climate System	PSO 3, 4	R, U	F, C	6	-
CO-5	Analyze the possible causes of climate-related disasters	PSO 4, 8, 9 PO 1,2, 6	An	F, C	15	-

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PS O5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO 1	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	2	3	3	-	-	-	-	-	-	-	-	-	-	-
CO 3	_	_	3	-	-	-	3	-	_	-	_	-	-	_
CO 4	_	_	2	2	-	_	-	_	_	_	-	_	_	_
CO 5	-	-	-	2	-	2	3	3	-	-	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Field experiments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark	\checkmark	\checkmark
CO 5		\checkmark		\checkmark

Discipline	ENVIRONMENTA	L SCIENC	ES		
Course Code	UK2MDCENS100				
Course Title	ENVIRONMENT A	AL ETHICS			
Type of Course	MDC				
Semester	SECOND				
Academic	100 to 199				
Level		I	I		
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	3	3 h	-	-	3
Pre-requisites	Knowledge of enviro	onmental stu	dies and cur	rent environm	ental issues
Course	Environmental ethics	s is the study	of ethical re	lationships be	tween humans
Summary	and other entities, pr	rimarily the	environment	and non-hum	an organisms.
	It also includes the s	study of theo	ries of value	e and how the	y apply to our
	moral relationships.	In this con	urse we wil	l assess the	strengths and
	weakness of a variet	y of normati	ve ethical the	eories and the	ories of value,
	including theories lik	•			· · · · · · · · · · · · · · · · · · ·
	impact in environme				
	an applied component				
	applying the theorie				
	including sustainabi		•		
	change, and rapid te		•		stree, ennute
	change, and rapid te	cintological a		L•	

Module	Unit	Content	Hours					
Ι	Envir	nvironmental philosophy and environmental ethics						
	1	Environmental ethics- a brief history	1					
	2	Understanding the meaning of value	1					
	3	Environmental philosophies	1					
	4	Environmental awareness – Before the Publication of Silent	2					
		Spring in 1962						

	5	Environmental Movement from 1962 to 1992	1
	6	Environmental Movement since the 1980s to the Present Day	1
II	Basic	s of environmental ethics	7
	7	Evolution of environmental ethics	1
	8	Concept of environmental ethics	1
	9	Philosophies of biocentrism and ecocentrism	1
	10	Application of ethics to environmental issues	2
	11	Ecofeminism	1
	12	Environmental equity and justice.	1
III	Anth	ropocentrism and Non Anthropocentric conceptions	8
	13	Philosophical roots of Anthropocentrism	2
	14	Animal liberation	1
	15	Deep ecology, Land ethics, Eco-interests	1
	16	Biocentricism	2
	17	Ecological animalism	2
IV	Conc	ept of Sustainability	8
	18	Sustainable development: the conventional definition	2
	19	Viewpoints on Conservation and sustainability	2
	20	Traditional ecological knowledge and the idea of a local	2
		economy	
	21	Achieving a sustainable economy - two ideas	2
V	Huma	an place in nature and Restoration of Nature	6
	22	The action of man upon nature	2
	23	Getting back to nature, Human restoration of nature	2
	24	Philosophical roots of the park and forest Service	2
	25	Open Ended	9

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand different concepts of environmental ethics	U	PSO 1
CO-2	Define the concepts central to environmental ethics	R	PSO 4
CO3	Explain and define one's own ethical standpoint according to these ethical concepts	U	PSO 5
CO4	Discriminate and assess claims regarding moral considerability	Ар	PSO 5
CO5	Understand and evaluate one's own concrete interaction to the surrounding world, especially in reference to the concept of sustainability		PSO 3, PSO 5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

CO No.	СО	PO/PSO	Cognitive Level	Knowledg e Category	Lecture (L)/Tutorial (T)	Open Ended
1	Understand different concepts of environmental ethics	PSO 1	U	F, C	10	2
2	Define the concepts central to environmental ethics	PSO 4	R	Р	10	2
3	Explain and define one's own ethical standpoint according to these ethical concepts	PSO 5	U	U	10	2
4	Discriminate and assess claims regarding moral considerability	PSO 5	Ар	Ар	10	2
5	Understand and evaluate one's own concrete interaction to the surrounding world , especially in reference to the concept of sustainability	PSO 3, PSO 5	An	An	10	2

Name of the Course: Credits: 3:0:0 (Lecture: Tutorial: Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO 1	1	-	-	1	-	-	-	1	-	1	-	1	-	1
CO 2	2	2	-	-	1	-	1	-	-	-	1	-	-	-
CO 3	-	-	1	-	-	-	-	-	2	-	-	-	2	-
CO 4	-	-	2	3	-	-	2	-	1	-	2	-	1	-

		CO 5	-	1	_	_	_	_	_	-	1	2	_	-	1	2
--	--	------	---	---	---	---	---	---	---	---	---	---	---	---	---	---

REFERENCES

- 1. Adamson, Joni, Mei Mei Evans, and Rachel Stein, eds. The Environmental Justice Reader: Politics, Poetics, and Pedagogy. Tucson: The University of Arizona Press, 2002.
- 2. Brennan, Andrew, ed. The Ethics of the Environment. Brookfield, VT: Dartmouth Publishing Company, 1995.
- 3. DesJardins, Joseph R. Environmental Ethics: An Introduction to Environmental Philosophy, 3rd edition. Belmont, CA: Wadsworth/Thomson Learning, 2001.
- 4. Hoffman, Michael W., Robert Frederick, and Edward S. Petry, eds. The Corporation, Ethics, and the Environment. Westport: Quorum Books, 1990.
- 5. Jamieson, Dale, ed. A Companion to Environmental Philosophy. Malden, MA: Blackwell Publishers, Inc., 2001.
- 6. Kaufman, Frederik A. Foundations of Environmental Philosophy. New York: McGraw-Hill, 2003.
- 7. Light, Andrew, and Holmes Rolston III, eds. Environmental Ethics: An Anthology. Malden, MA: Blackwell Publishing, 2003.
- 8. Martin-Schramm, James B., and Stivers, Robert L. Christian Environmental Ethics: A Case Method Approach. Maryknoll: Orbis Books, 2003.
- 9. Newton, Lisa H., and Catherine K. Dillingham. Watersheds: Classic Cases in Environmental Ethics. Belmont, CA: Wadsworth Publishing Company, 1994.
- 10. Palmer, Clare. Environmental Ethics: Contemporary Ethical Issues. Santa Barbara: ABC-CLIO, Inc., 1997.

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark

CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4			\checkmark	\checkmark
CO 5		\checkmark	\checkmark	\checkmark

ENVIRONMENTAL SCIENCES Discipline Course Code **UK2MDCENS101** Course Title **INTELLECTUAL PROPERTY RIGHTS** Type of Course MDC Semester Second 100 to 199 Academic Level **Course Details** Credit Lecture Tutorial Practical Total per week Hours/Week per week per week 3 3 h 3 _ Basic understanding of intellectual property, trade mark and copyrights **Pre-requisites** Course IPR provide certain exclusive rights to the inventors or creators of that Summary property, in order to enable them to reap commercial benefits from their creative efforts or reputation. There are several types of intellectual property protection like patent, copyright, trademark, etc. This course is designed to provide comprehensive knowledge to the students regarding the general principles of IPR, its concept and theories. After the course completion the students will be able to explore the various theories, approaches, view and functional mechanism of IPR across the world and legal response to the same, to examine the protection mechanism of Intellectual Property Rights and to focus upon the Trademarks, Copyright and GI, Design, Traditional Knowledge, and other IPR under various legislation.

Module	Unit	Content	Hrs
Ι		Introduction to Intellectual Property Rights	8
	1	Meaning of property, Origin, Nature, Meaning of Intellectual Property Rights, concept of intellectual Property and the need for protection	2
	2	The world Intellectual property Organization (WIPO) Convention - Origin and functions of World Trade Organization (WTO) -	2

	2	Trade Deleted Intellectual Dronenty Dichts (TDIDS) A grooment of WTO	2
	3	Trade Related Intellectual Property Rights (TRIPS) Agreement of WTO and its effects on Intellectual Property law in India; Dispute Settlement	2
		Mechanism.	
	4	Types of Intellectual property rights—Copy Right, Patent, Trade Mark,	2
	4	Trade Secret and trade dress, Design, Layout Design, Geographical	2
		Indication, Plant Varieties and Traditional Knowledge.	
II		Patent rights	7
	5	Introduction to Patent, Origin	1
	6	Types, Inventions which are not patentable	1
	7	Registration Procedure	1
	8	Rights and Duties of Patentee	1
	9	Assignment and licence, Restoration of lapsed Patents,	1
	10	Surrender and Revocation of Patents, Infringement,	1
	11	Remedies & Penalties.	1
III		Copy right	6
	12	Origin, Definition & Types of Copy Right	1
	13	Registration procedure,	1
	14	Assignment & licence	1
	15	Terms of Copy Right, Piracy	1
	16	Infringement, Remedies	1
	17	Copy rights with special reference to software	1
IV		Trade marks, Design and Geographical indications	10
	18	Origin, Meaning & Nature of Trade Marks, Types, Registration of Trade	2
		Marks, offence relating to Trade Marks, Passing Off, Penalties, Domain	
		names on cyber space	
	19	Introduction to Design, Registration of Design, Cancellation of	2
		Registration	
	20	International convention on design, functions of Design. Semiconductor	2
		Integrated circuits and layout design Act-2000.	
	21	Geographical Indications of Goods (Registration and Protection) Act, 1999	2
		- Objects and Reasons of the Act	
	22	Registrations – Cancellation – Rectification – Correction of Register –	2
		Infringement – Offences & Penalities - Remedies.	
V	Pı	rotection of traditional knowledge, plant varieties and biotechnology	5
	23	Meaning and Scope of traditional Knowledge – Interface between IP and	2
		traditional Knowledge - Need and Significance of protection -	
		International instruments on Traditional Knowledge	
	24	Protection of Plant Varieties and Farmer's rights – GM Corps – Objectives	3
		of Plant Varieties Act – registration of Plant Varieties – Duration and effect	
		of Registration – Infringement – Offences – Remedies.	
		Introduction - Protection of Biological Inventions – Plant Patent Protection	
		in India – Biotech Patents in India - Research and Development in	
		Biotechnology	
	25	Open ended	9

REFERENCES

- 1. Ahuja, V.K. 2013 Law relating to Intellectual Property rights, 2 nd Edition, (2013) LexisNexis.
- 2. Ahuja, V.K. 2017. Law relating to Intellectual Property Rights. India, In: Lexis Nexis
- 3. Barrett, Margreth, 2009. Intellectual Property, 3nd, New York Aspen publishers.
- 4. Bhandari, M.K. 2015. Law relating to IPR, Central Law Publication, (4th Edition 2015)
- 5. Cornish, William. 2010. Intellectual Property: Patents, Copyright, Trademarks and allied rights, 7 th ed., London Sweet & Maxwell
- 6. Gopalakrishnan N.S. & T.G. Agitha, 2009. Principles of Intellectual Property, Eastern Book Company, Lucknow
- 7. Indigenous Heritage and Intellectual Property: Genetic Resources, Traditional Knowledge and Folklore, Kluwer Law International, (2008)
- 8. Intellectual Property Law in the Asia Pacific Region, Kluwer Max Planck Series, (2009)
- 9. International Encyclopaedia of Laws: Intellectual Property (Kluwer Law International, 1997) I,MON K 1401 .I5828 (1997) vols. 1-5
- 10. Myneni, S.R. . 2019. "Law of Intellectual Property", 9th Ed, Asia law House.
- 11. Nard , Craig Allen, 2008. Law of Intellectual Property, 2 nd, New York Aspen publishers
- 12. Neeraj, P. and Khusdeep, D. 2014. Intellectual Property Rights. India, In: PHI learning Private Limited.
- 13. Nithyananda, K.V. 2019. Intellectual Property Rights: Protection and Management. India, In: Cengage Learning India Private Limited.
- 14. Reddy. G.B. 2023. Intellectual Property Rights and the Law, Gogia Law Agency, 11th edn,

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed
CO-1	Imbibe the knowledge of Intellectual Property and its protection through various laws	U	PO1, PSO 1,5
CO-2	Apply the knowledge of IPR for professional development	Ар	PO6, PSO 3, 4

CO-3	Develop a platform for protection and compliance of Intellectual Property Rights & knowledge	An	PO3, PSO 4, 5
CO-4	Create awareness amidst academia and industry of IPR and Copyright compliance	С	PO4,6, PSO 6
CO-5	Deliver the purpose and function of IPR and patenting	Ар	PO5,8, PSO 5,6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PS O	Cognitiv e Level	Knowledg e Category	Lecture (L)/Tutoria l (T)	Practica l (P)	Open ende d
CO -1	Imbibe the knowledge of Intellectual Property and its protection through various laws	PO1, PSO 1,5	U	F, C	10		3
CO -2	Apply the knowledge of IPR for professional developmen t	PO6, PSO 3, 4	Ар	Р	10	2	3

CO -3	Develop a platform for protection and compliance of Intellectual Property Rights & knowledge	PO3, PSO 4, 5	An	F,M	8	2	2
CO -4	Create awareness amidst academia and industry of IPR and Copyright compliance	PO4,6, PSO 6	С	F	8	2	2
CO -5	Deliver the purpose and function of IPR and patenting	PO5,8, PSO 5,6	Ар	Р	6		2

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	2	-	-	2	-	1	3	2	-
CO 2	2	1	-	-	3	-	3	1	-	2	-	1

CO 3	-	-	2	-	-	1	-	3	2	-	-	1
CO 4	-	-	2	3	-	-	2	-	3	1	1	3
CO 5	-	1	-	1	-	3	1	3	-	1	1	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- § Quiz / Assignment/ Quiz/ Discussion / Seminar
- § Midterm Exam§ Assignments§ Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2				\checkmark
CO 3				\checkmark
CO 4				\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark		\checkmark	\checkmark

SEMESTER III

Discipline	ENVIRONMENTA	L SCIENC	ES		
Course Code	UK3DSCENS200				
Course Title	ENVIRONMENTA	L MICROI	BIOLOGY A	ND BIOTE	CHNOLOGY
Type of Course	DSC				
Semester	Third				
Academic	200 - 299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 h	-	2	5
Pre-requisites	Should know basics	of structure	of DNA, rep	lication and t	ranscription
Course	This course is divid	ed into two	areas; Envir	onmental Mic	crobiology and
Summary	Environmental Biote				
	the learners about	the microo	rganisms in	the environ	ment and the
	multitude of their a	ctions in the	sustenance	of the enviro	nment and the
	environmental proc				•
	enumerating microb				
	Biotechnology portion				
	the structure of gene	etic material	and the vario	ous functions	of those. After
	that, the course int	roduces reco	ombinant DN	NA technolog	y, Genetically
	Modified Organisn		e various e	nvironmental	aspects and
	applications of these				

Module	Unit	Content	Hrs
I	Cint	Introduction to Environmental Microbiology	115
	1	Significance of microorganisms in the environment	2
	2	Principles of microscopy	2
	3	Types of microorganisms	2
	4	Observation of microorganisms using microscope (practicum)	3
	5	Role of microbes in Environmental Processes - Biogeochemical	3
		Cycles	
	6	Microbes in Environmental Processes - Bioremediation	3
II		Tools in Microbiology	15
	7	Sampling for microbial analysis (soil, water, and air) with	3
		practical	
	8	Types of Culture Media	1
	9	Sterilization Techniques	2
	10	Culture and Preservation of Microorganisms	1
	11	Methods of isolation and enumeration of Microorganisms in Soil,	3
		Water (Practicum)	
	12	Membrane filtration technique, MPN	2
	13	Principles and applications of autoclave, laminar air flow	3
		chamber, Hot Air Oven, Incubator	

		Basics of Biotechnology	10
	14	Structure of genetic material	2
III	15	Replication, transcription, and translation	2
	16	Recombinant DNA technology	3
	17	GMOs and Environmental Implications	3
IV		Scope and Applications of Environmental Biotechnology	8
	18	GMOs in Environmental Management - Pollution control	5
		(bioremediation), restoration of degraded lands, wastewater	
		treatment, aerobic and anaerobic digestion, biogas from wastes,	
		reduced need for pesticides, resistance to stress, food security	
	19	Biopesticides and biofertilizers	3
		Biotechnological methods for environmental Analysis	5
V	20	PCR	1
	21	FISH	1
	22	FAME	1
	23	SIP	1
	24	DNA Sequencing and Molecular Phylogeny	1
	25	Open Ended	15

References

- Bertrand, J. C., Caumette, P., Lebaron, P., Matheron, R., Normand, P., & Ngando, T. S. (Eds.). (2015). *Environmental microbiology: fundamentals and applications* (pp. 3-7). Dordrecht, The Netherlands: Springer.
- 2. Dubey, R. C. (1993). A textbook of Biotechnology. S. Chand Publishing.
- 3. Grant, W. D., & Long, P. E. (2013). *Environmental microbiology*. Springer Science & Business Media.
- 4. Khan, F. A. (2020). Biotechnology Fundamentals Third Edition. CRC Press.
- 5. Kumar, R., Sharma, A. K., & Ahluwalia, S. S. (Eds.). (2017). Advances in environmental biotechnology (pp. 69-91). Springer Singapore.
- Maddela, N. R., Garcia, L. C., & Chakraborty, S. (2021). Advances in the domain of environmental biotechnology. Springer Nature Singapore Pte Ltd. https://doi. org/10.1007/978-981-15-8999-7.
- 7. Mohapatra, P. K. (2013). *Textbook of environmental biotechnology*. IK International Pvt Ltd.
- 8. Vallero, D. A. (2016). Environmental Biotechnology. Routledge.
- 9. Wang, L. K., Ivanov, V., Tay, J. H., & Hung, Y. T. (Eds.). (2010). *Environmental* biotechnology (Vol. 10). Springer Science & Business Media.

Course Outcomes

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe the history of Environmental Microbiology and the environmental aspects of it	R, U	PSO-1,2
CO-2	Explain the various tools used in Environmental	R, U	PSO-1,3

	Microbiology		PO-2, 6
CO-3	Describe the structure and function of genetic materials	R	PSO-1,2
CO-4	Explain the scope of Environmental Biotechnology and Microbiology in environmental management	R, U	PSO-4 PO-2, 5, 8
CO-5	List out and explain the Biotechnological tools used for environmental analysis and suggest the suitable techniques which can be used for an environmental analysis	U. Ap	PSO-4,5 PO-1,2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

|--|

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Describe the history of Environmental Microbiology and the environmental aspects of it	PSO-1,2	R, U	F, C, P	10	5
CO-2	Explain the various tools used in Environmental Microbiology	PSO-1,3 PO-2, 6	R, U	Р	12	3
CO-3	Describe the structure and function of genetic materials	PSO-1,2	R	F	10	-
CO-4	Explain the scope of Environmental Biotechnology and Microbiology in environmental management	PSO-4 PO-2, 5, 8	R, U	С, М	6	2

CO-5	List out and explain the	PSO-4,5 PO-1,2	U. Ap	F, M	5	-
	Biotechnologica					
	l tools used for					
	environmental					
	analysis and					
	suggest the					
	suitable					
	techniques					
	which can be					
	used for an					
	environmental					
	analysis					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs and POs :

PP				005 u ii		~ •						
	PSO1	PSO2	PSO3	PSO4	PS O5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	3	-	-	-	-	-	-	-	-	-	-
CO 2	2	-	3	-	-	-	-	2	-	-	-	3
CO 3	3	3	-	-	-	-	-	-	-	-	-	-
CO 4	-	-	-	3	-	-	-	3	-	-	2	-
CO 5	-	-	-	2	3	-	3	3	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Laboratory
- Midterm Exam
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment		End Semester
	Exam		Evaluation	Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENT A	AL SCIENC	ES						
env	UK3DSCENS201	UK3DSCENS201							
Course Title	ENVIRONMENT A	AL POLLUT	ΓΙΟΝ						
Type of Course	DSC								
Semester	Third								
Academic	200 - 299								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 h	-	2 h	5				
Pre-requisites	1. Real world issues	and solution	IS						
	2. Should have unde								
Course	Environmental poll	ution is a	comprehens	sive study o	f the various				
Summary	pollutants that deg	rade the qu	ality of the	environment	and threaten				
	ecosystems, human								
	sources, effects, and		1						
	noise. It also examin								
	environmental pollu	tion and disc	usses sustain	able solutions	s to mitigate its				
	impacts.								

Module	Unit	Content	Hrs
Ι		Introduction to Environmental Pollution	8
	1	Definition and scope of environmental pollution	4
	2	Types of pollution; point and nonpoint sources	4
II		Air and Noise Pollution	12
	3	Sources and types of air pollutants	1
	4	Atmospheric chemistry and formation of smog	3
	5	Health effects of air pollution	2
	6	Climate change and greenhouse gas emissions	2
	7	Noise Pollution: Effects and consequences	2
	8	Control measures for air and noise pollution	2
III		Water Pollution and Radioactive Pollution	16
	9	Types and sources of water pollutants	2
	10	Surface water contamination	3
	11	Groundwater contamination	1
	12	Eutrophication and harmful algal blooms	2
	13	Radio active Pollution types, effects and consequences	3
	14	Disposal and Management of radio aactive pollution	3
	15	Water Quality Standards	2
IV		Soil Pollution	12
	16	Sources and types of soil pollutants	2
	17	Contaminated land and brownfield sites	2
	18	Soil erosion and degradation	2

	19	Heavy metals and organic contaminants	3
	20	Soil remediation techniques	3
V		Marine Pollution	12
	21	Sources and impacts of marine pollution	3
	22	Oil spills and their ecological consequences	3
	23	Plastic pollution and marine debris	3
	24	Overfishing and habitat destruction	3
	25	Open ended	15

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Gain an understanding of the interconnectedness of natural systems and how human activities can disrupt these systems, leading to environmental pollution.	U	PSO-1,2
CO-2	Identify various types of pollutants, including air pollutants, water pollutants, soil contaminants, and noise pollution, along with their sources, characteristics, and effects on ecosystems and human health.	R, U	PSO 2,4
CO-3	Learn about strategies and technologies for mitigating pollution and remediating contaminated environments, including pollution prevention, waste management, and pollution control technologies.	Ар	PSO 4,5
CO-4	Develop critical thinking skills to analyse complex environmental issues related to pollution and formulate evidence-based solutions to address them.	E, C	PSO 4,6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

References

- 1. Baxter, M. (2013). Social and Ethical Aspects of Radiation Risk Management, Vol.19, Editors: Deborah Oughton Sven Hansson. Elsevier (Pub.). Series: Radioactivity in the Environment.
- Brady, N.C. (1996). The Nature and Properties of Soil, 10th Ed., Prentice Hall of India Pvt. Ltd.
- 3. Cherimisinoff, N.P. (2001). Biotechnology for Waste and wastewater treatment, Prentice Hall of India Pvt. Ltd.
- 4. Luyben, W. L. Process Modeling Simulation and Controls for Chemical Engineers, Mc. Graw Hill Book Co.
- 5. Mahajan, S.P. (1998). Pollution control in process industries, Tata McGraw Hill, New Delhi.

- 6. Masters, G.M. (1998). Introduction to Environmental Engineering and Science 3rd ed. Prentice Hall of India Pvt. Ltd.
- 7. Metcalf and Eddy (2003).Wastewater engineering: Treatment, Disposal, Reuse, 4th edition. Tata McGraw Hill, New Delhi.
- 8. Miller R.W. and Donalvee, R.L. (1997). Soils in Our Environment, 7th Ed, Prentice Hall of India Pvt. Ltd.
- 9. Nathanson, J.A. (2003). Basic Environmental Technology, 4th Ed., Prentice Hall of India Pvt. Ltd.
- 10. Parsons, S.A. and Jefferson, B. (2006). Introduction to potable water treatment processes, Blackwell Publishing.
- 11. Rao, C.S. (1995). Environmental Pollution Control Engineering, 3rd Ed., Wiley Eastern Ltd. New Age International Pvt. Ltd.
- 12. Sharma, B.K. (2001). Water Pollution. Goel Pub. House. Meerut.
- 13. Wadhwa, Y. (2009). Air Pollution: Causes and Control. Cyber Tech Publications, New Delhi
- 14. Poonia and Sharma (2018)., Environmental Engineering, Khanna Books, ISBN: 9789386173577, 9386173573.

15. Helmut Meuser (2010).,Contaminated Urban Soils, Springer.

Name of the Course: Credits: 4:0:1 (Lecture: Tutorial:Practical)

CO No.	СО	PO/P SO	Cognitive Level	Knowled ge Category	Lecture (L)/Tuto rial (T)	Practical (P)
CO-1	Gain an understanding of the interconnectedness of natural systems and how human activities can disrupt these systems, leading to environmental pollution.	PSO -1,2	U	F, C		
CO-2	Identify various types of pollutants, including air pollutants, water pollutants, soil contaminants, and noise pollution, along with their sources, characteristics, and effects on ecosystems and human health.	PSO 2,4	R, U	Р		
CO-3	Learn about strategies and technologies for mitigating pollution and remediating contaminated environments, including pollution prevention, waste management, and pollution control technologies.	PSO 4,5	Ар	P,M		
CO-4	Develop critical thinking skills	PSO	E, C	М		

to analyse complex environmental issues related to pollution and formulate evidence-based solutions to	4,6		
address them.			

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	1	-	-			3	2	-	1	-	-
CO 2	-	2	-	1			2	-	1	-	-	3
CO 3	-	-	3	-	2		-	1	-	2	-	3
CO 4	-	-	_	3	-	2	3	2	1	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark

63

Discipline	ENVIR	ENVIRONMENTAL SCIENCES						
Course Code	UK3DS	UK3DSCENS202						
Course Title	ENER	GY AND ENVIRC	ONMENT					
Type of Course	DSC							
Semester	Third							
Academic Level	200 to	299						
Course Details	Credit	Lecture per	Tutorial	Practical	Total			
		week	per	per	Hours/Week			
			week	week				
	4	3 h	-	2 h	5			
Pre-requisites	•	The students should	d have back	ground kno	wledge on the			
		different energy res	sources pres	ent in earth				
		Students should hav						
		conservation and m						
Course Summary		dules under energy						
	convent	conventional and non-conventional energy sources and its						
	conserv	ation. Students also	o learn susta	inable ener	gy efficient			
	practice	es.						

Module	Unit	Content	Hrs		
Ι	Intro	duction to energy	10		
	1	Definition and concepts to Energy	2		
	2	Classification of Energy sources			
	3	Present status of energy consumption	2		
	4	Energy Scenario – Global and Indian	2		
	5	Energy Policy-India	2		
II	Conv	entional Sources of Energy	15		
	6	Non-Renewable Sources of Energy	3		
	7	Advantages & Disadvantages of Non-Renewable Sources of Energy	3		
	8	Fossil Fuel, Coal, Petroleum (or crude oil), Natural Gas, LNG, CNG, Hydrogen	3		
	9	Refinery products of petroleum (i.e. Crude oil)	3		
	10	Nuclear Energy	3		
III	Non-	conventional Sources of Energy	15		
	11	Solar Energy - applications, advantages and limitations	2		
	12	Hydro-Electric Energy (Hydro power)	1		
	13	Wind Energy (Field Visit-Practicum)	2		
	14	Biomass Energy (wood waste, Biofuels viz; Ethanol & Biodiesel)	2		
	16	Alcohol as a source of Energy (Gasohol, Methanol & Ethanol).	1		

	17	Biogas generation Technology (Field Visit-Practicum)	3
	18	Geothermal energy reservoirs & their uses	2
	19	Tidal Energy and Sea-wave Energy	2
	20	Ocean Thermal Energy Conversion (OTEC)	
IV	Ener	gy Management	10
	21	Definitions and significance, objectives, Energy Management	7
		programs	
	22	Energy strategy for future, Energy Audit (Practicum)	3
V	Ener	gy conservation	10
	23	Principles of Energy economics	4
	24	Energy conservation technologies, cogeneration, Waste heat	6
		recovery, Combined cycle power generation	
	25	Open Ended	15

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Understand different concepts of available energy sources	U	PSO1
CO- 2	Define the basic principles of Energy efficient technologies.	R	PSO 2
CO3	Understand and identify energy management strategies	U	PSO 5
CO4	Address major issues related to conservation of energy	Ap	PSO 5
CO5	Analyse the possible alternatives for energy use and recovery for future	An	PSO 3, PSO 6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	CO	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)	Open Ended
1	CO- 1	Understand different concepts of available energy sources	U	R,U	10	2	3
2	CO- 2	Define the basic	R	Ар	10	2	3

		principles of Energy efficient technologies.					
3	CO3	Understand and identify energy management strategies	U	R,U	10	2	3
4	CO4	Address major issues related to conservation of energy	Ap	E	10	2	3
5	CO5	Analyse the possible alternatives for energy use and recovery for future	An	E	12		3

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	1	-	-	-	1	-	1	-	1
CO 2	2	2	-	-	1	-	1	-	-	-	1	-
CO 3	-	-	1	-	-	-	-	-	2	-	-	-
CO 4	-	-	2	3	-	-	2	-	1	-	2	-
CO 5	-	1		-	_	_		-	1	2	_	-

REFERENCES

- 1. 1. Non-Conventional Energy Sources, Rai, G.D.(2001), Khanna Publishers, New Delhi.
- 2. Solar Energy, Sukhatme, S.P.(1996), Tata McGraw Hill Publishing Company.
- 3. Renewable Energy Sources & Conversion Technology, Bansal N. K., Kleemann M. & Michael, Meliss., (1990), Tata McGraw Hill Publishing Company.
- 4. Biotechnology and Oother Alternative Technologies, Chakraverty, A. (1998.). Oxford and IBH Publishing Co. Pvt. Ltd.,

- 5. Biomass- Regenerable Energy, D.O. Hall & R.P. Overend (1987), John Wiley.
- 6. Renewable Energy Sources, Mathur A. N. &Rathore N. S (1992), Bohra Ganesh Publications.

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTAL SCIENCES						
Course Code	UK3DSEENS200						
Course Title	WETLAND ECOL	JOGY					
Type of Course	DSE						
Semester	Third						
Academic	200 - 299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	4 h	-		4		
Pre-requisites	Learners should hav	Learners should have a basic idea about wetlands and its importance					

Course	The course will provide a fundamental understanding of wetland
Summary	ecosystems, the flora, fauna, and the abiotic aspects of wetlands.
	Mangroves, Seagrass meadows, Coral reefs, marshes, and swamps will be
	dealt with. Specifically, the course will encompass adaptations of flora and
	fauna to the specific ecosystems, the species dynamics, and aspects of
	wetland management and restoration. The theoretical learning shall be
	complemented by field visits and field studies.

Module	Unit	Content	Hrs
Ι		Wetlands	10
	1	Introduction to Wetlands, Classification, and sub-classifications of	2
		Wetlands (Inland, coastal; Natural, Man-made)	
	2	Types (Mangroves, Seagrass meadows, Coral reefs, Marshes,	2
		Swamps),	
	3	Salient features of wetlands, Wetlands as blue carbon ecosystems	3
	4	Significance and ecosystem services of wetlands (water storage and	3
		purification, productivity, biochemical values, geomorphologic	
		values, biotic values, and other values)	
II		Hydrology of Wetlands	15
	5	Wetland hydrology – the driving force of wetland formation,	5
		geomorphic position	
	6	Wetland water level, Hydrologic Measures (relative elevation from	5
		soil level, temporal variability of water level, residence time of water	
		movement), Monitoring water levels	
	7	Wetland water budget (in brief)	2
	8	Wetland stressors	3
		Wetland Soils	10
	9	Physical and chemical and biological properties	3
III	10	Types of soils in wetlands (organic, mineral, hydric soils	3
	11	Redox gradients	2
	12	Nutrient contents of wetlands	2
	13	Toxins in wetlands	2
IV		Life in Wetlands	8
	14	Flora and Fauna of wetlands	4
	15	Adaptations of flora and fauna in wetlands	4
V		Wetland: Threats, Protection and Management	25
	16	Threats: (Climate Change, pollution, invasive species, urbanization,	4
		agriculture, draining, salinization)	
	17	Global Level (Ramsar Convention, Montreux Record, World	4
		Wetland Day)	
	18	National Level (Wetlands (Conservation and Management) Rules,	2
		2017, Action Plan of MoEFCC	
	19	Wetland restoration	2
	20	National Wetland Inventory and Assessment (NWIA)	1
	21	National Wetland Conservation Program (NWCP)	1

22	India's wetlands of international importance	1
23	Visit to mangrove ecosystems	5
24	Observation of flora and fauna in wetlands - field visit	5
25	Open ended	12

References

- 1. Aber, J. S., Pavri, F., & Aber, S. W. (2012). Wetland environments: a global perspective. John Wiley & Sons.
- 2. Act, F. E. S., Act, M. B. T., & Act, C. W. 8.2 Biological Resources.
- 3. Bullock, A., & Acreman, M. (2003). The role of wetlands in the hydrological cycle. *Hydrology and Earth System Sciences*, 7(3), 358-389.
- 4. Delleur, J. W. (1994, January). Indiana's wetlands: Past, present, and future. In *Proceedings of the Indiana Academy of Science* (Vol. 103, No. 3-4, pp. 139-142).
- 5. Fretwell, J. D., Williams, J. S., & Redman, P. J. (Eds.). (1996). *National water summary on wetland resources* (Vol. 2425). US Government Printing Office.
- 6. Gambrell, R. P. (1994). Trace and toxic metals in wetlands—a review. Journal of environmental Quality, 23(5), 883-891.
- 7. https://lancasterconservation.org/wp-content/uploads/ED-MS-WETLANDS.pdf
- 8. Johnson, L. R., Trammell, T. L., Bishop, T. J., Barth, J., Drzyzga, S., & Jantz, C. (2020). Squeezed from all sides: Urbanization, invasive species, and climate change threaten riparian forest buffers. *Sustainability*, *12*(4), 1448.
- 9. Krauss, K. W., Zhu, Z., & Stagg, C. L. (Eds.). (2021). Wetland Carbon and *Environmental Management*. John Wiley & Sons.
- 10. Lugo, A. E., Brown, S. A. N. D. R. A., & Brinson, M. M. (1990). Concepts in wetland ecology. *Ecosystems of the world*, 15, 53-85.
- 11. Reddy, K. R., DeLaune, R. D., & Inglett, P. W. (2022). *Biogeochemistry of wetlands: science and applications*. CRC press.
- 12. Shaffer, P. W., Kentula, M. E., & Gwin, S. E. (1999). Characterization of wetland hydrology using hydrogeomorphic classification. *Wetlands*, 19(3), 490-504.
- Wang, F., Sanders, C. J., Santos, I. R., Tang, J., Schuerch, M., Kirwan, M. L., ... & Li, Z. A. (2021). Global blue carbon accumulation in tidal wetlands increases with climate change. *National Science Review*, 8(9), nwaa296.

https://www.epa.gov/sites/default/files/documents/wetlands 20hydrology.pdf

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Define, classify, and describe the importance and salient features of wetlands	R, U	PSO-1,2 PO-1,3
CO-2	Explain various aspects related to the hydrology of wetlands	R. An	PSO 1, 2, 3 PO-1
CO-3	Describe the properties of wetland soils at various	R, U	PSO 1, 2,

Course Outcomes

	conditions of wetlands		3 PO-1
CO-4	Explain the types of life in wetlands and their adaptations	U, An	PO-1,2,8
CO-5	List and explain the global and national initiatives for conservation and protection of wetlands	R. U	PSO-1,2 PO- 1,2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 3:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Define, classify, and describe the importance and salient features of wetlands	PSO-1,2 PO-1,3	R, U	F, C	7	-
CO-2	Explain various aspects related to the hydrology of wetlands	PSO 1, 2, 3 PO-1	R. An	Р	12	3
CO-3	Describe the properties of wetland soils at various conditions of wetlands	PSO 1, 2, 3 PO-1	R, U	C. P	8	4
CO-4	Explain the types of life in wetlands and their adaptations	PO-1,2,8	U, An	F, C	5	1
CO-5	List and explain the global and national initiatives for	PSO-1,2 PO- 1,2	R. U	F, C. P	25	10

conservation and protection			
of wetlands			

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	2	-	-	-	-	2	3	-	-	-	-
CO 2	2	3	3	-	-	-	2	-	-	-	-	-
CO 3	3	3	1	-	-	-	2	-	-	-	-	-
CO 4	-	-	-	-	-	-	3	3	-	-	-	-
CO 5	2	3	-	-	-	-	2	2	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Field observations and experiments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTAL SCIENCE
Course Code	UK3DSEENS201
Course Title	ECOHYDROLOGY
Type of Course	DSE
Semester	III
Academic	200 - 299
Level	

Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3	-	2	5		
Pre-requisites	1. Basics of ecology						
	2. Basic knowledge	2. Basic knowledge of land and water resources					
Course	The course also ide	The course also identifies and quantifies the critical linkages between					
Summary	ecological processes	and the hyd	lrological cy	cle. This cou	rse provides a		
	quantitative description	tion of fund	lamental eco	hydrologic p	processes, the		
	interactions of between water and the atmosphere, soils, and plants, as						
	well as techniques for estimating the movement of water in the though						
	ecosystems.						

Module	Unit	Content	Hrs
Ι		Water resource	10
	1	Hydrological cycle: Precipitation and evapotranspiration	2
	2	Introduction to surface and ground water; Water table	2
	3	Vertical distribution of water - aquifers and hydraulic potential	3
	4	Flow and connectivity of surface runoff and groundwater systems	3
II		Water and watershed management	10
	5	Demand for water (agriculture, industrial, domestic); overuse and	3
		depletion of surface and ground water resources.	
	6	Ground water storage and recharge	3
	7	Watershed and drainage basins; importance of watershed and watershed management	2
	8	Integrated watershed management – Field study	2
III		Fundamentals of soil science	15
	9	Formation and classification of soil; soil architecture	2
	10	Physical properties of soil: soil texture, soil profile, water holding capacity, soil temperature and soil colloids	2
	12	Chemical properties of soil: soil acidity and alkalinity, soil salinity and sodicity, soil organic matter and micronutrients	2
	13	Soil biodiversity – Field study	2
	14	Toxic organic chemicals, and organic contaminants in soils	2
	15	Fertilizers and fertilizer management	2
	16	Recycling of soil nutrients	3
IV		Introduction to Land Resource	15
	17	Land as a resource - ecological and economic importance	3
	18	Land use pattern	3
	19	Forest and Agriculture – Field study	3
	20	Major Biogeographic regions in India	3
	21	Land resources and people – Dependence and Interaction	3
V		Management of water and land degradation	10
	22	The extent and cost of water land degradation	3
	23	Protect and restore ecosystems and promote sustainable use of natural	4
		resources	

24	Strategies and policies to reach a water-land degradation neutral world	3
25	Open ended	15

Books and References:

1. Ecohydrology of Kerala River Catchments and Coastal Backwaters, 2024, Salom Gnana Thanga Vincent, Tim C. Jennerjahn, Soman Kunjupillai, Srikumar Chattopadhyay, eBook ISBN: 9780323956079

2. River Basin Ecohydrology in the Indian Sub-Continent - Sustainable Strategies and Sustenance, 2024, AL Ramanathan, Manish Kumar, Sangam Shrestha, Keisuke Kuroda, Santanu Mukherjee, eBook ISBN: 9780323915465.

3. Ecohydrology of Water-Controlled Ecosystems – Soil Moisture and Plant Dynamics" by Ignacio Rodriguez-Iturbe and Amilcare Porporato. Cambridge University Press, Cambridge, UK, 2004.

4. Ecohydrology - Darwinian Expression of Vegetation Form and Function by Peter S. Eagleson. Cambridge University Press, Cambridge, UK, 2002.

5. Eco-hydrology – Plants and water in terrestrial and aquatic environments" edited by Andrew J. Baird and Robert L. Wilby. Routledge, NY, 1999.

6. Hydroecology and ecohydrology: Past, present and future". Edited by Paul J. Wood, David M. Hannah and Jonathan P. Sadler. John Wiley and Sons, Inc., 2007.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Students should grasp the fundamental principles governing the movement and distribution of water in the environment. Students should be familiar with various hydrological processes, including precipitation, evaporation, infiltration, runoff, groundwater flow, and streamflow generation.	U	PSO-1,2
CO-2	Students should be aware of the environmental impacts of land-use changes, climate change, and human activities on water resources and soil health. Students should acquire skills in watershed management, including watershed modeling, land-use planning, and water resources conservation.	R, U	PSO 2, 3
CO-3	Students should understand soil properties such as texture, structure, color, moisture content, and hydraulic conductivity, and their implications for water movement and storage.	Ар	PSO 3, 4, 5
CO-4	Students should be aware of various land use pattern as well as the environmental impacts of land-use changes,	An, E	PSO 3, 5

	climate change, and human activities on water resources and soil health.		
CO-5	Overall, the course aims to provide students with a holistic understanding of water and soil resources and equip them with the knowledge, skills, and attitudes needed to address complex environmental challenges related to water and soil management.	Ap, C	PSO 7, 9

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Gather information about status of water resources	PSO-1,2	U	F, C	10	2
2	Explain watershed, associated problems and mitigations	PSO 2, 3	R,U	Р	10	4
3	Knowledge about status of soil and its characteristics	PSO 3, 4, 5	Ap,	С	15	3
4	Students should gather core information about land use systems	PSO 3, 5	An, E	Р	15	3
5	Enable the students to addressing water and soil related issues and mitigations	PSO 7, 9	Ap, C	Р, М	10	3

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	2	-	1	3	-	1	-	-	-
CO 2	2	3	-	-	1	-	1	-	-	2	-	3
CO 3	-	2	1	-	-	-	-	1	-	-	-	3
CO 4	-	-	2	3	-	-	1	3	-	2	-	-
CO 5	-	1	-	1	3	-	1	1	-	-	-	3
CO 6	1	-	-	2	-	1	3	-	1	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	\checkmark

Discipline	ENVIRONMENTA	L SCIENC	ES		
Course Code	UK3DSEENS202				
Course Title	FOREST ECOLOG	GY			
Type of Course	DSE				
Semester	Third				
Academic	200-299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 h	-	2 h	5
Pre-requisites	1. A solid foundation in biology for understanding concepts such as				
	ecology, evolution, genetics, and physiology				
	2. Fundamental know	wledge in eco	ological princ	ciples, includi	ng population

	dynamics, community interactions, and ecosystem processes
Course	In this course, students will gain a comprehensive understanding of forest
Summary	ecosystems and their components. They will explore the ecological
	principles governing forest structure and function, including forest
	classification based on climate, vegetation, and soil. Additionally,
	students will delve into the study of major forest types examining their
	ecological characteristics, biodiversity patterns, and human impacts.

Module	Unit	Content	Hrs
Ι		Introduction to Forest Ecology	12
	1	Understanding forest ecosystems and their components (the floral and	2
		faunal components and their interaction, variability and disturbance)	
	2	Ecological principles governing forest structure and function (forest	3
		productivity, adaptations, competition, resource allocation, and	
		succession	
	3	Forest classification based on climate, vegetation, and soil. (Champion	3
		and Seth (1968) classification of forest types in India)	
	4	Temporal Changes in Ecosystem Structure and Function (forest structure	2
		(e.g., tree density, canopy cover) and function (e.g., nutrient cycling,	
		carbon sequestration))	
	5	Ecological Observations and Measurements (sampling methods,	2
		experimental design, and data collection protocols in forest study)	
II		Forest Types and Biomes	12
	6	Detailed study of major forest types of the world (e.g., tropical	3
		rainforests, temperate forests, boreal forests).	_
	7	Detailed study of major forest types in the Indian context (e.g., tropical	3
		evergreen, semi-evergreen, moist deciduous, littoral and swamp, grass	
		lands etc).	
	8	Ecological characteristics and biodiversity patterns in different forest	2
	0		2
	9	Trends and Depletion of the Forest Cover in India	2
TTT	10	Human impacts on forest biomes.	2
III	11	Forest Community Dynamics	12
	11	Succession processes in forests (Community development and	2
		interaction, Structure Analysis, and Vegetation Dynamics,	
	10	Ecophysiology)	2
	12	Role of disturbance in shaping forest communities (analysis of different	3
		types-fire, wind, pests, frequency, severity, and spatial patterns of	
	13	disturbances.) Keystone species and their ecological significance (concept, significance,	3
	15		3
		mechanisms of influence, maintaining balance and stability of ecosystems)	
	14	Forest resilience and stability (species adaptations, buffering strategies,	2
	14		<i>∠</i>
	15	hydrologic cycle maintenance etc) Conservation Challenges and Opportunities (Stakeholders and Their	2
	13	Roles, international Conservation Bodies- IUCN, UNDP, FAO, WWF)	<i>∠</i>
		Koles, international Conservation Bodies- ICCN, UNDF, FAO, WWF)	

IV		Forest Structure and Composition	12
	16	Vertical and horizontal stratification in forests (vertical layers- forest floor, herb layer, shrub layer, understory, canopy. Horizontal – riparian zones, edge habitats, glades, forest patches, microhabitats, ecotones and their significance)	3
	17	Tree species diversity and dominance (Alpha, Beta, and Gamma Diversity, relative density, relative frequency, and relative dominance, invasive species)	3
	18	Forest Biodiversity and Carbon Pools (species richness, evenness, and diversity, aboveground biomass, belowground biomass, dead organic matter, and soil organic carbon)	2
	19	Forest stand dynamics (stand development, disturbance ecology, management implications)	2
	20	Forest Soils and Nutrient Cycling (nutrient cycling, biogeochemical processes, and the importance of soil health for tree growth and productivity)	2
V		Forest Monitoring and Assessment (Practicum)	12
	21	Remote sensing techniques for forest mapping.	3
	22	Biodiversity indices and monitoring protocols.	3
	23	Short/long-term ecological research in forests (temporary/permanent plots)	3
	24	Field Visit to national parks, wildlife sanctuaries, botanical gardens etc.	3
	25	Open Ended	15

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed
CO-1	Understand fundamental ecological concepts relevant to forest ecosystems, including nutrient cycling, energy flow, and trophic interactions. Identify and describe the key components, that constitute a forest ecosystem.	U, An	PO-1,2 PSO-1,2
CO-2	Compare and contrast the unique characteristics of each forest type, including climate, vegetation, and soil conditions, Exploring biodiversity patterns, to appreciate the intricate web of life in forests	U, An	PO-1,2 PSO-2, 3
CO 3	Recognize the ecological importance of disturbances in maintaining biodiversity and promoting resilience, Explore the resilience of forest ecosystems to environmental changes and disturbances	U, Ap	PO-1,3 PSO-2,3,5

CO 4	Understand how different forest strata contribute to overall ecosystem function, Understanding the role of understory vegetation in nutrient cycling, habitat provision, and wildlife support is essential.	U, An	PO-1,2 PSO-1,2
CO 5	Explore the health status of forests, including factors such as disease prevalence and pollution impacts, Learn about various remote sensing technologies used for mapping forested areas	Ap, E, C	PO-3,5 PSO-3,4,6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

References

- 1. Routledge Handbook of Forest Ecology. Edited by Kelvin S.-H. Peh, Richard T. Corlett, and Yves Bergeron. Taylor & Francis, 2015 (1st edition).
- 2. Forest Ecosystems, David A. Perry, Ram Oren, and Stephen C. Hart. JHU Press, 2008 (1st edition).
- 3. Ecology of Woodlands and Forests: Description, Dynamics, and Diversity. Peter Thomas and John Packham. Cambridge, 2007 (1st edition).
- 4. Forest Inventory and Analysis: Principles and Practice.
- 5. Forest Ecology and Conservation: A Handbook of Techniques, Adrian Newton. Oxford Press, 2007 (1st edition).
- Forest Ecology: An Evidence-Based Approach, D. Binkley. John Wiley & Sons, 2021 (1st edition)
- Elements of Ecology, T. M. Smith and R. L. Smith, Pearson Education, India, 2015 (1st edition)
- 8. Forest Ecology, J. P. Kimmins. Prentice-Hall Inc., 2004 (1st edition)
- 9. Forest Ecology, 4th Edition, Burton V. Barnes and Donald R. Zak. Wiley, 1998.
- 10. Forest ecology: Recent advances in plant ecology, Arnold G. van der Valk. Springer, 2009.

CO No.	CO	PO/PSO addresse d	Cog nitiv e Leve l	Knowledg e Category	Lecture (L)/Tutorial (T)	Practic al (P)	OE
CO-1	Understand fundamental ecological concepts relevant to forest ecosystems, including nutrient cycling, energy flow, and trophic	PO-1,2 PSO-1,2	U, An	F, C	12		2

Name of the Course: Credits: 3:0:1 (Lecture: Tutorial: Practical)

	interactions. Identify and describe the key components, that constitute a forest ecosystem.						
CO-2	Compare and contrast the unique characteristics of each forest type, including climate, vegetation, and soil conditions, Exploring biodiversity patterns, to appreciate the intricate web of life in forests	PO-1,2 PSO-2, 3	U, An	F,C,P	12	3	2
CO 3	Recognize the ecological importance of disturbances in maintaining biodiversity and promoting resilience, Explore the resilience of forest ecosystems to environmental changes and disturbances	PO-1,3 PSO- 2,3,5	U, Ap	F,C	12	3	3
CO 4	Understand how different forest strata contribute to overall ecosystem function, Understanding the role of understory vegetation in nutrient cycling, habitat provision, and wildlife support is essential.	PO-1,2 PSO-1,2	U, An	F, C	12	3	3
CO 5	Explore the health status of forests, including factors such as disease prevalence and pollution impacts, Learn about various remote sensing technologies used for mapping forested areas	PO-3,5 PSO- 3,4,6	Ap, E, C	Р, М		3	5

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	1	-	-	-	-	1	2	-	-	-	-
CO 2	-	3	2	-	-	-	2	1	_	-	-	-
CO 3	-	1	2	_	1	-	2	_	3	-	-	-
CO 4	2	3	_	-	-	-	2	2	-	-	-	-
CO 5	-	-	2	2	-	1	1	-	2	-	1	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Internal Exam
- Quiz / Assignment/ Quiz/ Discussion / Seminar
 Project evaluation
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark	\checkmark	

Discipline	ENVIRONMENTAL SCIENCES						
Course Code	UK3DSEENS203	UK3DSEENS203					
Course Title	FUNDAMENTALS	FUNDAMENTALS OF CLIMATE CHANGE					
Type of Course	DSE						
Semester	Third						
Academic	200 - 299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		

	4	3 h	-	2 h	5		
Pre-requisites	1. knowledge in environmental science, earth science, or related						
	disciplines with a so	lid foundatio	on for unders	tanding the Ea	arth's climate		
	system, atmospheric	processes, a	nd natural en	nvironmental	changes.		
	2. Strong critical t	hinking skil	ls and the a	ability to ana	alyze complex		
	scientific concepts	and data	are essentia	l for comp	rehending the		
	interdisciplinary nat	ure of climat	e change and	l its implication	ons		
Course	Equip students with	the knowle	dge, skills, a	and awarenes	s necessary to		
Summary	understand and addr	ess one of th	ne most pres	sing challeng	es of our time.		
	By exploring the s	cience, impa	acts, and res	sponses to cl	imate change,		
	students will be emp	owered to co	ntribute to et	fforts to mitigate	ate greenhouse		
	gas emissions, adap	t to changing	g environme	ntal conditior	ns, and build a		
	more sustainable and	d resilient fu	ture for all.				

Module	Unit	Content	Hr			
			s 10			
Ι	σ					
	1	Introduction to the basics of climate change. climate, weather and the greenhouse effect.	2			
	2	Drivers of climate change.	2			
	3	Overview of important greenhouse gases and their main sources.	3			
	4	History of climate change - pre and post industrial periods	3			
II		Impacts of Climate change	15			
	5	Global warming, melting of glaciers and polar ice caps, Sea level rise,	4			
		forest fire, heat waves, health effects and prevalence of diseases				
	6	Drought, Floods, Cyclones, Hurricanes and typhoons, loss of	4			
		biodiversity and risk of extinction				
	7	Food security and climate refugees	2			
	8	The projected future trends and impacts of climate change on surface	5			
		temperature, precipitation, ocean pH, sea-level and polar ice caps				
III	Inte	rnational Legal and Policy Framework to Address Climate Change	20			
	9	Intergovernmental Panel on Climate Change (IPCC)	2			
	10	Brief history of international climate change negotiations key provisions of the UNFCCC	3			
	11	The United Nations Framework Convention on Climate Change (UNFCCC) its organisational structure, and different Party groups under the Convention	4			
	12	Natural and Anthropogenic Factors of climate change	3			
	13	Instrumental Records and Climate Data Sources (Practicum)	4			
	14	COP - Kyoto Protocol and its associated bodies	4			
IV		Climate Change Adaptations and mitigation	15			
	15	The concept of climate change adaptation, vulnerability, the expected	3			
	16	consequences of climate change				
	16	Framework for assessing climate vulnerability.	2			

	17	Introduction to linkages between climate change adaptation and development.	2			
	18	The political context to greenhouse gas emissions, the key emitters and strategies can be applied to bring down emissions to safe levels.	3			
	19					
V						
•		reennorogieur uu aneennene una ennate enange	15			
·	20	Renewable Energy Technologies: Solar, Wind, Hydro, and Geothermal	4			
·	20 21		-			
		Renewable Energy Technologies: Solar, Wind, Hydro, and Geothermal	4			
	21	Renewable Energy Technologies: Solar, Wind, Hydro, and Geothermal Energy Efficiency and Conservation Measures	4 4			
	21 22	Renewable Energy Technologies: Solar, Wind, Hydro, and GeothermalEnergy Efficiency and Conservation MeasuresCarbon Capture and Storage (CCS) Technologies (Institution visit)	4 4 3			

References

- 1. Cambridge University (2013). Climate Change: Action, Trends and Implications for Business.
- 2. IISD, UNITAR & UNEP (2009). IEA Training Material: Vulnerability and Climate Change Impact Assessment for Adaptation.
- 3. IPCC (2013). Climate Change 2013. The Physical Science Basis Summary for Policymakers.
- 4. OECD (2009): Guidance on Integrating Climate Change Adaptation into Development Co-operation.
- 5. Singh et al; (2021). Global Climate Change; Candice Janco, Elsevier
- 6. UNEP (2009). Climate Change Science Compendium UNEP (2009). Climate in Peril, a Popular Guide to the Latest IPCC Report.
- 7. UNEP & UNDP (2011). Mainstreaming Climate Change Adaptation into Development Planning: A Guide for Practitioners. UNFCCC. CGE Climate Change Training Materials.
- 8. UNFCCC (2006). UNFCCC Handbook. UNFCCC & UNEP (2002). Climate Change Information Kit.
- 9. UNFCCC (2008). Compendium on Methods and Tools to Evaluate Impacts of, and Vulnerability and Adaptation to, Climate Change.
- 10. World Bank Report (2012). Turn Down the Heat.
- 11. World Meteorological Organization (2012). Greenhouse Gas Bulletins.

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the basic concepts of climate change	U	C	Instructor-created exams / Quiz

CO2	Identify key drivers of greenhouse gas emissions across various sectors	U		Group Discussions/ Debates
CO 3	Know the different environmental impacts of climate change	An	Р	Group Discussions/ Debates
CO4	Understand the basic idea ofInternationalLegalFrameworktoAddressenvironmental issues	Ар	Р	Seminar Presentation / Group Tutorial Work
CO5	Design and implement climate change mitigation plans and policies	Ар	Р	Presentation
CO6	Apply the knowledge to solve climate change problems	An	С	Instructor-created exams / Home Assignments

Name of the Course:	Credits: 4:0:0	(Lecture:Tutorial:Practical)
---------------------	----------------	------------------------------

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	CO1	1		F, C	L	
2	CO2	2		C, P	L, P	
3	CO3	3,4		Р, М	L	
4	CO4	5		М	L	
5	CO5	4,5	М		L	Р
6	CO6	5,6	М			Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-								
CO 2	2	3	-	-								
CO 3	-	-	1	-								
CO 4	-	-	2	3								
CO 5	-	1	-	-								

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignm	Project Evaluation	End Semester
	Exam	ent	Evaluation	Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENIRONMENTAL	ENIRONMENTAL SCIENCE							
Course Code	UK3DSEENS204	UK3DSEENS204							
Course Title	Solid Waste Manag	Solid Waste Management							
Type of Course	DSE	DSE							
Semester	III	III							
Academic	200 - 299								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	4 3 h - 2 h 5							
Pre-requisites	1. Sources and types	of wastes ar	nd their mana	gement					

Course	This course is designed to provide participants with the necessary skills
Summary	and knowledge to effectively manage solid waste in various contexts. Through a combination of theoretical learning and practical exercises, participants will gain insights into the principles, techniques, and best practices associated with solid waste management. Topics covered will include waste generation, collection, transportation, treatment and disposal, as well as recycling and resource recovery strategies. Emphasis will also be placed on environmental sustainability, regulatory frameworks, and community engagement in waste management initiatives.

Module	Unit	Content	Hrs					
Ι		Introduction to Solid Waste Management	8					
	1	Definition and scope of solid waste	2					
	2	Historical perspective and evolution of waste management practices	2					
	3	Environmental and public health implications of improper waste	4					
		management						
II	I Waste generation and composition, collection and transportation							
	4	Factors influencing waste generation rates	3					
	5	Classification and characteristics of solid waste streams	3					
	6	Waste auditing and characterization studies	4					
	7	Methods and techniques of waste collection	6					
	8 Equipment and vehicles used for waste transportation							
III	Waste Treatment Technologies							
	9	Overview of waste treatment options: composting, incineration,	4					
		anaerobic digestion, etc.						
	10	Selection criteria for appropriate treatment methods	3					
	11	Environmental considerations and regulatory requirements	1					
	12	Landfill Management	2					
	13	Principles of landfill design and operation	2					
	14	Landfill siting and permitting processes	2					
	15	Landfill gas management and leachate treatment	2					
	16	Recycling and Resource Recovery	2					
	17	Importance of recycling in waste management, Recycling processes	2					
		and technologies						
IV		Sustainable Waste Management Practices	20					
	18	Integrated waste management approaches	2					
	19	Circular economy principles in waste management	3					
	20	Case studies of successful waste reduction and recycling programs	3					
	21 Overview of solid waste management policies and regulations							
	22	Role of government agencies and stakeholders in waste management	3					
	23	Public awareness campaigns and education initiatives	3					
	24	Role of NGOs and grassroots organizations in waste reduction efforts	3					
V		Open ended	15					

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the concepts and principles of solid waste management.	U	PSO-1,2
CO-2	Identify different types of solid waste and their characteristics.	R, U	PSO-1,2
CO-3	Analyse the factors influencing waste generation rates and patterns.	An	PSO-2,3
CO-4	Evaluate the environmental, social, and economic impacts of improper waste management.	Е	PSO-3,4,5
CO-5	Demonstrate proficiency in waste collection, segregation, and transportation techniques.	С	PSO-5,6,7
CO-6	Apply appropriate methods for waste treatment, including composting, incineration, and landfilling, recycling and resource recovery	Ар	PSO-6,7

Course Outcomes

REFERENCES

- 1. Agarwal,S.K. 2005. Green Management, APH Publishing corporation, New Delhi.
- 2. Agarwal,S.K. 2005. Wealth from waste, APH Publishing corporation, New Delhi
- 3. Bhatia,S.C. 2007. Solid and Hazardous Waste Management. Atlantic Publishers and Distributors, New Delhi
- 4. Bide, A.D. and R.R.Sundaresan. 2001. Solid Waste Management: Collection, processing and disposal. INSDOC, New Delhi
- 5. Government of India, "Manual on Municipal Solid Waste Management", CPHEEO, Ministry of Urban Development, New Delhi, 2000. 2. Bhide A.D. and Sundaresan, B.B. "Solid Waste Management Collection", Processing and Disposal, 2001
- 6. George Techobanoglous et al.1993. Integrated Solid Waste Management, McGraw-Hill, 1993
- 7. Khan,M.K. 2004. Hospital waste Management: Principles and guidelines, Kanishka Publishers, New Delhi
- 8. Liu, D.H.F. and R.G.Liptak. 2000. Hazardous waste and solid waste. Lewis
- 9. Manser A.G.R. and Keeling A.A.," Practical Handbook of Processing and Recycling of Municipal solid Wastes", Lewis Publishers, CRC Press, 1996

CO No.	СО	PO/PSO	Cognitive Level	Knowledg e Category	Lecture (L)/Tutori al (T)	Practical (P)
CO-1	Understand the concepts and principles of solid waste management.	PSO- 1,2	U	F, C		
CO-2	Identify different types of solid waste and their characteristics.	PSO- 1,2	R, U	Р		
CO-3	Analyse the factors influencing waste generation rates and patterns.	PSO- 2,3	An	Р		
CO-4	Evaluate the environmental, social, and economic impacts of improper waste management.	PSO- 3,4,5	Ε	М		
CO-5	Demonstrate proficiency in waste collection, segregation, and transportation techniques.	PSO- 5,6,7	С	P,M		
CO-6	Apply appropriate methods for waste treatment, including composting, incineration, and landfilling, recycling and resource recovery	PSO- 6,7	Ар	М		

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	2	-		-	-	-

CO 2	2	3	-	-	-	-	-	2	-	-	-	-
CO 3	-	-	1	-	-	-	-	-	2	-	-	-
CO 4	-	-	2	3	-	-		-	-	2	-	-
CO 5	-	1	-	-	-	-	-	-	-	-	2	-
CO 6	-	-	-	3	-	-	-	-	-		2	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTAL SCIENCES								
Course Code	UK3MDCENS200	UK3MDCENS200							
Course Title	ENVIRONMENTA	ENVIRONMENTAL DATA ANALYTICS							
Type of Course	MDC								
Semester	Third								
Academic	200 - 299								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				

		per week	per week	per week	Hours/Week			
	3	2 h	-	2 h	4			
Pre-requisites	The learners should be interested in data analysis							
Course	The course is essent	tially hands-	on combined	d with theore	tical learning.			
Summary	Learners will understand the basic statistical concepts with applications							
	of these to the enviro	onmental disc	plines. This	course will h	elp learners to			
	extract, analyze, and	l manipulate	data to reach	n conclusions	. It deals with			
	various data analyti	cs tools and	l software th	nat help in th	ne analysis of			
	environmental data. It includes probability and statistics, data structures							
	and algorithms, data	simulation,	and data coll	ection				

Detailed Syllabus:

Module	Unit		Hrs
Ι		Data Structure and Algorithms	8
	1	Array, iteration, and invariants; Efficiencies, and complexities	2
	2	Hash tables, Searching	2
	3	List, recursion, stacks, and queues	2
	4	Trees, Binary search trees, Sorting	2
II		Probability and Statistics	10
	5	Probability models, model checking	2
	6	Sampling Distribution and Limits	2
	7	Random variable and distribution	2
	8	Relationship among variable	2
	9	Statistical and optimal inferences	2
		Text Analytics (Practicum)	10
	10	Natural Language basics	2
III	11	Text Summarization and Classification	2
	12	Processing and understanding text	2
	13	Text Similarity and Clustering	1
	14	Semantic and Sentiment Analysis	2
IV		Data collection and visualization (Practicum)	10
	15	Survey sampling, statistical techniques	2
	16	Extracting and presenting statistics, Observational result	2
	17	Analysis of unstructured data	2
	18	Java, Customized geographic map	2
	19	CSS, Creation of Bar chart, Scatter Plot	2
V		Top Data Analytical Skills	22
	20	Python essentials	2
	21	Microsoft excel essentials	2
	22	R Programming essentials	2
	23	SQL essentials	2
	24	Machine Learning essentials	2
	25	Open-ended	12

REFERENCES

- 1. Abonyi, J., & Feil, B. (2007). Cluster analysis for data mining and system identification. Springer Science & Business Media.
- 2. Azzalini, A., & Scarpa, B. (2012). Data analysis and data mining: An introduction. OUP USA.
- 3. Braun, W. J., & Murdoch, D. J. (2021). *A first course in statistical programming with R*. Cambridge University Press.
- 4. Chan, B. K., & Chan, B. K. (2018). Data analysis using R programming. *Biostatistics* for Human Genetic Epidemiology, 47-122.
- 5. Gardener, M. (2012). *Beginning R: The statistical programming language*. John Wiley & Sons.
- 6. Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). *The elements of statistical learning: data mining, inference, and prediction* (Vol. 2, pp. 1-758). New York: springer.
- 7. Holický, M. (2013). *Introduction to probability and statistics for engineers*. Springer Science & Business Media.
- 8. Nisbet, R., Elder, J., & Miner, G. D. (2009). *Handbook of statistical analysis and data mining applications*. Academic press.
- 9. Reynolds, M. R. (1988). Introduction to probability and statistics for engineers and scientists.
- 10. Ross, S. (2009). Probability and statistics for engineers and scientists. *Elsevier, New Delhi*, *16*, 32-33.
- 11. Zaki, M. J., & Meira, W. (2014). *Data mining and analysis: fundamental concepts and algorithms*. Cambridge University Press.

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Explain the various data structure and algorithms	R, U	PSO-3,4 PO-1,2
CO-2	Describe and practice various theories and principles of probability and statistics	U, Ap	PSO-3,6 PO-1,2,3
CO-3	Explain and use various text analytics	U, Ap	PSO-3,4,6 PO- 1,2
CO-4	Apply data visualization techniques in research	Ap, An, C	PSO-3,4,6 PO- 1,2
CO-5	Perform Data Analysis in Python	Ap, An, C	PSO-3,4,6 PO- 1,2

Name of the Course: Credits: 2:0:1 (Lecture: Tutorial: Practical)

CO	СО	PO/PSO	Cognitive	Knowledge	Lecture	Practical
No.			Level	Category	(L)/Tutorial	(P)

					(T)	
CO-1	Explain the various data structure and algorithms	PSO-3,4 PO-1,2	R, U	F, C	10	
CO-2	Describe and practice various theories and principles of probability and statistics	PSO-3,6 PO-1,2,3	U, Ap	F, C	10	-
CO-3	Explain and use various text analytics	PSO- 3,4,6 PO- 1,2	U, Ap	F, C, P	5	6
CO-4	Apply data visualization techniques in research	PSO- 3,4,6 PO- 1,2	Ap, An, C	С, Р, М	8	6
CO-5	Perform Data Analysis in Python	PSO- 3,4,6 PO- 1,2	Ap, An, C	С, Р, М	10	5

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	-	3	2	-	-	3	1	-	-	-	-
CO 2	-	-	3	-	-	2	3	3	2	-	-	-
CO 3	-	-	3	3	3	-	3	3	-	-	-	-
CO 4	-	-	3	3	3	-	3	3	-	-	-	-
CO 5	-	-	3	3	3	-	3	3	-	-	-	-

Correlation Levels:

Level	Correlation			
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Analytical skills
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	L SCIENC	E					
Course Code	UK3MDCENS201	UK3MDCENS201						
Course Title	ENVIRONMENTA	L FORENS	SICS					
Type of Course	MDC							
Semester	Third							
Academic	200 - 299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	3	2 hours	-	2 hours	4			
Pre-requisites	1.Basic understandir				stry			
	2.Strong critical thin	king and pro	blem-solving	g skills.				
	3.Proficiency in data							
Course	The course provides	students with	th a compreh	ensive under	standing of the			
Summary	principles, techniqu							
	investigating enviro	investigating environmental contamination and pollution incidents. The						
	course covers vari	ious aspects	s of forens	ic science a	as applied to			
	environmental probl	ems						

Module	Unit	Content	Hrs
Ι		Introduction to Environmental Forensics	10
	1	Overview of environmental forensics principles and applications	3
	2	Historical development and evolution of environmental forensic techniques	3

	3	Regulatory framework and legal aspects of environmental forensics	2
	4	Applications of forensic science in Environmental Investigations	2
II		Contaminant Characterization and Analysis	15
	5	Sampling techniques for environmental contaminants (practicum)	4
	6	Analytical methods for contaminant identification and quantification	4
	7	Interpretation of analytical data and quality assurance/quality control	3
		(QA/QC)	
	8	Physical Fingerprinting Methods - Application of physical properties in	4
		source attribution (particle size distribution, isotopic composition)	25
III		Source Attribution and Fingerprinting	25
	9	Chemical fingerprinting techniques for identifying contaminant sources	3
	10	Statistical methods for source apportionment and forensic analysis	3
	11	Case studies of successful source attribution investigations	3
	12	Multivariate statistical methods for data analysis	3
	13	Principal component analysis, cluster analysis	3
	14	Receptor models for source apportionment (e.g., chemical mass balance,	3
		positive matrix factorization)	
	15	Uncertainty analysis and sensitivity testing in source attribution studies	3
	16	Introduction to source attribution concepts and objectives	2
	17	Overview of forensic approaches in environmental science	2
IV	Chen	nical approaches of Fingerprinting Techniques	12
	18	Chemical Fingerprinting Techniques (practicum)	3
	19	Analytical methods for chemical characterization of environmental	3
		contaminants	
	20	Use of chromatography, spectroscopy, and mass spectrometry in	2
		fingerprinting (practicum)	
	21	Interpretation of chemical profiles and identification of unique markers	2
	22	Development of remediation strategies based on forensic findings	2
V	Case	Studies and Practical Applications	13
	23	Analysis of real-world environmental contamination incidents	4
	24	Role-playing exercises and simulations of environmental forensic investigations	5
	25	Open ended	12
	23		12

REFERENCES

- 1. Baskaran, M. (Ed.). (2018). *Handbook of Environmental Isotope Geochemistry.* Springer.
- 2. Brannon, J. M. (1994). Forensic environmental chemistry: A review of principles and applications. *Chemical Health and Safety, 1*(1), 22-28.
- 3. Brooks, M. C., & Dierberg, F. E. (Eds.). (2018). *Environmental Forensics: Current Topics in Analytical Chemistry.* CRC Press.
- 4. Cabot, J. E. (2001). Applications of environmental forensics to assessment of the Exxon Valdez oil spill. *Analytical and Bioanalytical Chemistry, 369*(3), 703-707.
- 5. DelValls, T. A., & Dickson, K. L. (Eds.). (2011). *Environmental Forensics: Contaminant Specific Guide.* Academic Press.

- 6. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. *Van Nostrand Reinhold.*
- 7. Houk, R. S. (1996). Environmental analysis by instrumental methods. *Academic Press.*
- 8. Houk, R. S., & Strong, F. C. (2002). Environmental forensics: A scientific approach to supporting litigation. *Analytical and Bioanalytical Chemistry, 372*(1), 22-25.
- 9. Martin, D. (2011). Introduction to environmental forensics. *Chemical Health and Safety, 18*(5), 16-19.
- 10. Miller, J. N., & Miller, J. C. (2010). *Statistics and Chemometrics for Analytical Chemistry.* Pearson Education.
- 11. Morrison, R. D. (2006). Environmental forensics: A historical perspective. *Environmental Forensics, 7*(2), 83-86.
- 12. Morrison, R. D. (2007). Forensic chemistry in environmental investigations. *Analytical and Bioanalytical Chemistry, 388*(8), 1693-1694.
- Morrison, R. D., & Murphy, B. L. (2007). Environmental forensics: A new area of applied environmental chemistry and environmental management. *Analytical and Bioanalytical Chemistry, 387*(5), 1561-1562.
- 14. Morrison, R. D., Murphy, B. L., & Cooper, D. W. (2002). Organic environmental forensic analysis: A guide to principles and practice. *Journal of Environmental Monitoring, 4*(5), 734-740.
- 15. O'Connor, T. P. (2006). Soil and sediment forensics: History, elements of forensic analysis, and perspectives. *Environmental Forensics, 7*(2), 87-97.
- 16. Paul, E. A. (2014). *Soil Microbiology, Ecology and Biochemistry.* Academic Press.
- 17. Rytuba, J. J. (2000). Introduction to environmental geochemistry. *Pearson Education.*
- 18. Tratnyek, P. G., & Johnson, R. L. (2006). *Groundwater Treatment: Engineering, Chemistry, and Application.* CRC Press.
- 19. Wilson, S. C., & Jones, K. C. (1993). Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. *Environmental Pollution, 81*(3), 229-249.
- Zehnder, A. J. B., & Haderlein, S. B. (2008). Microbial transformations of organic pollutants under anoxic conditions. *Environmental Science & Technology, 42*(21), 7986-7995.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used						
CO1	Understand the basic concepts of Environmental Forensics	U	C	Instructor-created exams / Quiz						
CO2	Analyse the environmental contaminants b using forensic applications	An	Р	Group Discussions/ Debates						
CO3	Navigate legal frame work to environmental forensics	Ар	Р	Seminar Presentation / Group Tutorial Work						
CO4	legal frameworks and regulations to environmental forensics	An	С	Instructor-created exams / Home Assignments						

Course Outcomes

CO5	Application of forensic methodologies to address environmental challenges	An	С	Instructor-created exams / Home Assignments
CO6	Apply the results to support decision making	An	С	Instructor-created exams / Home Assignments

Name of the Course: Credits: 3:0:1 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PS O	Cognitive Level	Knowledg e Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Lecture	1		F, C		
2	Lecture, Tutorial	2		C, P		
3	Lecture, Tutorial	3,4		P, M		
4	Tutorial, Practical	5		М		

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO 5	PSO6	PSO7	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	3		3	3	3		3
CO 2	2	3	-	-	-	-	3	3				4	4
CO 3	-	-	1	-	-	-		4		4	3	3	4
CO 4	-	-	2	3	-	-	4		3	4	4		4
CO 5	-	1	-	-	-	-	4	4		4	4		4
CO 6	-	-	-	3	-	-		3		4	4	4	4

Correlation Levels:

Level	Correlation
1	Nil
2	Slightly / Low
3	Moderate / Medium

4 Substantial / High	
----------------------	--

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	ENVIRONMENTAL SCIENCES					
Course Code	UK3VACENS200						
Course Title	GREEN ARCHITE	CTURE					
Type of Course	VAC						
Semester	Third						
Academic	200 - 299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	3	3 h	-	-	3		
Pre-requisites	The learner should b environment and app construction with suit well-being of the res	preciate the b table and su	est practices	in terms of b	uilding		
Course Summary	design meets sustain constructed and oper promoting human he sustainable materials	well-being of the residents This course introduces the exciting field of green architecture, where design meets sustainability. Students will explore how buildings can be constructed and operated with minimal environmental impact while promoting human health and well-being. The course will cover sustainable materials, energy-efficient systems, and design strategies for creating eco-friendly structures.					

Module	Unit	Content	Hrs			
I	Omt	Introduction to Green Chemistry	7			
I	1	Contribution of Buildings towards Global Warming	1			
	2	Explore the environmental challenges of conventional building practices	1			
	4	(resource depletion, pollution, energy consumption)	1			
	3	Green architecture (Green buildings) – Definition - Features- Necessity –	1			
		Environmental benefits				
		Green architecture (Green buildings) - Economical benefits - Health and	1			
		Social Benefits				
	4	Core principles of green architecture (sustainability, reduced	1			
	environmental impact, occupant well-being)					
	5	Benefits of green architecture for human health, the environment	1			
	6	Energy efficiency of green architecture	1			
II	7	Green Design Strategies	5			
	7	Green Design – Definition - Principles of Sustainable Development in	1			
	8	Building Design	2			
	ð	Characteristics of Sustainable Buildings – Sustainably managed materials	2			
		- Integrated Lifecycle design of Materials and Structures (Concepts only).				
	9	Importance of site selection, building orientation,	1			
	10	Lighting, ventilation, airflow, and landscaping in green design	1			
	10	Sustainable Building Materials and Construction	9			
	11	Different types of materials and their availability - Stone and Laterite	3			
III		blocks- Burned Bricks- Concrete Blocks- Stabilized Mud Blocks- Lime	5			
		Pozzolana Cement- Gypsum Board- Light Weight Beams- Fibre				
		Reinforced Cement Components- Fibre Reinforced Polymer Composite-				
		Bamboo				
	12	Environmental impact of building materials throughout their life cycle	2			
		(manufacturing, transportation, use, disposal)				
	13	Environmental issues related to quarrying of building materials	2			
	14	Identify and evaluate eco-friendly building materials in terms of recycled	2			
		content, low embodied energy, local sourcing				
IV		Energy Efficiency and Renewable Energy	6			
	15	Importance of passive design strategies for natural heating, cooling	1			
	16	Ventilation in green buildings (building orientation, window placement)	1			
	17	Active building systems for energy efficiency - high-performance	2			
	10	insulation, energy-star appliances				
	18	Integration of renewable energy sources into buildings - solar panels,	2			
V		wind turbines, rainwater harvesting	18			
v	19	Green Composites Concepts of Green Composites. Water Utilisation in Buildings	10			
	20		1			
	20	Management of Sullage Water and Sewage. Management of Solid Wastes - waste to wealth concept	1			
	21	Green design features for water conservation, wastewater treatment, solid	2			
	LL	Orech design realures for water conservation, wastewater treatment, solid	7			

	waste management, and indoor air quality	
23	Real-world case studies of green buildings, evaluating their design strategies	2
24	Evaluation of performance metrics (energy use, water consumption).	2
25	Open Ended	9

References

- 1. HarharaIyer G, Green Building Fundamentals, Notion Press
- 2. Dr. Adv. HarshulSavla, Green Building: Principles & Practices
- 3. Centre for Science and Environment (2021): Building Wise. CSE, New Delhi.

Web links and Video Lectures (e-Resources https://www.youtube.com/watch?v=THgQF8zHBW8 http://www.youtube.com/watch?v=DRO_rIkywxQ

Course Outcomes

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Explain the benefits of Green Architecture	U, An	PSO-1,2, 3
CO-2	Describe the various strategies for green design	Un, An	PSO-3,4,6
CO-3	Explain the selection of building materials for green architecture	U, Ap, An	PSO-3,4,6
CO-4	Describe the strategies for making green architecture energy-efficient and sustainable	An	PSO-9,10
CO-5	Evaluate the performance of green buildings	Е	PSO-8,9

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Explain the benefits of Green Architecture	PSO-1,2, 3	U, An	F, C	7	0
CO-2	Describe the various	PSO- 3,4,6	Un, An	F, C, P	5	1

	strategies for green design					
CO-3	Explain the selection of building materials for green architecture	PSO- 3,4,6	U, Ap, An	Р, М	7	2
CO-4	Describe the strategies for making green architecture energy-efficient and sustainable	PSO- 9,10	An	С, Р, М	4	2
CO-5	Evaluate the performance of green buildings	PSO-8,9	Е	С, М	5	4

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	1	3	-	-	-	-	-	-	-	-	-
CO 2			3	3	-	3	-	-	-	-	-	-
CO 3	_	_	3	3	_	3	_	_	_	-	-	-
CO 4	_	-	_	_	_	_	_	-	3	3	-	-
CO 5	-	-	-	-	-	-	-	3	3	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Field observations and experiments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	L SCIENC	ES					
Course Code	UK3VACENS201	UK3VACENS201						
Course Title	ENVIRONMENTAL HEALTH AND SAFETY							
Type of Course	VAC							
Semester	Third							
Academic	200 - 299	200 - 299						
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	3	2 hours	-	2	4			
Pre-requisites	The learner should h	ave undergo	ne the course	e Fundamenta	ls of			
	Environmental Scien							
Course	This course provides	s an overview	v of various e	nvironmental	pollutants that			
Summary	pollute air, water, an	d land. The l	earners of the	e course shall	understand the			
	health problems due							
	problems created b							
	resistance with far-re	eaching cons	equences are	also included	in this course.			
	From the awareness		•					
	develop skills to m	0	•		d occupational			
	hazards, both to hun	nans and to the	ne environme	ent.				

Module	Unit	Content	Hrs					
Ι	Intro	Introduction to Environmental Pollutants and Health Effects of Air						
		Pollution						
	1	Definition of pollution and pollutants	1					

	2	Types of environmental pollution	2				
	3	Ambient air quality and standards	1				
	4	Air Quality Index of India	1				
	5	Primary and Secondary air pollutants	1				
	6	Health impacts of air pollutants (oxides of C, oxides of N, oxides	3				
	Ŭ	of sulphur, PM, VOCs, and hydrocarbons)	5				
	7	Indoor air pollutants (combustion products, tobacco, VOCs from	3				
	,	new furniture, carpets, cleaning and maintenance products,	0				
		personal care products, heating/cooling systems, humidity, and					
		moisture), Short-term and long-term effects					
	8	Noise pollution, permissible ambient noise levels, health effects of	2				
		excessive noise					
	9	Radioactive pollution, sources of radioactive pollutants, Health	2				
	-	effects of radioactive pollution	_				
	10	Light pollution, sources of light pollution, and health effects of	1				
	- •	light pollution					
II		Health Effects of Water Pollution	8				
	11	Water quality parameters and standards (Practicum)	1				
	12	Water pollutants (domestic wastes, pesticides, industrial wastes,	3				
		food processing wastes, wastes from livestock management,					
		VOCs, chemicals, organic pollutants, microorganisms, heavy					
		metals)					
	13	Effects of water pollutants on human health (nitrate, flouride,	2				
		arsenic, chlorine, cadmium, mercury, lead, zinc, microplastics)					
	14	Waterborne diseases (Bacterial, viral, parasitic), water-related	2				
		diseases					
		Health Effects of Land/Soil Pollution	10				
	15	Indicators of soil quality and Soil Quality Index (SQI)	1				
III	16	Sources of pollutants in soil (industrial wastes, fertilizers,					
		pesticides, manures, landfills, construction wastes, urban activities,					
		heavy metals, e-wastes, radioactive wastes) and factory visit					
		(practicum)					
	17	Short-term health problems of soil pollutants with causative agents	2				
		(dermatitis, allergies)					
	18	Long-term health impacts of soil pollution with causative agents	2				
		(cancer, liver, and kidney damage, impacts on the Central Nervous					
		System)	_				
IV	10	Antibiotic Resistance	5				
	19	Soil-borne diseases (anthrax, plague, tetanus), Antibiotic resistance,	5				
		1 1 1 1 1 1 1 1 1					
X 7		occurrence and spread, associated health risk	20				
V		Safety Aspects (practicum)	20				
V	20	Safety Aspects (practicum)Introduction to Environmental Health and Safety (EHS),	20 2				
V		Safety Aspects (practicum)Introduction to Environmental Health and Safety (EHS), Environmental Monitoring					
V		Safety Aspects (practicum)Introduction to Environmental Health and Safety (EHS),					
V	20	Safety Aspects (practicum)Introduction to Environmental Health and Safety (EHS), Environmental Monitoring	2				

23	Clinical safety	1
24	Health, Safety and Environment (HSE) Management System	2
25	Open-ended	12

REFERENCES

- 1. Amábile-Cuevas, C. F. (2016). *Antibiotics and antibiotic resistance in the environment*. CRC Press/Balkema is.
- 2. Burke, R. J., Clarke, S., & Cooper, C. L. (Eds.). (2011). *Occupational health and safety*. Gower Publishing, Ltd.
- 3. Fawell, J., & Nieuwenhuijsen, M. J. (2003). Contaminants in drinking water: Environmental pollution and health. *British medical bulletin*, 68(1), 199-208.
- 4. Heath, A. G. (2018). Water pollution and fish physiology. CRC press.
- 5. Holt, A. S. J., & Allen, J. (2015). Principles of health and safety at work. Routledge.
- 6. Hughes, P., & Ferrett, E. (2011). Introduction to health and safety at work. Routledge.
- 7. Keen, P. L., & Montforts, M. H. M. M. (2012). *Resistance in the environment*. Wiley Blackwell: New-Jersey, Canada.
- 8. Khare, M. (Ed.). (2012). *Air Pollution: Monitoring, Modelling and Health*. BoD–Books on Demand.
- 9. Koren, H. (1980). *Handbook of environmental health and safety: principles and practices*. Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, USA.
- 10. Krzyzanowski, M., Kuna-Dibbert, B., & Schneider, J. (Eds.). (2005). *Health effects of transport-related air pollution*. WHO Regional Office Europe.
- 11. Oosthuizen, J. (Ed.). (2012). *Environmental health: Emerging issues and practice*. BoD–Books on Demand.
- 12. Oosthuizen, J. (Ed.). (2012). *Environmental health: Emerging issues and practice*. BoD–Books on Demand.
- 13. Rodrigues, S. M., & Römkens, P. F. (2018). Human health risks and soil pollution. In *Soil Pollution* (pp. 217-250). Academic Press.
- 14. Saha, J. K., Selladurai, R., Coumar, M. V., Dotaniya, M. L., Kundu, S., & Patra, A. K. (2017). *Soil pollution-an emerging threat to agriculture* (pp. 271-315). Springer Singapore.
- 15. Soriano, M. C. H. (Ed.). (2014). *Environmental risk assessment of soil contamination*. BoD–Books on Demand.
- 16. Woodside, G., & Kocurek, D. (1997). *Environmental, safety, and health engineering*. John Wiley & Sons.

Course Outcomes

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Define and explain environmental pollution and environmental pollutants; Identify various air pollutants and relate the health problems created to various sources of air pollution	R, U	PSO-1,2 PO- 2,5

CO-2	List out water quality standards and parameters, identify various water pollutants, and describe the health problems caused by various pollutants	R, An	PSO-1,3,6 PO-1,2
CO-3	Explain and estimate the Soil Quality Index (SQI) and describe the short-term and long-term health problems of soil pollution	U, Ap	PSO-1,3 PO-1,2
CO-4	Identify and list the factors affecting human exposure to pollution, describe soil-borne diseases, and explain the problems associated with antibiotic resistance	U, E	PSO-1,2 PO- 1,2,4
CO-5	Explain and practice various aspects of EHS	Ap, E	PSO-1, 3, 4 PO- 1,2,6

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutori al (T)	Practical (P)
CO-1	Define and explain environmental pollution and environmental pollutants	PSO-1,2 PO- 2,5	R, U	F, C	11	-
CO-2	Identify various air pollutants and relate the health problems created to various sources of air pollution	PSO- 1,3,6 PO-1,2	U, An	Р	14	-
CO-3	List out water quality standards and parameters, identify various water pollutants, and describe the health problems caused by various pollutants	PSO-1,3 PO-1,2	R, An	F,C.P	7	1
CO-4	Explain and estimate the Soil Quality Index (SQI) and describe the short- term and long-term health problems of soil pollution	PSO-1,2 PO- 1,2,4	U, Ap	C,P,M	6	4

CO-5 Identify and list the factors affecting human exposure to pollution, describe soil-borne diseases, and explain the problems associated with antibiotic resistance	PSO-1, 3, 4 PO- 1,2,6	U, E	С,Р,М	5	12
--	-----------------------------	------	-------	---	----

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PS 05	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	-	-	-	2	-	2	-	-	3	-
CO 2	2	-	3	-	-	3	3	3	-	-	-	-
CO 3	-	-	2	3	-	-	3	3	-	-	-	-
CO 4	3	3	-	-	-	-	3	3	-	1	-	-
CO 5	2	-	3	2	-	-	3	3	-	-	-	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Laboratory experiments
- Field visit and field report
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignm	Project	End Semester
	Exam	ent	Evaluation	Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Semester IV

Discipline	ENVIRONMENTA	ENVIRONMENTAL SCIENCES						
Course Code	UK4DSCENS200							
Course Title	BIODIVERSITY A	ND CONSE	ERVATION					
Type of Course	DSC							
Semester	IV							
Academic	200 - 299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	1	4			
Pre-requisites	A basic understanding	ng on Biodiv	ersity and its	importance				
Course	This course is desig	ned to under	rstand the in	tricate connec	tion of life on			
Summary	earth and its importa				0			
	a way that the learned							
	methods for measur							
	•	biodiversity of the earth. The course also encompasses the conservation						
		measures to ensure the sustenance of biodiversity and various national and						
	international govern	1		•	e will help the			
	learner to appreciate	this rich nat	ural resource	e of the earth.				

Module	Unit	Content	Hrs					
Ι		Concepts of Biodiversity	5					
	1	Definition, Levels of Biodiversity	1					
	2	2 Biodiversity and its measurement						
	3	Ecological values of biodiversity and Ecosystem services of biodiversity						
	4	Economic values of biodiversity	1					
	5	Threats to Biodiversity and factors causing Biodiversity loss	1					
II		Biodiversity of the Indian subcontinent and Conservation	24					
	6	Biodiversity hotspots, Megadiversity countries	2					
	7	Biogeographical regions in India	1					
	8	India as a mega diversity nation	1					
	9	Biodiversity of India - past and present	1					
	10	Biodiversity conservation - National, State and Local levels	3					
	11	Traditional Conservation Practices and documentation of local	2					
		biodiversity along with field study						
	12	In situ conservation (Biosphere Reserves, National Parks, Wildlife Sanctuaries, Community Reserves, Sacred Habitats)	4					

	13	Ex situ Conservation (Botanical Gardens, Zoological parks, seed banks, gene banks, seedling collections, tissue culture, pollen culture, butterfly parks, Ecoparks)	4
	14	Documentation of traditional knowledge along with field study (practicum)	6
]	Biodiversity Conservation Policies - National and International	5
	15	Indian Wildlife (Protection) Act, 1972	1
III	16	Indian Biodiversity Act 2002	1
	17	IUCN Red List of Threatened Species	1
	18	The Convention on International Trade in Endangered Species of Wild	1
		Fauna and Flora (CITES), CBD	
	19	Role of WWF, WCU and TRAFFIC in Biodiversity Conservation	1
IV		Biodiversity Conservation Action Plans in India	6
	20	National Biodiversity Action Plan of India	1
	21	Biodiversity hotspots in India	1
	22	Conservation Projects in India (Tiger, Rhino, Lion, Crocodiles, Birds)	1
	23	Biodiversity interactions: Man-animal conflict, co-existence, wildlife crimes	3
V		Observation and Survey Techniques (Practicum)	35
	24	Species sampling method (Quadrat, Line Transect, Belt Transect, Pitfall, Mark-Recapture technique, Radio-telemetry etc.) along with field	20
	25	Open Ended	15

REFERENCES

- 1. Dobson, A. P. (1996). Conservation and biodiversity. WH Freeman and Co..
- 2. Dadhich, L. K. (2002). *Biodiversity: strategies for conservation*. APH Publishing.
- 3. Martin, A. (2017). Just conservation: Biodiversity, wellbeing and sustainability. Routledge.
- 4. Sodhi, N. S., & Ehrlich, P. R. (Eds.). (2010). *Conservation biology for all*. Oxford University Press.
- 5. Kopnina, H., & Washington, H. (2020). Conservation. Integrating Social and Ecological Justice. Cham: Springer Nature Switzerland AG.
- 6. Wilson, E. O. (1988). Biodiversity.
- 7. Gaston, K. J., & Spicer, J. I. (2013). *Biodiversity: an introduction*. John Wiley & Sons.
- 8. Shiva, V. (1991). *Biodiversity: social & ecological perspectives*. World Rainforest Movement.
- 9. Groombridge, B. (Ed.). (1992). Global biodiversity: status of the Earth's living resources (pp. xx+-585).

Course Outcomes

No.	Upon completion of the course, the graduate will	Cognitive	PSO
	be able to	Level	addressed

CO-1	Define biodiversity and explain its concepts	R, U	PSO-1,2 PO-4,6
CO-2	Identify and explain the values of biodiversity and the factors affecting biodiversity	U, E	PSO-2,3,4 PO- 8
CO-3	Identify biodiversity hotspots and document local biodiversity	U, Ap, An	PSO-1,2 PO- 1,2,8
CO-4	Explain various conservation techniques for biodiversity	R, U	PSO-6 PO- 2,8
CO-5	Perform survey techniques to assess biodiversity	С	PSO-3,4 PO- 2,3

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)	
CO-1	Define biodiversity and explain its concepts	PSO-1,2 PO-4,6	R, U	F, C	4	1	
CO-2	Identify and explain the values of biodiversity and the factors affecting biodiversity	PSO- 2,3,4 PO- 8	U, E	Р	14	10	
CO-3	Identify biodiversity hotspots and document local biodiversity	PSO-1,2 PO- 1,2,8	U, Ap, An	С. Р	5	0	
CO-4	Explain various conservation techniques for biodiversity	PSO-6 PO- 2,8	R, U	С	5	1	
CO-5	Perform survey techniques to	PSO-3,4 PO- 2,3	С	Р, М	4	4	

assess biodiversity

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PS	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
					05							
CO 1	3	3	-	-	-	-	-	-	-	3	-	3
CO 2	-	3	3	2	•	-	-	-	-	-	-	-
CO 3	3	3	-	-	-	-	2	2	-	-	-	-
CO 4	-	-	-	-	-	3	-	3	-	-	-	-
CO 5	•	-	3	3	-	-	-	3	3	-		-

Correlation Levels:-

-Level	Correlation			
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Field observations and experiments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignm	Project	End Semester
	Exam	ent	Evaluation	Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	ENVIRONMENTAL SCIENCE					
Course Code	UK4DSCENS201	UK4DSCENS201					
Course Title	CURRENT ENVIE	CURRENT ENVIRONMENTAL ISSUES					
Type of Course	DSC	DSC					
Semester	IV	IV					
Academic	200 - 299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	Basic knowledge of	ecological co	oncepts, such	as ecosystem	s, biodiversity,		
	and natural resource	•					
	Familiarity with env	ironmental is	ssues and cha	allenges facin	g society		
Course	Empower students v						
Summary	the complex environ						
	exploring the scie						
		environmental issues, students will be equipped to contribute to efforts to					
	-	promote sustainability, resilience, and environmental justice on a global					
	scale						

Module	Unit	Content	Hr		
			S		
I	Introc	luction to Environmental Issues	10		
	1	Fundamentals, causes, effects and mitigation strategies of – Global Warming, Depletion of Stratospheric Ozone Layer depletion and Acid Rain	3		
	2	Climate change - adaptability, energy security, food security and sustainability. Environmental Pollution; Air, Water, Soil pollution (in brief); waste disposal	3		
	3	water scarcity, epidemiological issues-water, air and vector borne diseases. Plastic pollution, Impacts of Microplastics in ocean and food chain.	2		
	4	Natural resource depletion; Causes and consequences of biodiversity loss, conservation of biodiversity; Deforestation, wildlife depletion.	2		
II	Envir	ronmental Issues - Indian Context			
	5	Deforestation, wildlife depletion, Man animal conflict, desertification, changing land-use pattern, loss of Biodiversity and species extinction, population explosion and rapid urbanization, waste management and handling.	3		
	6	El-Nino and La Nina, Acid rain.	2		
	7	Environmental issues related to water resource projects - Issues related to Kerala - Flood, Drought, saltwater intrusion, Coastal erosion, loss of wetlands.	7		

			1
		Issues related toIndia - Narmada dam, Tehri dam, Almatti dam, Kaveri	
		and Mahanadi, Hydro-power projects in Jammu & Kashmir, Himachal	
		and North-Eastern States.	
	8	Harmful algal blooms and Eutrophication	3
III	Types	and causes of recent Environmental problems	20
	9	Degradation, conversions and encroachment of wetlands	2
	10	Depletion of water resources	2
	11	Global water crisis	2
	12	Flood and drought with case studies (practicum)	2
	13	Transboundary water disputes.	2
	14	Ocean acidification, ocean oil spill	2
	15	Threats to mangrove	2
	16	Extinction of species; Types and causes of extinction, Anthropogenic	4
		causes of extinction.	
	17	Exotic and invasive species	2
IV	Envir	onmental problems and urban environment	15
	18	Soil erosion and Depletion of Soil fertility, soil degradation.	3
	19	Construction of Dam, roads, railways	3
	20	Exploitation of natural resources, ground water, quarrying, sand mining	3
		(field visit)	
	21	London smog, photochemical Smog, Los Angeles Smog	3
	22	Flash flood, Urban flooding	3
V	Urbar	nisation - present and future global crisis	15
	23	Urban encroachment, urban heat island, global energy crisis	5
	24	Desertification, Food and Water Insecurity, reduction of agricultural	10
		land, overuse of chemical fertilizers.	
	25	Open ended	15

REFERENCES

- 1. Abbasi, T. and Abbasi, S.A. 2011. Renewable Energy Sources: Their Impact on Global Warming and Pollution. PHI Learning Private Limited, New Delhi.
- 2. Balliett, J.F. 2010. Environmental Issues (Global Perspectives). Routledge.
- 3. Bharucha, E. 2021. Text Book of Environmental Studies. University Press (India) Pvt. Ltd.,
- 4. Colin, R.T., John, L.H. and Michael, B. 2006. Essentials of Ecology. Blackwell Publishing (Indian Edition).
- 5. Joseph, K. and Nagendran, R. 2004. Essentials of Environmental Studies. Pearson Education, New Delhi.
- 6. Kanagasabai, T. 2010. Environmental Studies. PHI Learning Private Limited, New Delhi.
- 7. Koteswar Rao, 2006. Energy Resources: Conventional and Non-Conventional. B S Publications Hyderabad.
- 8. Mcconnell, M.C and Abel, Daniel, C. 2012. Environmental issues: Looking Towards a Sustainable Future (Fourth edition). Pearson Custom Publication.

- 9. Odum, E.P. and Barrett, G.W. 2008. Fundamentals of Ecology (5thEdition). Thomson Brooks Australia and Affiliated to East West Press Pvt. Ltd., New Delhi.
- 10. Rangarajan, M. 2011. Environmental Issues in India. Pearson Education.
- 11. Rogoff, M., Screve, F. 2019. Waste-to-Energy, Elsevier, Amsterdam
- 12. Santra, S.C. 2010. Fundamentals of Ecology and Environmental Science. NCBA, Kolkata.
- 13. Sharma, P.D. 2018. Ecology and Environment. Rastogi Publication, Meerut.
- 14. Singh, M.P, Rallan, B.R. and Vivek Kumar. 2012. Natural Resources Management. Emkay Publishing House.
- 15. Harris, F. 2004. Global Environmental Issues. Wiley-Blackwell
- 16. Singh, S. 2015. Environmental Geography. Pravalika Publications
- 17. Buckingfham, S., Turner, M. 2012. Understanding Environmental Issues. Sage Publications
- 18. Runyan, C., D"Odorico. 2016. Global deforestation. Cambridge University Press
- 19. Ray, S.P.S. 2019. Ground Water Development Issues and Sustainable Solutions. Springer-Verlag
- 20. Kateja, A., Jain, R. 2021. Urban Growth and Environmental Issues in India. Springer-Verlag
- 21. Sánchez-Carrillo, S., Angeler, D.G. 2010. Ecology of Threatened Semi-Arid Wetlands. Springer-Verlag
- 22. Berner, E.K., Berner, R.A. 2012. Global Environment: Water, Air, and Geochemical Cycles. Princeton University Press
- 23. Newton, D.E. 2016. The Global Water Crisis: A Reference Handbook. Greenwood Press

Course Outcomes :

S No.	Course Outcome No.	Course Outcome	Taxonomic Level
1	CO 1	Understand the basic concepts of current environmental issues	Un
2	CO 2	Know the different environmental problems and its impacts	Un
3	CO 3	Understand the basic idea of national and global environmental issues	Un
4	CO 4	Apply the knowledge to solve environmental problems	Ар
5.	CO 5	Describe the impacts of current environmental problems	Ар
6.	CO6	Generate solutions for the problems related to Environment	Un Re, Un, Ap

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Lecture	1		F, C		
2	Lecture, Tutorial	2		С, Р		
3	Lecture, Tutorial	3,4		Р, М		
4	Tutorial, Practical	5		М		
5	Tutorial, Practical	5, 6		М		
6	Tutorial, Practical	6		М		

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	-	-	2		2	2
CO 2	2	3	-	-	-	-	-	3	-	3	3	4
CO 3	-	-	1	-	-	_	_	-	-	4	4	3
CO 4	-	-	2	3	-	-	-	3	3	4	-	-
CO 5	-	1	_	_	-	_	_	2	-	2	3	4
CO 6	-	-	-	3	-	-	2	-	3	-	3	4

Correlation Levels

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Quiz / Assignment/ Quiz/ Discussion / Seminar

- Midterm Exam
- Programming Assignments Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Mapping of COs to Assessment Rubrics :

Discipline	ENVIRON	MENTAL S	CIENCES			
Course Code	UK4DSEE	ENS200				
Course Title	NATURAL	NATURAL AND INTEGRATED FARMING				
Type of Course	DSE	DSE				
Semester	IV					
Academic Level	200-299					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week	
	4	3	_	2	5	
Pre-requisites	farming, ir	ncluding crop	cultivation,	livestock m	ets of agricultural anagement, soil ning techniques.	
Course Summary	Agriculture is the science, art, or practice of cultivating the soil, producing crops and raising livestock and in varying degrees the preparation and marketing of the resulting products in congruence with the laws of nature. Today, conventional farming is a common method of farming using external inputs and use of chemicals and fertilizers giving more emphasis on yield maximization rather than yield optimization leading to soil fatigue, high cost of production, declining factor productivity and causing imbalance in the ecosystem and lead					

	to high dependency of the farmers on the market forces. Natural
	farming is emerging as an alternative farming focusing on optimum
	utilization of native local resources according to principles of
	agroecology. Integrated farming is a farming system with
	simultaneous activities involving crops and animals. Essentially, the
	crop residues serve as feed to the livestock and fish, and in turn, the
	wastes from the livestock and fish serve as fertilizer to the crops. This
	course studies the concept of systems and interactions between
	subsystems in farming systems, studies various kinds of integrated
	farming systems, and analyzes sustainable integrated farming systems.

Module	Unit	Content	Hrs
Ι		Natural Farming	12
	1	Introduction to Natural farming	2
	2	Ecosystem services and Natural Farming	2
	3	Soil Health and Nutrient Management	2
	4	Bio inputs	2
	5	Elements, Characteristics and Design of Natural Farming Systems	4
II		Pest and Disease Management in Natural Farming	13
	6	Pest identification	2
	7	Causes of outbreaks of pests	2
	8	Insect Ecology	2
	9	Pest management in natural farming	3
	10	Plant based concoctions and decoctions for pest and disease	2
		management	
	11	Management of Non-Insect Pests	2
III		Water and soil management	15
	12	Importance of irrigation –Methods of irrigation –surface, subsurface and overhead irrigation- Micro irrigation methods – Sprinkler and drip irrigation- localized irrigation	2
	13	Irrigation management in different soil types. Water conveyance structures- Irrigation of principal crops	2
	14	Water logging and drainage -quality of irrigation water	2
	15	Watershed – Concepts, approaches, objectives, delineation, resource appraisal – Planning watershed development	2
	16	Watershed development plan – PLA techniques – Implementation of watershed development programmes- soil and water conservation (Case study)	4

	17	Terracing- water harvesting and recycling- Ground water recharge- Roof water harvesting	3
IV		Integrated Farming Systems	20
	18	Goals, components and advantages	2
	19	Integration of components – livestock, poultry, rabbitry, apiculture, aquaculture, sericulture, mushroom culture, etc. Integration of Horticulture Crops under Natural Farming	4
	20	Contribution of components in IFS – economic contribution, resource recycling and employment generation	2
	21	Regional adaptation of various farming systems in India	1
	22	Regional adaptation of various farming systems in Kerala	1
	23	Crops and animal waste utilization	1
	24	Modern techniques – Biogas plant- installation, working and maintenance (Field Visit)	4
V		Open Ended	15
	25	Open ended	15

REFERENCES

- 1. Balasubramaniyan, P. and Palaniappan, S.P. 2001. Principles and Practices of Agronomy. Agrobios Publishers, Jodhpur.
- 2. Chatterjee, B.N., Maiti, S. and Mandal, B.K. 1989. Cropping Systems Theory and Practice. Oxford and IBH Publication, New Delhi Francis, C.A. 1986. Multiple Cropping Systems. Macmillan Publication
- 3. Gomez, A.A. and Gomez, K.A. 1983. Multiple Cropping in the Humid Tropics of Asia. International Development Centre (IDRC),Ottawa.
- 4. Jayanthi, C. N., Sakthivel, N., Sankaran and Thiyagarajan, T.M.2003.Integrated Farming System-A Path to sustainable Agriculture, TNAU Publication.
- 5. Palaniappan.S.P., and K.Sivaraman.1996. Cropping System in the Tropics. Principles and Management. New Age India (P) Ltd., 151 Panda, S.C. 2003.Cropping and Farming Systems. Agrobios Publishers, Jodhpur.
- 6. Raman, K.V. and Balaguru, T. 1992. Farming systems Research in India. Strategies for Implementation. Pragati Art Printers, Hyderabad,India.
- 7. Rangasamy, A., Annadurai, K., Subbian, P., and Jayanthi, C. 2002. Farming System in the Tropics. Kalyani Publishers, Ludhiana
- 8. Datta, S.K. 1986. Soil Conservation and Land Management. International Book Distributors, Dehradun, India. Foster, A.B.1973. Approved Practises in Soil Conservation (4th ed.). The Interstate Printers 7 Publishers, Inc., Illinois, USA..
- 9. Gupta, I. C.1990.Use of Saline Water in Agriculture. Oxford and IBH publishing Company Pvt. Ltd.,
- Gurmel Singh, Venkataraman, C., Sastry, G. and Joshi, B.P. 1988. Manual of Soil and Water Conservation Practices. Oxford and IBH.385p. Hansen, V.E., Israelsen, O.W., and Stringham, G.E. 1979. Irrigation Principles and Practices (4th ed.).

11. John Wiley and Sons, New York Hudson, N. 1981. Soil Conservation (2nd ed.). Batsford Academic and Educational, London.324p

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	To evolve a teaching-learning ecosystem for a comprehensive knowledge and skills of ecofriendly agricultural practices in its totality as a science, a set of practice and a social movement.	U	PSO 1, PSO 2
CO-2	To develop a mechanism for teaching and study of a transdisciplinary science, combining different scientific disciplines to seek solutions to real world problems in agriculture at landscape-scale level, encompassing landscape ecology and, more recently, social science and political ecology related to the development of equitable and sustainable food systems	U	PSO 3, 7, 10
CO-3	To focus on a system approach embracing management of interactions among components, rather than focusing only on specific technologies in agriculture	U, R	PSO 6, PSO 7
CO-4	To create a knowledge, innovation and entrepreneurship support system for nature- based farming through a collaborative community of different stakeholders in the society	E, C	PSO 7,8,10
CO-5	To focus on technology upgradation and capacity building of youth and stakeholders in natural farming	U, An	PSO 7, PSO 9

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No	СО	PO/PS O	U	Knowledg e Category		Practica 1 (P)	Open Ende d
----------	----	------------	---	------------------------	--	-------------------	-------------------

1	To evolve a teaching- learning ecosystem for a comprehensive knowledge and skills of ecofriendly agricultural practices in its totality as a science, a set of practice and a social movement.	PSO 1, PSO 2	U	F, C	10	2	3
2	To develop a mechanism for teaching and study of a transdisciplinary science, combining different scientific disciplines to seek solutions to real world problems in agriculture at landscape-scale level, encompassing landscape ecology and, more recently, social science and political ecology related to the development of equitable and sustainable food systems	PSO 3, 7, 10	U	Р	10	2	3

3	To focus on a system approach embracing management of interactions among components, rather than focusing only on specific technologies in agriculture	PSO 6, PSO 7	U, R	12	2	3
4	To create a knowledge, innovation and entrepreneurshi p support system for nature- based farming through a collaborative community of different stakeholders in the society	PSO 7,8,10	E, C	10		3
5	To focus on technology upgradation and capacity building of youth and stakeholders in natural farming	PSO 7, PSO 9	U, An	10	2	3

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	2	-	-						
CO 2	2	2	-	-	3	-						

CO 3	-	-	1	-	-	-			
CO 4	-	-	2	2	-	-			
CO 5	-	1	-	-	2	-			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2				\checkmark
CO 3	\checkmark			\checkmark
CO 4			\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark	\checkmark

Discipline	ENVIRONMENTA	AL SCIENC	ES				
env	UK4DSEENS201						
Course Title	WASTEWATER 7	TREATMEN	Т МЕТНО	DS			
Type of Course	DSC						
Semester	IV						
Academic	200 - 299	200 - 299					
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	Knowledge on source	ces of water a	and their con	tamination			
Course	The course on wa	stewater tre	atment syst	ems provide	s an in-depth		
Summary	exploration of the pr	rinciples, tec	hnologies, ar	nd processes i	nvolved in the		
	treatment of waste	ewater. It c	overs vario	us aspects o	of wastewater		

treatment, including physical, chemical, and biological methods, as well
as the design, operation, and maintenance of treatment systems.

Module	Unit	Content	Hrs
Ι		Introduction to Wastewater Treatment	10
	1	Different types of waste water	2
	2	Overview of wastewater management	2
	3	Wastewater composition and characteristics	3
	4	Environmental impacts of untreated wastewater	3
II		Wastewater Treatment Processes	15
	5	Preliminary, Primary, Secondary and Tertiary treatments	4
	6	Physical treatment methods (screening, sedimentation)	4
	7	Chemical treatment methods (coagulation, flocculation)	4
	8	Biological treatment methods (activated sludge, trickling filters)	3
III		Advanced Treatment Technologies	15
	9	Membrane processes (reverse osmosis, ultrafiltration)	1
	10	Nutrient removal (phosphorus and nitrogen removal)	2
	11	Disinfection methods (chlorination, UV irradiation)	2
	12	Sludge treatment and disposal	2
	13	Domestic waste water treatment	2
	14	Industrial waste water treatment	3
	15	Muncipal waste water treatment	3
IV		Wastewater Treatment Plant Operation and Maintenance	10
	16	Plant layout and equipment, Operation procedures and protocols	2
	17	Maintenance strategies and troubleshooting	2
	18	Regulatory Framework	2
	19	Overview of environmental regulations	2
	20	Emerging trends and challenges in wastewater management	2
V		Emerging wonde and chanenges in waste water management	25
	21	Wastewater Treatment Plant Design: Principles and methodologies for designing treatment facilities considering factors like flow rate, pollutant load, and site conditions.	5
	22	Compliance requirements related to wastewater treatment.	2
	23	Quality standards	1
	24	Case studies with respect to industrial waste water treatment Field visit to water treatment plant	2
	25	Open ended	15

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed	
CO-1	Understand the characteristics of wastewater and its	U	PSO-1,2	

	impact on the environment.		
CO-2	Identify and describe the various components of wastewater treatment systems.	R, U	PSO-1,2,3
CO-3	Analyze and apply design principles for wastewater treatment processes.	Ар	PSO-2,3,4
CO-4	Evaluate the efficiency and effectiveness of different treatment methods.	E, C	PSO-4,5,6
CO-5	Interpret environmental regulations related to wastewater treatment.	Ар	PSO-6,7,8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

REFERENCES

- 1. APHA (American Public Health Association) Handbook,1998
- 2. Soil, Plant and Water Analysis P. C. Jaiswal
- 3. Chemical and Biological Analysis of Water Dr. R. K. Trivedy and P. K. Goel.
- 4. "Wastewater Engineering: Treatment and Reuse" by Metcalf & Eddy
- 5. "Biological Wastewater Treatment" by Grady, Daigger, & Lim
- 6. Environmental Protection Agency (EPA) guidelines and publications
- 7. "Principles of Wastewater Treatment" Author: Smith, J. & Johnson, A. Publisher: ABC Publishing

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutoria l (T)	Practi cal (P)
CO-1	Understand the characteristics of wastewater and its impact on the environment.	PSO-1,2	U	F, C		
CO-2	Identify and describe the various components of wastewater treatment systems.	PSO- 1,2,3	R, U	Р		

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO-3	Analyze and apply design principles for wastewater treatment processes.	PSO- 2,3,4	Ар	P,M	
CO-4	Evaluate the efficiency and effectiveness of different treatment methods.	PSO- 4,5,6	E, C	М	
CO-5	Interpret environmental regulations related to wastewater treatment.	PSO- 6,7,8	Ар	М	

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	1	-	-	-	-	3	-	-	-	-	-
CO 2	1	2	-	-	-	-	-	2		-	-	-
CO 3	-	2	3		-	-	-	-	2	-	-	-
CO 4	-	-	-	2	3	-	-	-	-	2	3	-
CO 5	-	_	_	-	-	2	_	_	-	-	_	2
CO 6												

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENT A	ENVIRONMENTAL SCIENCES					
Course Code	UK4DSEENS202						
Course Title	URBAN ECOLO	GY					
Type of Course	DSE						
Semester	IV						
Academic	200-299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	1. Basic understandi	ng of ecolog	y and enviro	nmental scien	ice		
	2. Familiarity with u						
Course	This course explore						
Summary	focusing on the in	nteractions b	between hur	nan activitie	s and natural		
	ecosystems in urba	U			U		
	processes, patterns, and challenges unique to urban areas, as well as						
		strategies for promoting sustainable urban development and enhancing					
	urban biodiversity.						
	studies, students w	vill gain ins	sights into 1	the complexi	ties of urban		

ecosystems and develop the analytical skills necessary to address urban
environmental issues.

Module	Unit	Content	Hrs
Ι		Introduction to Urban Ecology	5
	1	Definition of urban ecology	1
	2	Historical perspectives on urbanization and ecological studies	1
	3	Urban ecosystems: characteristics and components	1
	4	Urbanization and Its Ecological Impacts, Drivers of urbanization	2
Π		Urban Biodiversity and Ecosystem Services	15
	5	Biodiversity patterns in urban environments	2
	6	Factors influencing urban biodiversity	2
	7	Conservation of urban biodiversity	2
	8	Ecosystem services provided by urban environments	2
	9	Valuation of urban ecosystem services	2
	10	Importance of green spaces in cities	2
III		Green Infrastructure. Urban Design and Urban Pollution	15
	12	Role of green infrastructure in urban ecology	1
	13	Sustainable urban design principles	2
	14	Case studies of green infrastructure projects	3
	15	Sources and impacts of pollution in urban areas	2
	16	Air quality, water quality, and soil contamination	3
	17	Strategies for pollution control and environmental health management	1
IV		Urban Agriculture and Food Systems	5
	18	Urban agriculture: types and benefits	1
	19	Challenges and opportunities for urban food systems	2
	20	Community gardening and urban farming initiatives	1
V		Social-Ecological Dynamics in Urban Areas	20
	21	Human-nature interactions in urban environments	2
	22	Socioeconomic factors influencing urban ecology; Equity and justice in	3
		urban environmental management	
	25	Open ended	15

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the principles of urban ecology and apply ecological concepts to urban environments.	U	PSO-1,2
CO-2	Describe the structure and function of urban ecosystems and their interactions with human society.	R, U	PSO-1,2,3
CO-3	Analyze the drivers of urbanization and their impacts on biodiversity, ecosystem services, and	An	PSO-2,3

	environmental quality.		
CO-4	Evaluate strategies for sustainable urban planning, design, and management to enhance urban ecological resilience.	E	PSO-3,4,5
CO-5	Apply quantitative methods and spatial analysis techniques to study urban ecology patterns and processes.	Ар	PSO-5,6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

REFERENCES:

- 1. McDonnell, M. J., & Hahs, A. K. (Eds.). (2015). The Routledge Handbook of Urban Ecology. Routledge.
- Grimm, N. B., et al. (2008). Global Change and the Ecology of Cities. Science, 319(5864), 756-760.
- 3. Marzluff, J. M., et al. (Eds.). (2008). Urban Ecology: An International Perspective on the Interaction Between Humans and Nature. Springer.
- 4. Pickett, S. T. A., et al. (2011). Urban Ecological Systems: Scientific Foundations and a Decade of Progress. Journal of Environmental Management, 92(3), 331-362.
- 5. Gandy, M. (2013). The Fabric of Space: Water, Modernity, and the Urban Imagination. MIT Press.
- 6. McPhearson, T., et al. (2016). Advancing Urban Ecology Toward a Science of Cities. BioScience, 66(3), 198-212.
- 7. Kowarik, I. (2011). Novel Urban Ecosystems, Biodiversity, and Conservation. Environmental Pollution, 159(8-9), 1974-1983.
- 8. United Nations. (2018). World Urbanization Prospects: The 2018 Revision. Department of Economic and Social Affairs, Population Division.

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand the principles of urban ecology and apply ecological concepts to urban environments.	PSO-1,2	U	F, C		

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO-2	Describe the structure and function of urban ecosystems and their interactions with human society.	PSO- 1,2,3	R, U	C,P	
CO-3	Analyze the drivers of urbanization and their impacts on biodiversity, ecosystem services, and environmental quality.	PSO-2,3	An	P,M	
CO-4	Evaluate strategies for sustainable urban planning, design, and management to enhance urban ecological resilience.	PSO- 3,4,5	Ε	М	
CO-5	Apply quantitative methods and spatial analysis techniques to study urban ecology patterns and processes.	PSO-5,6	Ар	P,M	

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	-	2	-	-	-	

CO 2	2	3	-	-	-	-	-	-	3	-	-	-
CO 3	-	2	2	-	-	-	-	2	-	-	-	-
CO 4	-	-	2	3	3	-	-	-	-	4	-	-
CO 5	-	-	-	3	3	-	-	-	2	-	-	-
CO 6												

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIE	RONMENTAL SC	IENCES						
Course Code	UK4D	SEENS203							
Course Title	Marine	e Ecology							
Type of Course	DSE	DSE							
Semester	IV	IV							
Academic Level	200-29	200-299							
Course Details	Credit	Credit Lecture per Tutorial Practical Total							
		week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	marine	Basic understanding of oceanographic features, Problems faced by marine ecosystem and Need for conservation of marine ecosystems							
Course Summary	organis many u that live relation underst and eve humans explore and bie commu challen destruc commu	ms and their ocean inique challenges f e there. Students in aships of marine and the relationsh olution, and (3) e s and climate chan the multi-dimens ological processes nities, (5) synthe ges our oceans fa tion, and global	environment for marine c Marine Eco animals to ps of organ ngage in dia nge on the s ional challen that influe size alterat ce today inco climate of x conservat	nt. Ocean en ommunities logy course the marine ismal form scussions a sustainabilit nges of the ence the s ive solution cluding ove change, ar	ps between marine nvironment presents and the organisms will (1) explore the e environment, (2) , function, ecology, bout the impact of y of the planet (4) physical, chemical tructure of marine ns to the greatest rharvesting, habitat nd (6) effectively es essential for the				

Module	Unit	Content	Hrs							
Ι	PHYS	SICAL OCEANOGRAPHY	10							
	1	Major divisions of marine environment;	2							
	2	Physical properties of seawater	2							
	3	Thermal properties of seawater	1							
	4	Properties of Waves: Types of waves and properties of ocean waves	1							
	5									
	6 Wind and Ocean circulation – Types of currents									
II	MAR	INE ECOLOGY AND POLLUTION	10							
	7	Community ecology	1							
	8	Intertidal ecology - Benthic, pelagic and deep sea ecology	2							
	9	Food Chain and food web	1							
	10	Food pyramid	1							
	11	Animal association in the marine environment	2							
	12	Types of marine pollution, source and their biological effects (Practicum/Field visit to relevant sites)	3							

III	MAR	INE BIODIVERSITY AND CONSERVATION	15
	13	Threats to marine biodiversity	3
	14	Need for marine biodiversity conservation	2
	15	Ecological impact of pollutants on marine environments	2
	16	IUCN categorization	2
	17	Need for conservation and conservation strategies – germplasm	3
		banks, cryopreservation, marine protected areas, sea ranching, mesh	
		size regulation, TED, fishing holidays	
	18	Coastal and Ocean Resource Management-endangered coastal	3
		biota, Marine biosphere reserves and marine parks.	
IV	MAR	RINE MICROBIOLOGY	15
	19	Marine microbial environment – Benthic & littoral zone	3
	20	Mangroves and estuarine microbes (Practicum)	5
	21	Microbial loop in ocean food webs	2
	22	Marine microbial community - Bacteria, Fungi, Protozoa	3
	23	Marine Extremophiles	2
V	OCE	AN POLICIES AND MANAGEMENT	10
	24	Role of National and International agencies and organizations in	10
		ocean management, Intellectual Property Right (IPR) and Ocean	
		policy (India)	
	25	Open Ended	15

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Acquire knowledge on the basic and recent development in the field of Marine Biology.	U	PSO1, PSO2
CO- 2	Acquire skill on theoretical and experimental protocols in understanding the marine environment.	Ap	PSO 4
CO3	Possess knowledge for independent thinking, in writing scientific proposal, and its presentation.	An	PSO 6
CO4	Man power development for becoming successful researchers and academicians	С	PSO 3
CO5	Understand the overview structure and function of life in the marine environment	Е	PSO 6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

C O No	CO	PO/PS O	Cognitiv e Level	Knowledg e Category	Lecture (L)/Tutoria l (T)	Practica l (P)	Open Ende d
1	Acquire knowledge on the basic and recent development in the field of Marine Biology.	PSO1, PSO2	U	R,U	12	4	3
2	Acquire skill on theoretical and experimental protocols in understandin g the marine environment.	PSO 4	Ар	U	10	4	3
3	Possess knowledge for independent thinking, in writing scientific proposal, and its presentation.	PSO 6	An	Ар	10		3
4	Man power development for becoming successful researchers and academicians	PSO 3	С	Ε	10		3
5	Understand the overview structure and	PSO 6	Е	С	10		3

Name of the Course: Credits: 3:0:1 (Lecture: Tutorial: Practical)

life in the marine environment

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	1	-	-	-	1	-	1	-	1
CO 2	2	2	-	-	1	-	1	-	-	-	1	-
CO 3	-	-	1	-	-	-	-	-	2	-	-	-
CO 4	-	-	2	3	-	-	2	-	1	-	2	-
CO 5	-	1	-	-	-	-	-	-	1	2	-	-

REFERENCES

- 1. Levinton, J.S., 2000. Marine ecology, Biodiversity and function. Oxford University Press.
- 2. Bertness, M.D, Gaines, S.D. and Hay, M.K., 2000. Marine Community Ecology Sinauer Associates.
- 3. Gage. J.D. and Tyler, P.A. 1991. Deep Sea Biology, Cambridge University Press, Cambridge.
- 4. William, C., 1991. Seashore life between the tides. Dover Publication.

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4			\checkmark	\checkmark
CO 5		\checkmark	\checkmark	\checkmark

Discipline	ENVIRONMENTAL SCIENCE					
Course Code	UK4DSEENS204					
Course Title	GLOBAL CLIMA	FE CHANG	E			
Type of Course	DSC					
Semester	IV					
Academic	200-299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	4 hours	-	-	4	
Pre-requisites	1. Students should have	ave a basic k	nowledge ab	out weather a	nd climate.	
Course	By the end of this	course, stu	dents will b	e able to: U	nderstand the	
Summary	scientific principles u	underlying gl	lobal climate	change, ident	ify the drivers	
	and causes of clim	ate change,	including n	atural and hu	uman-induced	
	factors. To understan					
	of climate change of					
	mitigating greenhous					
	change. Evaluate ad					
	change on ecosystems, communities, and economies. Examine the ethical,					
	social, and political					
	global cooperation.					
	engage in informed of	liscussions a	nd actions or	n climate char	nge.	

Detailed Syllabus:

Module	Unit	Content	Hrs
		Introduction to Climate Change	10
	1	Definition of weather and climate, meterology and climatology,	2
Т	2	Components of the climate system: Atmosphere: Composition, circulation	4
ł		patterns, and climate zones, Hydrosphere: Oceans, sea level rise, and ocean	
		acidification, Cryosphere: Ice sheets, glaciers, and permafrost,	
	3	Biosphere: Ecosystems, biodiversity, and carbon cycle.	2

132

	4	Earth's climate zones and circulation patterns, Earth's energy balance	2			
II		Science of Climate Change	10			
	5	Drivers of climate change-natural Vs. anthropogenic	2			
	6	Aerosols-reflective and black, feed back process in climate system	2			
	7	Role of human activities, including fossil fuel combustion, deforestation, and agriculture	3			
	8 Greenhouse gases and its sources, Enhanced greenhouse gas effect, Global warming and its impacts, Global Warming Potential (GWP)					
III		Impacts of Climate Change and Mitigation	20			
	9	Environmental impacts: melting ice caps, rising sea levels, shifts in ecosystems	2			
	10	Major impacts of climate change on forest and agriculture	2			
	11	Health impacts: heat waves, vector-borne diseases, air pollution issues	2			
	12	Social and economic impacts: food security, water scarcity, displacement of populations	3			
	13	Mitigation Strategies- Renewable energy sources: solar, wind, hydroelectric, geothermal	3			
	14	Improved energy efficiency, fuel substitution, hydropower, carbon capture and sequestration, land based carbon sinks	3			
	15	Policy instruments: carbon pricing, emissions trading, renewable energy incentives, Carbon neutral society, Net zero emmissions	2			
	16	Energy efficiency and conservation measures	2			
	17	Management option to tackle climate change.	1			
IV	International Climate Policy and Governance:					
	18	United Nations Framework Convention on Climate Change (UNFCCC), Kyoto Protocol and Paris Agreement	3			
	19	Nationally Determined Contributions (NDCs), Global Climate Funds: Green Climate Fund (GCF) and the Global Environment Facility (GEF)	5			
	20	Conference of the Parties (COP), and climate action plans	3			
	21	Equity considerations in climate policy and decision-making	2			
	22	Public perceptions of climate change	2			
V		Climate change awareness	20			
	23	Effective communication strategies for engaging diverse audiences, Climate literacy and education initiatives	3			
	24	Case studies: successful adaptation and mitigation efforts at local,	2			
		regional, and national levels				

References

- 1. Arya S. Pal (1998). Introduction to Micrometeorology, Academic Press.
- 2. Arya, S. Pal (1999). Air Pollution Meteorology and Dispersion, Oxford University Press, London

3. Barry R. G. and R. J. Chorley (2009) Atmosphere, Weather and Climate. Routledge.

4. Berry F. A., E. Bollay and N. R. Beers. (1945). Hand Book of Meteorology. McGraw Hill.

5. Bryers H. R. (1974) General Meteorology, Mc Graw - Hill.

6. Finlayson – Pitts (1986). Atmospheric Chemistry: Fundamental and Experimental Techniques, John Wiley and Sons, New Delhi.

7. Hess S. L. (1959). Introduction to Theoretical Meteorology, Holt Renehart and Winston, New York.

8. Menon P.A. and C.K. Rajan (1989). Climates of Kerala, Classic Printers, Cochin.

9. Sachs, J.D. (2015). The Age of Sustainable Development

10. O'Neill, S. & Nicholson-Cole, S. (2009). "Fear Won't Do It": Promoting Positive Engagement with Climate Change Through Visual and Iconic Representation.

11.Betsill, M.M. & Bulkeley, H. (2006). Cities and the Multilevel Governance of Global Climate Change.

12.Adger, W.N. et al. (2007). Assessment of adaptation practices, options, constraints and capacity.

13.Smit, B. (2000). Adaptation to Climate Change in the Context of Sustainable Development and Equity

14.Savinder Singh (2002).Climatology. Pravalika Publication.

15.IPCC Special Report on Global Warming of 1.5°C

16.Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014: Synthesis Report.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed
CO-1	Explain the components of climate system and earths energy balance system	U,R	PO 1,2 PSO-1,2
CO-2	Describe the drivers of climate change	R, U	PO 1 PSO 1,2,3
CO-3	Explain the impacts of climate change and mitigation	R,U	PO 1,2 PSO-1,6,5
C0 -4	To explain the international climate policy and governance	R,U,A	PO 2,3 PSO 1,5
CO -5	To explain the climate change awareness and case studies	U,Ap,An	PO 1,2 PSO -1,5,3

Course Outcome

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 3:0:1 (Lecture: Tutorial: Practical)

CO No.	CO	PO/PSO	0	Knowledge Category	Lecture (L)/Tutorial	Practical (P)	Open Ended
-----------	----	--------	---	-----------------------	-------------------------	------------------	---------------

					(T)		
CO-1	Explain the components of climate system and earths energy balance system	PO 1,2 PSO-1,2	U,R	F	10		3
CO-2	Describe the drivers of climate change	PO 1 PSO 1,2,3	R, U	F	12		3
CO-3	Explain the impacts of climate change and mitigation	PO 1,2 PSO- 1,6,5	R,U	F,C	18		3
C0 -4	To explain the international climate policy and governance	PO 2,3 PSO 1,5	R,U,A	F,M	10		3
CO - 5	To explain the climate change awareness and case studies	PO 1,2 PSO - 1,5,3	U,Ap,An	F,C	2	8	3

Mapping of COs with PSOs and POs :

	PSO1	PSO 2	PSO3	PSO4	PSO5	PSO6	PO 1	PO2	PO 3	PO4	PO5	PO6
CO 1	1	-	-	1	-	-	1	-	-	-	-	-
CO 2	1	2	-	-	-	-	-	1	-	-	-	-
CO 3	-	-	1	-	-	2	-	-	2	1	-	1
CO 4	1	_	2	1	_	_	-	_	_	1	_	-
CO 5	-	1	2	-	1	-	-	-	2	-	-	-

Correlation Levels:

Level	Correlation		
-	Nil		

1	Slightly / Low		
2	Moderate / Medium		
3	Substantial / High		

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1				\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		\checkmark

Discipline	ENVIRONMENTA	ENVIRONMENTAL SCIENCES					
Course Code	UK4SECENS200						
Course Title	Fundamentals of G	eospatial Te	chnology				
Type of Course	SEC						
Semester	IV						
Academic	200 - 299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	3	2 hours	-	2 hours	4		
Pre-requisites	1. Basic map reading	g and interpro	etation skills				
	2. Basic understanding	U 1 P	al and geogra	phical concep	ots involved		
	in geospatial technol	0,					
Course	This is a comprehen			•			
Summary	majors to the fascina						
	students explore a w	•		-			
		today. Each module covers key principles and includes practical lab					
	activities, allowing students to gain hands-on experience with relevant						
	software. Topics co		0 1	1	· 1		
	analysis techniques,						
	ethical consideration	s. Whether t	he student is	interested in e	environmental		

science, urban planning, or disaster management, this course provides a
solid foundation for understanding and utilizing geospatial technology.

Module	Unit		Hrs
Ι		Introduction to Geospatial Technology	8
	1	Introduction to geospatial technology (Definition, scope, and components)	1
	2	Geospatial Data Acquisition and Sources (data sources, collection	2
	3	methods, accuracy and precision, spatial data infrastructure) Digital Representations of the Real World (raster, vector, co-ordinates, GCS, PCS)	2
	4	Conceptualizations of Geographic Attributes (attributes, spatial relationships, metadata)	2
	5	Industry trends and advancements in geospatial technology	1
II		Remote Sensing Technology	12
	6	Basic principles of remote sensing (Electromagnetic Spectrum and Its Characteristics, Interaction of EMR with Atmosphere and Earth's Surface: Absorption, Reflectance and Scattering, Spectral Signature, atmospheric window,	3
	7	Remote sensing platforms (Types- Ground-based, airborne, and spaceborne, Orbits-polar, geostationary, Sensors-active, passive, MSS, Radar, Lidar, Resolution - Spatial, spectral, temporal, and radiometric).	3
	8	Aerial photography (Conceptual understanding, photogrammetry basics, Aerial Cameras and Sensors, image interpretation and geometric concepts)	3
	9	Basics of Digital Image Processing (Basics of image rectification and registration, Enhancement techniques (contrast adjustment, sharpening, etc.), Image classification methods (supervised, unsupervised) Accuracy assessment of classified images)	3
	10	Recent trends and applications in RS technology (high resolution sensors- optical and radar, real-time data, DEMs, AI-ML techniques)	2
III		Geographical Information System	10
	11	Basic principles of GIS (Components of GIS, Data Element and Data Structure, Fundamentals of Database concepts, Spatial vs. non-spatial data, Spatial data models – Raster and Vector, generic GIS workflow)	2
	12	Data input and geo-correction (Data Acquisition Through Scanners and Digitizers, Co-ordinate systems and map projections, Attribute data linking and topology, Spatial Data Quality: Accuracy, Precision, Error and Uncertainty)	2
	13	Database management system (Advantage of DBMS in context of GIS, RDBMS: Concepts and specific features, Basic Concepts of Geodatabase, Linkage between spatial and non-spatial data)	2
	14	Spatial data analysis and visualization (Raster Data Analysis Techniques – Local, Focal, Global and Zonal, Vector Data Analysis- Buffering, Overlay Analysis, Distance Measurements, Vector and Raster Data Query: Logical Expressions, Map layout & Geographic Visualization)	2

	15	Recent trends and applications in GIS technology (Web-GIS, Enterprise	2				
	_	GIS, Mobile GIS, 3-D Visualization, Open GIS, AI-ML integration)					
IV		Global Navigation Satellite System (GNSS):	10				
	16	Introduction to GNSS (Principles segments and Geopositioning - Basic	2				
	Concepts, Pseudo Range Measurement, Phase Difference Measurement)						
	17	GNSS constellations (GPS, GLONASS, Galileo, IRNSS- signals,	2				
		segments and services).					
	18	GNSS signals and errors (satellite orbits and clocks, tropospheric and	2				
		ionospheric effects, multipath error, relativity and timing delay)					
	19	Positioning Augmentation (Differential positioning, Real-time kinematic	2				
		(RTK) positioning, SBAS)					
	20	Recent trends and applications in GPS technology (AI-ML integration,	2				
		wearable technology, 5G, Augmented Reality etc.)					
V		Capstone Project and Practical Applications (Practicum)	8				
	21	Students will work on a geospatial project integrating concepts from all	2				
		modules.					
	22	Hands-on exercises using Open source software like QGIS, Maptitude	2				
		etc.					
	23	Presentations and discussions on real-world geospatial challenges.	2				
	24	Field visits and guest lectures by industry professionals	2				
	25	Open Ended	12				

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed
CO-1	Understand the Scope and Applications of Geospatial Technology, Demonstrate awareness of fundamental remote sensing and spatial analysis techniques	U, An	PO-1 PSO-1,2
CO-2	Interpret satellite imagery for land cover classification, change detection, and environmental monitoring.	U, An	PO-1 PSO-3,4
CO 3	Use geospatial tools to extract relevant information based on spatial relationships. Explore network datasets and understand their significance in geospatial analysis	U, Ap	PO-1,2 PSO-3,4
CO 4	Demonstrate proficiency in using Global Positioning System (GPS) devices for accurate location data collection and its utility in real world problem solving	U, An	PO-1,2 PSO-4,5
CO 5	Apply knowledge and skills acquired throughout the	U, Ap	PO-1,3

	course to address real-world spatial challenges. Gain	PSO-3,5,6
	insights into practical applications, industry trends,	
	and career opportunities in geospatial technology	

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

REFERENCES

- Geographic Information Science and Systems by Paul A. Longley, Michael F. Goodchild, David J. Maguire, and David W. Rhind. John Wiley & Sons, 2015 (4th edition).
- GIS and Spatial Analysis for the Social Sciences: Coding, Mapping, and Modeling by Robert Nash Parker and Emily K. Asencio. Routledge, 2019 (1st edition).
- 3. Remote Sensing and Image Interpretation by Thomas Lillesand, Ralph W. Kiefer, and Jonathan Chipman. John Wiley & Sons, 2015 (7th edition).
- 4. GIS for Environmental Management by Xuan Zhu. Routledge, 2019 (1st edition).
- Understanding GPS: Principles and Applications" by Elliott D. Kaplan and Christopher J. Hegarty. IEEE Explore, 2006 (1st edition).
- Introduction to Geospatial Technology, Bradley A. Shellito. Macmillan Learning, 2023, (6th edition).
- 7. Geospatial Technologies for Resources Planning and Management. Springer Nature, 2022.

CO No.	СО	PO/PS O addres sed	Cognitiv e Level	Knowledg e Category	Lecture (L)/Tutorial (T)	Practic al (P)	OE
CO- 1	Understand the Scope and Applications of Geospatial Technology, Demonstrate awareness of fundamental remote sensing and spatial analysis techniques	PO-1 PSO- 1,2	U, An	F, C	12	-	1
CO- 2	Interpret satellite imagery for land cover classification, change detection, and environmental	PO-1 PSO- 3,4	U, An	С, Р	12	4	3

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

	monitoring.						
CO 3	Use geospatial tools to extract relevant information based on spatial relationships. Explore network datasets and understand their significance in geospatial analysis	PO-1,2 PSO- 3,4	U, Ap	С, Р	12	4	3
CO 4	Demonstrate proficiency in using Global Positioning System (GPS) devices for accurate location data collection and its utility in real world problem solving	PO-1,2 PSO- 4,5	U, An	Р, М	12	4	3
CO 5	Apply knowledge and skills acquired throughout the course to address real-world spatial challenges. Gain insights into practical applications, industry trends, and career opportunities in geospatial technology	PO-1,3 PSO- 3,5,6	U, Ap	Р, М	-	4	5

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	1	-	-	-	-	1	-	-	-	-	-
CO 2	-	-	2	2	-	-	2	-	-	-	-	-
CO 3	-	_	2	1	-	-	2	3	-	-	-	_
CO 4	_			2	1	_	2	2				
		-		2						-		-
CO 5	-	-	2	-	1	1	1	-	2	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Internal Exam
- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Project evaluation
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark	\checkmark	

Discipline	ENVIRONMENTA	L SCIENC	E					
Course Code	UK4SECENS201							
Course Title	WATER QUALITY	Y MONITO	RING					
Type of Course	SEC							
Semester	IV							
Academic	200 - 299	200 - 299						
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	3	2 hours	-	2 hours	4			
Pre-requisites	1. Basics of Water qu	uality						
	2. Basics of water po							
Course	The course intends t	to prepare a	student in ac	quiring skills	s on the art of			
Summary	water monitoring a	nd quantitat	tive analysis	of critical	water quality			
	parameters. It also	•	-		•			
	important for water q							
	typically aims to eq	uip participa	ants with the	necessary k	nowledge and			

skills to effectively assess and manage water quality. The course may
include practical field exercises, laboratory sessions, case studies, and/or
internships to provide students with hands-on experience in water quality
monitoring and management practices.

Module	Unit	Content	Hrs	
Ι	Introduction to Hydrology		6	
	1	Water resource in India and Global Scenario	2	
	2	Hydrological Cycle	1	
	3	Precipitation- causes, variation, and measurement (practicum)	2	
	4	Evapotranspiration, measurement of evaporation and evapotranspiration	1	
II	Fresh Water Ecosystem and Marine Ecosystem			
	5 Characteristic of Fresh water and marine ecosystem			
	6	Chemistry of lakes, rivers, ponds, streams, lagoons, estuaries and oceans	1	
	7	Biological methods of Zonation- Microbial load and Aquatic biota	2	
	8	Chemistry - Zonation in marine ecosystem - marine biota	2	
III	III Sampling of water and waste water		12	
	9	Sample collection, Selection of sample containers,	2	
	10	Selection of sample containers (Grab, Composite, Integrated sampling)	2	
	12	Selection of type of filling the container (In – situ measurements)	2	
	13	Sampling techniques - basic concept of quantitative techniques	2	
	14	Instrument methods of analysis	2	
	15	Standard solutions	1	
	16	Water quality standards for different applications	1	
IV	Water quality and testing and analysis(Practicum)			
17 Types as		Types and methods of analysis	2	
	18	Physical parameters of water quality (Turbidity, Temperature, colour and taste, Electrical Conductivity)	3	
	19	Chemical Parameters (pH, Acidity, Alkalinity, Chloride, Sulphate, Fluoride, Hardness, Dissolved Oxygen, BOD and COD)	3	
	20	Analysis of Nutrients and Heavy Metals	3	
	21	Biological Parameters - Indicator Organisms, Coliforms and MPN	3	
V		Water Conservation Programmes	10	
	22	National Water Conservation Initiatives: Jal Shakti Abhiyan, Atal	3	
		Bhujal Yojana and National Water Mission		
	23	International Water Conservation Initiatives: World Wildlife Fund	4	
		(WWF) Water Conservation Campaigns and United Nations (UN)		
		Water Conservation Initiatives		
	24	The Water (Prevention and Control of Pollution) Act, 1974	3	
	25	Open ended	12	

Books and References:

- 1. Spellman FR. Handbook of Water and Wastewater Treatment Plant Operations. 3rd ed. Boca Raton: CRC Press; 2013
- 2. Alley ER. Water Quality Control Handbook. Vol. 2. New York: McGraw-Hill; 2007

- 3. Shah C. Which Physical, Chemical and Biological Parameters of Water Determine Its Quality?; 2017
- 4. Gray N. Water Technology. 3rd ed. London: CRC Press; 2017
- Chatterjee A. Water Supply Waste Disposal and Environmental Pollution Engineering (Including Odour, Noise and Air Pollution and its Control). 7th ed. Delhi: Khanna Publishers; 2001
- 6. Gray NF. Drinking Water Quality: Problems and Solutions. 2nd ed. Cambridge: Cambridge University Press; 2008
- 7. Spellman FR. The Drinking Water Handbook. 3rd ed. Boca Raton: CRC Press; 2017
- 8. APHA. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington, DC: American Public Health Association; 2005
- 9. Tomar M. Quality Assessment of Water and Wastewater. Boca Raton: CRC Press; 1999
- DeZuane J. Handbook of Drinking Water Quality. 2nd ed. New York: John Wiley & Sons; 1997
- 11. World Health Organization Guidelines for drinking-water quality. 4th ed. Geneva: WHO; 2011
- 12. McGhee TJ, Steel EW. Water Supply and Sewerage. New York: McGraw-Hill; 1991
- Dojlido J, Best GA. Chemistry of Water and Water Pollution. Chichester: Ellis Horwood Limited; 1993
- 14. Mara D, Horan NJ. Handbook of Water and Wastewater Microbiology. London: Elsevier; 2003

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed	
CO-1	Students should learn about key ecological processes such as nutrient cycling, energy flow, primary production, decomposition, and succession within aquatic ecosystems, and how these processes contribute to ecosystem functioning and resilience. Students should be well-equipped to contribute to efforts aimed at protecting and improving water quality in various settings, whether in the context of environmental research, regulatory compliance, water resource management, or community engagement.		PSO-1,2	
CO-2	Students should understand the importance of aquatic ecosystems in providing essential ecosystem services, such as water purification, flood regulation, fisheries, recreational opportunities, cultural values, and climate regulation, and recognize the consequences of ecosystem degradation for human well-being Participants should be able to describe the diversity of organisms inhabiting aquatic ecosystems, including		PSO 2, 3	

		1	
	plants, animals, microbes, and algae, and understand the ecological interactions among species, such as competition, predation, symbiosis, and mutualism.		
CO-3	Students should be proficient in various methods for collecting water samples from different sources, such as rivers, lakes, groundwater, and wastewater treatment plants, while ensuring sample integrity and representativeness. Students should be able to effectively communicate water quality sampling and monitoring findings to diverse stakeholders, including policymakers, community members, industry representatives, and other relevant audiences, through written reports, presentations, and other forms of outreach.	Ар	PSO 3, 4, 5
CO-4	Students should learn about key physical, chemical, and biological parameters used to assess water quality, including temperature, pH, dissolved oxygen, turbidity, nutrients, metals, pathogens, and others Students should gain practical experience in laboratory and field-based techniques for analyzing water samples, including spectrophotometry, titration, chromatography, microbiological assays, and sensor technologies.	An, E	PSO 3, 5
CO-5	Students should learn to engage with diverse stakeholders, including government agencies, non- profit organizations, community groups, and the public, to foster collaboration, partnerships, and collective action towards water conservation goals. Students should understand how water quality monitoring data can inform decision-making processes related to environmental protection, resource management, urban planning, and public health.	Ap, C	PSO 7, 9

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 2:0:1 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PS O	Cognitiv e Level	Knowledge Category	Lecture (L)/Tutori al (T)	Practica l (P)
1	Gather information about Total Budget particularly in India and world as whole	PSO- 1,2	U	F, C	8	2

2	Explain diversity and interaction in marine and fresh water ecosystems	PSO 2, 3	R,U	Р	6	4
3	Knowledge about water sampling methods for various physical Chemical and Biological analysis	PSO 3, 4, 5	Ap,	С	20	4
4	Students should well be equipped with hands on practical experience in laboratory and field- based techniques	PSO 3, 5	An, E	Р	6	4
5	Enable the students to addressing water challenges in the face of increasing population growth, urbanization, climate change, and resource constraints.	PSO 7, 9	Ap, C	Р, М	15	4

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	2	-	-	-	-	2	3	-	-	-	-
CO 2	2	3	3	-	-	-	2	-	-	-	-	-
CO 3	3	3	1	-	-	-	2	-	-	-	-	-
CO 4	-	-	-	-	-	-	3	3	-	-	-	-
CO 5	2	3	-	-	-	-	2	2	-	-	2	-
CO 6	3	2	-	-	-	-	2	3	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil

1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar Midterm Exam •
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	\checkmark

Discipline	ENVIR	ENVIRONMENTAL SCIENCE					
Course Code	UK4VA	UK4VACENS200					
Course Title	WATE	R CONSERVATIO	N METHO	DS			
Type of Course	VAC						
Semester	IV						
Academic Level	200-299	200-299					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week		
	3	2 hours	-	2 hours	4		
Pre-requisites	resource	ents should have the es and their availabi c knowledge about d	lity.	C			
Course Summary	method Student differen	This course provides an overview of various water conservation methods and techniques aimed at sustainable water management. Students will learn about the importance of water conservation, explore different strategies for reducing water consumption, and examine case studies of successful water conservation initiatives.					

Module	Unit	Content	Hrs		
Ι		Introduction to Water Conservation	10		
	1	Importance of water conservation	2		
	2	Global water challenges and trends	2		
	3	The role of water conservation in sustainable development	2		
	4	Behavioural approaches to water conservation	2		
	5	Overview of water resources management	2		
Π		Water Use Efficiency, Pattern and Trends	10		
	6	Water use efficiency concepts and measures	2		
	7	Technologies for improving water use efficiency (e.g., low-flow fixtures, drip irrigation)	2		
	8	Assessment of water use patterns	2		
	9	Factors influencing water consumption	2		
	10	Scientific and nature based approaches to promoting water conservation	2		
III					
		Recycling			
	11	Sustainable Watershed Approach & Watershed Management Practices	3		
	12	Principles and techniques of rainwater harvesting	3		
	13	Grey water recycling systems and applications	2		
	14	Case studies of successful rainwater harvesting and greywater recycling projects	2		
IV		Sustainable Agriculture and Irrigation Practices	5		
	15	Water-efficient irrigation techniques (e.g., drip irrigation, sprinkler irrigation)	1		
	16	Soil moisture management and crop water requirements	1		
	17	Integrated approaches to sustainable agriculture and water conservation	2		
	18	Crop selection and rotation for water conservation	1		
V		Urban, Industrial and Commercial Water Conservation	13		
	19	Urban water demand management strategies, Economic incentives for promoting water conservation in the industrial and commercial sectors	2		

20	Water-efficient landscaping and urban design	1
21	Policy and Regulations for Water Conservation	2
22	Water conservation practices in industries and commercial establishments (Field Visit)	4
23	Water reuse and recycling technologies (Field Visit)	4
24	Open Ended	12

References

- 1. Monzur, A,I.(2013). Water Conservation Practices, Challenges and Future Implications. Nova Science Publishers.
- 2. Gumel,S.,Venkataraman.,Sastry.,Joshi,B.P.(2019).Manual of soil and Water Conservation Practices. Publisher CBSPD/Oxford.
- 3. Gleick, P. H. (2019). Water: the basics Oxford University Press
- 4. UNESCO. (2018). Water for a sustainable world United Nations Educational, Scientific and Cultural Organization
- 5. Ahuja, S. (Ed.). (2018). Traditional water management practice
- 6. Liu, G. D., & Ou, X. (Eds.). (2020). Smart Water Management Techniques and Applications.
- 7. Sharma, P. K. (Ed.). (2017). Rainwater Harvesting and Management.
- 8. Biswas, A. K. (Ed.). (2019). Water Policies and Institutions in India.
- 9. Madramootoo, C. A., & Fyles, H. (Eds.). (2017). Water Management and the Environment: Case Studies.
- 10. Varis, O., & Tortajada, C. (Eds.). (2019). Management of Transboundary Rivers and Lakes
- 11. Saeid ,E.(2021).Handbook of water harvesting and conservation:Basic concepts and funamentals. John Wiley &Sons Ltd.
- 12. Balaram, P. (2007). Environmental Chemistry, I.K. International Pvt Ltd.

-

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed
CO-1	Explain the importance of water conservation	U	PO1,2 PSO-1,2,5
CO-2	Describe the water use efficiency and technologies and factors influencing water consumption	R, U	PO1 PSO-1,2,6
CO-3	Explain the watershed management and water harvesting techniques.	R,U,Ap	PO 1,2 PSO-1,2,3,5,3

CO-4	Explain the sustainable agriculture and irrigation practices	R,U,Ap	PO2 PSO-5,3
CO-5	Describe the urban and industrial and commercial water conservation	R,U,Ap	PO 1,2 PSO-3,4,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 2:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitiv e Level	Knowledg e Category	Lecture (L)/Tutoria l (T)	Practica l (P)	Open Ende d
CO -1	Explain the importance of water conservation	PO1,2 PSO- 1,2,5	U	С	10		3
CO -2	Describe the water use efficiency and technologies and factors influencing water consumptio n	PO1 PSO- 1,2,6	R, U	С	10		3
CO -3	Explain the watershed management and water harvesting techniques.	PO 1,2 PSO- 1,2,3,5, 3	R,U,Ap	С	12		3
CO -4	Explain the sustainable agriculture and irrigation practices	PO2 PSO-5,3	R,U,Ap	F	12		3

CO Describe the -5 Urban and industrial and commercial water conservation	PO 1,2 PSO- 3,4,5	R,U,Ap	Р	8	8	3
---	-------------------------	--------	---	---	---	---

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	1	-	-	1	-	-	-	2
CO 2	2	1	-	-	1	-	-	1	1	-	-	
CO 3	-	-	1	-	2	-	2	1	-	-	-	1
CO 4	-	-	-	1	-	-	1	-	1	-	1	-
CO 5	-	1	-	1	-	-	2	-	-	-	1	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam Assignment		Project Evaluation	End Semester Examinations		
CO 1	\checkmark			\checkmark		

CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark	\checkmark	\checkmark

Discipline	ENVIRO	NMENTAL SCH	ENCE						
Course	UK4VAC	ENS201							
Code									
Course	GREEN O	CHEMISTRY							
Title									
Type of	VAC								
Course									
Semester	IV	IV							
Academic	200 - 299.								
Level									
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week				
Details		week	per week	per week					
	3	2 hours	-	2 hours	4				
Pre-	Students s	hould know about	t the basic env	vironment frien	dly products				
requisites									
Course	In this cou	urse students will	understand th	e importance o	of green chemistry in				
Summary	promoting	sustainable and e	nvironment fri	endly chemica	l processes. They will				
					en chemistry, aiming				
					ous substances. This				
		1		•	zing chemicals that				
					of green solvents. The				
	students w	vill also understan	d the clean tec	chnology susta	inable development.				

Module	Unit	Content	Hrs						
Ι		Introduction to Green Chemistry	8						
	1	Definition, history of the development of Green Chemistry	2						
	2	Objectives of Green Chemistry and need for Green Chemistry							
	3	Framework of green chemistry	2						
	4	Limitations/ Obstacles in the pursuit of the goals of Green	2						
		Chemistry							
II		Principles of Green Chemistry	6						
	5	12 Principles of green chemistry	1						
	6	Concept of atom economy.	1						

	7		1
	7	Tools of green chemistry	1
	8	Green catalysts: Phase Biocatalysts. Energy requirements for	2
		reactions – alternative sources of energy: use of microwaves and	
	9	ultrasonic energy Zero waste technology	1
III	9	Green Chemistry in Agriculture and Environment	14
111	10	Alternative feed stocks- Alternative feed stocks starting material,	2
	10	Alternative Reagents, Advantages of alternative catalyst.	2
	11	Agrochemicals- Introduction, Biocides: types and applications, Organic Insecticides – Fungicides- Insecticides	2
	12	Types Plant origin Insecticides – Neem, Nicotine, Pyrethrum & rotenone Inorganic Insecticides – Arsenic	2
	13	Pest Management- Pest Management, Cultural methods, Field sanitation, Crops rotation	
	14	Trap crops, secondary Crops, Sowing time, Tillage practices	2
	15	Areas of green chemistry, Evaluation for Chemical Reaction Efficiency	2
	16	Green Solvents/ reaction Media, Catalysis and Bio catalysis.	2
		Microwave oven as a reactor, Theory of Microwave Heating.	
IV		Clean Development Technology	6
	17	Clean development mechanisms	1
	18	role of industry; reuse, reduce and recycle	1
	19	Raw material substitution; wealth from waste;	1
	20	carbon credits, carbon trading, carbon sequestration, eco labelling.	1
	21	Oxidation technology for- Cavitation, Fenton chemistry, photo catalysis and hybrid processes.	2
V		Design of Green Synthesis	26
	22	Designing a Green Synthesis using green chemistry principles, Selecting non-toxic reagents, Minimizing waste, Energy efficiency,	4
	23	Use of renewable feed stocks, real time analysis for pollution prevention.	2
	24	Case studies and field visit (practicum)	8

References

- Ahluwalia, V.K. (2015). Green Chemistry. Ane Books Pvt .Ltd.
 Aide, S., Raul R.H. (2021) Green Chemistry and Its Applications. CRC Press

- 3. Calow, P.(1994). Hand book of Eco toxicology. Blackwell Scientific Publications, London.
- 4. Klaassen C.D.and Watkins, J.B. (2003). Essentials of Toxicology, McGraw Hill Professional, New Delhi.
- 5. Mukesh, D., Anil K.K.(2007). Green Chemistry and Processes. Academic Press.
- 6. Pandey, K., Sukhla, J.P and Trivedi, S.P. (2006). Environmental Chemistry, Lewis Publishers, New York.
- 7. Paul T,A., John C. W. (1998).Green Chemistry: Theory and Practice .Oxford University Press.
- 8. Reshmi Sanghi, M.M Srivastava. (2003).Green Chemistry Environment Friendly Alternatives

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Understand the definition, history and goals of green chemistry.	U	PO 1 PSO-1,2
CO- 2	Explain the principles of green Chemistry	R, U,Ap	PO 1,2 PSO-5,3
CO- 3	Explain the importance and applications of green chemistry in agriculture and environment.	R,U,Ap,An	PO 1,3 PSO -5,3
CO- 4	Explain the clean development technology	R,U,Ap	PO 1 PSO-2,5,6
CO- 5	Understand the green designing using green chemistry principles	R,U,Ap,An	PO 1,2 PSO-2,6,3,6

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PS O	Cognitive Level	Knowledg e Category	Lecture (L)/Tutoria l (T)	Practica l (P)	Open Ende d
CO -1	Understand the definition, history and goals of green chemistry.	PO 1 PSO-1,2	U	F	10		3

CO -2	Explain the principles of green Chemistry	PO 1,2 PSO-5,3	R, U,Ap	С	12		3
CO -3	Explain the importance and applications of green chemistry in agriculture and environment	PO 1,3 PSO - 5,3	R,U,Ap,A n	С	14		3
CO -4	Explain the green clean technology	PO 1 PSO- 2,5,6	R,U,Ap	F,C	10		3
CO -5	Understand the green designing using green chemistry principles	PO 1,2 PSO- 2,6,3,6	R,U,Ap,A n	F	6	8	3

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2	2	-	-	_	1	-	-	-	-	-	1
CO 2			1	-	2	2	-	-	1	-	-	-
CO 3	-	-	2	-	2		-	-	-	-	-	-
CO 4	-	2	-	-	1	2	_	-	-	1	-	-
CO 5	-	2	1	-	-	2	2	-	1	2	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1				\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark			\checkmark

Discipline	ENVIRONMENTA	L SCIENCI	E					
Course Code	UK4VACENS203	UK4VACENS203						
Course Title	ENVIRONMENTA	L GOVERN	NANCE					
Type of Course	VAC							
Semester	IV							
Academic	200-299	200-299						
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	3	3 hours	-	-	3			
Pre-requisites	1. Basic knowledge	on environm	ental laws an	d policies				
Course	Environmental Gove	ernance add	resses some	of the key e	environmental			
Summary	challenges of our time, exploring the connections between environmental							
	governance and polic							
	of resources. The co	urse is ideal	for pursuing	g a career in e	environmental			

regulation and management, those wishing to conduct further research on
these topics, and environmental professionals wishing to deepen their
knowledge. In this course we examine local, national and international
environmental governance issues, with a focus on ethical principles,
theories and frameworks that may be used to address a wide range
of problems relating to environment and development issues.

Module	Unit		Hrs
Ι		Environmental Policy in India	8
	1	Environmental Legislation Protection Laws in India - Ancient and Pre-	2
		Independence	
	2	Environmental Legislation in Post – Independence Period,	2
	3	Constitutional and Legislative Provisions in India. Fundamental	2
		principle; 42nd Amendment Act; Direct Principles Fundamental Rights	
	4	Environmental Legislations	2
Π		Environmental Laws in India	8
	5	Legal, administrative and constitutional provisions for environmental	2
		protection in India	
	6	Constitutional and Statutory laws in India	2
	7	Statutory protection of human environment–Factories actof1948,	2
		MotorVehicleAct, the mines and minerals act of 1957, Hazardous Waste	
		Legislation for pollution abatement	
	8	Anti Pollution Acts – The Water Act, 1974, The Air Act 1981, The	2
		Environment Protection Act, 1986, The national environment appellate	
		authority act of 1997	
Ш		Forest and Wild Life Protection Act and Rules	7
	9	Forest policies and Legislation in Pre – independence Period	1
	10	Wildlife and Biodiversity: IFA, 1927; WLPA, 1972; FCA, 1980;	3
		Biological Diversity Act, 2002; Forest Rights Act, 2006.	
	11	Strategies for conservation–Project Tiger, Elephant, Rhino etc.	2
	12	International Organisation	1
IV		Environmental Movements in India	5
	13	Chipko movement	1
	14	Narmada Bachao Andolan	1
	15	Appiko movement	1
	16	Tehri Dam, Almetti Dam	1
	17	Silent Valley movement	1
V		International Environmental Conventions and Treaties	17
	18	Stockholm Conference, 1972; Nairobi Declaration, 1982; Rio Conference,	2
		1992; Rio +5; Rio +10	
	19	Montreal Protocol, 1987; Kyoto protocol 1997	1
	20	Vienna Convention for the protection of ozone layer, 1985	1
	21	Conference of Parties	1
	22	Basel Convention, 1989	1
	23	Convention on Biological Diversity	1

24	Convention on Climate Change - UNFCC		
25	Open ended	9	

REFERENCES

- 1. Divan, Sand Rosencranz.A. 2001. Environmental Law and Policy in India. Oxford University Press, NewDelhi
- 2. Gurdeep Singh. 2005. Environmental Law in India. Mc Millan, NewDelhi
- 3. Shyam Divan and Armin Rosencranz 2002. Environmental Law and Policy in India. 2nd Edn. Oxford University Press, New Delhi
- 4. Upadhyay S. and Upadhyay V. (2002) Hand Book on Environmental Law- Forest Laws, Wildlife Laws and the Environment; Vols. I, II and III, Lexis Nexis-Butterworths-India, New Delhi
- 5. Kamala S. and Singh U.K. (eds.) (2008) Towards Legal Literacy: An Introduction to Law in India, Oxford, New Delhi
- 6. Birnie P. (2009) et al., International Law and the Environment, 3rd ed., Oxford
- 7. Guha R. (2000) Environmentalism: A Global History, Oxford, New Delhi
- 8. Philippe Sands and Jacqueline Peel, Principles of International Environmental Law (4th ed., 2018).
- 9. Shibani Ghosh ed., Indian Environmental Law: Key Concepts and Principles (2019).
- 10. P. Leelakrishnan, Environmental Law in India (5th ed., 2019)

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	To make students aware of various policies and regulations available for environmental protection.	U	
CO-2	To show students the various environmental protection movements in the past.	R	
CO-3	To make students aware of the translational environmental policies	U	
CO-4	Get a thorough and in-depth understanding of Environmental Laws and policies	U	
CO-5	Analyze the environmental protection movements and environment related legal regulatory framework in India.	An	

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 3:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	To make students aware of various policies and regulations available for environmental protection.			F, C		
2	To show students the various environmental protection movements in the past.			Р		
3	To make students aware of the translational environmental policies					
4	Get a thorough and in-depth understanding of Environmental Laws and policies					

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	2		3	-	3	4
CO 2	2	3	-	-	-	-	-	-	3	-	-	4
CO 3	-	-	1	-	-	-	-	3	-	-	3	-

CO 4	-	-	2	3	-	-	-	-	3	-	-	4
CO 5	-	1	-	-	-	-	-	3	-	-	-	-
CO 6	-	-	-	3	-	-	-	3	-	-	-	4

Correlation Levels:

Level	Correlation			
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

SEMESTER V

Discipline	ENVIRO	NMENTAL	SCIENCES					
Course Code	UK5DSC	UK5DSCENS300						
Course Title	ENVIRO	NMENTAL	IMPACT AS	SSESSMENT				
Type of Course	DSC / DS	SE / MDC / S	EC / VAC / A	EC				
Semester	V							
Academic Level	300 - 399							
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week			
	4	4 hours	-		4			
Pre-requisites				e	the environmental			
Course Summary	of activiti significan various st of a deve Clearance competen	issues caused by developmental activities The course is intended to give learners an understanding of the impacts of activities on the environment and the mechanisms to measure the significance of those. This gives an idea of the process of EIA and the various stages of this. It explains what a standard Terms of Reference of a developmental activity is and the processes of Environmental Clearance. The course is structured in a way to make the learner competent to get a job in the State Environment Impact Assessment Authority and in various projects.						

Module	Unit	Content	Hrs				
Ι		Introduction to Environmental Impact Assessment (EIA)	13				
	1	Development and associated Environmental Degradation	2				
	 History of EIA and EIA notification Stages of EIA (Pre-study period: Screening, scoping, assessment, Study period: preparation of EIS. Post-study period: review, decision making, and monitoring) 						
	4	Types of EIA (preliminary, rapid, comprehensive)	2				
	5	Participants of EIA	2				
	6	Environmental Impact characteristics (types and nature, magnitude, and significance, extent, duration, uncertainty, reversibility)	2				
II		Process of EIA	15				

	7	Description of project and project alternatives by the project proponent	2			
	8	Environment Attributes: air, water, noise, land and soil	2			
	9	Baseline Data collection	2			
	10	Screening, initial environmental examination,	2			
	11	Scoping	1			
	12	Draft Environmental Impact Statement, public participation, Final EIS	2			
	13	Reviewing and decision-making	2			
	14	Monitoring, impact management, EIA audit, and evaluation	2			
		Environmental Impacts	8			
III	15	Impact identification and methods of impact identification (ad hoc, checklist, matrix, network, overlay)	2			
	16	Impact prediction and predictive methodologies (professional judgment, system models, physical models, empirical models, mathematical models	2			
	17	Impact evaluation (assessment), Impact mitigation	2			
	18	Social Impact Assessment, Health Impact Assessment, Strategic Impact Assessment (SIA)	2			
IV	Terms of Reference (TOR) and EMP					
	19	The general format of TOR as per MoEF&CC	3			
	20	Environmental Management Plan	3			
V		Developmental Projects and Case Studies	18			
	21	Categories of projects	1			
	22	Environmental Clearance in India	1			
	23	Environmental Appraisal Committee (EAC)	2			
	24	Functions of State Environment Impact Assessment Committee and Post Environmental Clearance Monitoring, Transferability of clearance	2			
	25	Open-ended	12			

References

- 1. Anji Reddy Mareddy, Butterworth-Heinemann, 2017. Environmental Impact Assessment.
- 2. Assessment. IK International Publishing House Pvt. Ltd.
- 3. Bregman, J.I. and Mackenthum, K.M. 1992. Environmental impact statements. Chelsia Michigan: Lewis.
- 4. Canter, W. Larry. 1996. Environmental impact assessment. McGraw-Hill International editions. 660p.
- 5. Fortlage, C. 1990. Environmental assessment: a practical guide. Aldershot: Gower
- 6. Glasson J, Taylor and Francis, 2019. Introduction To Environmental Impact Assessment 5Ed.
- 7. Glasson, J; Therivel, R and Chadwick, Al. 1999. Introduction to environmental impact assessment. UCL Press. 496p.
- 8. Glasson, J., & Therivel, R. (2013). Introduction to environmental impact assessment. Routledge.
- 9. Khandeshwar, S.R., Raman, N.s., Gajbhiye, A.R (2019). Environmental Impact
- 10. Morris, P and Therivel, R. 1995. Methods of environmental impact assessment. London. UCL press.
- 11. Munn, R.E.1979. Environmental impact assessment: principles and procedures, 2nd Edn. New York: Wiley.
- 12. Sabu Joseph and Arunkumar K S. 2022. Environmental Impact Assessment of Developmental Projects

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe the history of EIA, explain the various types, stages, and characteristics of EIA	R, U	PSO-1,2 PO-1
CO-2	Explain the concept of project and project alternatives, and environmental attributes, and will be able to describe the process of Environmental Impact Assessment.	R, U	PSO-1,2,3,4 PO-1,2
CO-3	Identify, predict, and evaluate impacts	Ар	PSO-2,3,4 PO-1,3,6
CO-4	List various categories of project and identify which of those need an EIA	Ар	PSO-3,4 PO-2,3,6
CO-5	Describe the functions of the State Environment Impact Assessment Committee, Environmental Clearance in India and the functions of Environmental Appraisal Committee	R, Un	PSO-1,2,5 PO- 1,6,8

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Describe the history of EIA, explain the various types, stages, and characteristics of EIA	PSO-1,2 PO-1	R, U	F, C	10	3
CO-2	Explain the concept of project and project alternatives, and environmental attributes, and will be able to describe the process of Environmental Impact Assessment.	PSO- 1,2,3,4 PO-1,2	R, U	F,C	12	3
CO-3	Identify, predict, and evaluate impacts	PSO- 2,3,4 PO-1,3,6	Ар	С,Р,М	8	0
CO-4	List various categories of project and identify which of those need an EIA	PSO-3,4 PO-2,3,6	Ар	С,Р,М	4	2
CO-5	Describe the functions of the State Environment Impact Assessment Committee, Environmental Clearance in India and the functions of Environmental	PSO- 1,2,5 PO- 1,6,8	R, Un	F,C	6	-

Appraisal Committee					
------------------------	--	--	--	--	--

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	3	-	-	-	-	3	-	-	-	-	-
CO 2	2	3	2	2	-	-	3	3	-	-	-	-
CO 3	-	2	2	3	-	-	3	-	3	-	-	3
CO 4	-	-	3	3	-	-		3	3	-	-	2
CO 5	2	2	-	-	1	-		3	3	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- § Quiz / Assignment/ Quiz/ Discussion / Seminar
- § Midterm Exam
- § Field Report
- § Final Exam

Mapping of COs to Assessment Rubrics

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark

CO 4	\checkmark		\checkmark
CO 5	\checkmark		\checkmark
CO 6		\checkmark	

Discipline	ENVIR	ENVIRONMENTAL SCIENCE					
Course Code	UK5DS	SCENS301					
Course Title	SUSTA	INABLE DEVELO	OPMENT				
Type of Course	DSC						
Semester	V						
Academic Level	300 - 39	99.					
Course Details	Credit	Lecture per week	Tutorial	Practical	Total Hours/Week		
			per week	per week			
	4	4 hours	-	-	4		
Pre-requisites	Prelimi	nary knowledge on a	environmen	tal policies			
Course Summary	understa social, a and skil This co be asso environ	Preliminary knowledge on environmental policies The course aims to provide students with a comprehensive understanding of the complex interconnections between environmental, social, and economic systems, and to equip them with the knowledge and skills needed to address sustainability challenges effectively. This course details the various aspects of sustainability. Topic comes to be associated with several normative principles that now guide environmental management practices and international law but increasingly stretch to other issue areas.					

Detailed Syllabus:

Module	Unit	Content	Hrs						
Ι		Introduction to Sustainable Development	8						
	1	Definition and need for Sustainable Development	2						
	2	listory of Sustainable Development (Brundtland, Rio, Millennium							
		Development Goals, Sustainable Development Goals,)							
	3	Concept of carrying capacity and public participation for sustainability	2						
	4	Dimensions of sustainability	2						
II		Sustainable livelihood	10						
	5	Inequities in quality of life (pollution, poverty and hunger)	2						
	6	Sustainable livelihood framework (health, education and empowerment of women, children and indigenous people)	2						
	7	Measuring sustainability (Indicators of sustainability)	2						
	8	Sustainable agriculture: Food security and nutrition	2						
	9	Sustainable forestry and fisheries	2						
III		Socio-economic sustainability	10						

	10	Biodiversity and sustainability (Ecotourism and ecosystem integrity)	2				
	11	Urbanization and sustainability (sustainable habitats, green buildings, sustainable transportation)	2				
	12	Sustainable consumption and production	1				
	13	Sustainable energy	1				
	14	Sustainable climate (climate change adaptation and mitigation)	2				
	15	Sustainable income and labour	2				
IV		Sustainable Development Models	10				
	16	Three Pillar Basic Models	2				
	17	Alternative Prism Models of Sustainability					
	18	The Egg of Sustainability Model					
	19	Atkisson's Pyramid Model	2				
	20	Amoeba Model	2				
V		Future in Sustainable Development	12				
	21	Strategies and current practices of sustainability in global, regional and national context	3				
	22	Sustainability and Corporate Social/ Environmental Responsibility with a case study (Industrial Visit) - Practicum	3				
	23	Approaches in measuring sustainability, their pros and cons (ecological footprint, Human Development Index, Human Development Report)	3				
	24	International and National efforts for SDGs	3				
	25	Open ended	12				

Books and References:

- 1. Bharucha, E. 2021. Text Book of Environmental Studies. University Press (India) Pvt. Ltd.,
- 2. Chiras, D.D. (2009). Environmental science. Jones & Bartlett Publishers.
- 3. Etherington, J.R. (1975). Environment and plant ecology. John Wiley & Sons Ltd.
- 4. Mishra D.D, 2010, Fundamental Concepts in Environmental Studies; S Chand & Company
- 5. Rajagopalan, 2015, Environmental studies, Oxford University Press
- 6. Mahua Basu and Xavier Savarimuthu SJ, 2017, Cambridge University Press
- 7. Purnima Das and Chubanaro Aier, 2023, Environmental Studies: for BA, B. Com and BSc. 1st semester of Nagaland university, Global net Publications
- 8. Katar Singh and Anil Shishodia 2007, Environmental Economics; Theory and Application, Sage Publication.
- 9. Arvindari Upadhyay, 2021, Environmental Impact and Risk Assessment, Academic Aspirations, New Delhi.

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed

CO- 1	The module provides a Broad-based approach that supports sustainable development in terms of integration and coordination, ecosystem-based management, environmental protection, carrying capacity and sustainable livelihood	U	PSO-1,2
CO- 2	Our students need to conserve the vital resources of air, land and water. We want to reduce our negative environmental impacts, and work in collaboration with partners and local communities to enhance the natural resources we all rely on.	R, U	PSO 3,4. 5
CO- 3	Operational strategies of the module create an effective governance framework, including: policy and institutional reforms, multi stakeholder participation, functional partnerships and networking, capacity development, information and knowledge management, coastal strategy development and monitoring and evaluation.	U, E	PSO 3,4, 6
CO- 4	Study of sustainable development models endeavour to create comprehensive solutions at all levels, ranging from local to global. Their planning should take into account the coexistence and interaction of the three capitals: Economic, social and environmental.	R, U, An	PSO 3, 6. 7, 8
CO- 5	Provide an understanding of the ethical responsibility, towards present and future generations. An understanding of the social responsibility as a future professional and as a citizen. Knowledge of global trends that impact the life quality of present and future generations	A, An	PSO 6, 8, 9

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Understanding the history and evolution of Sustainable development	PSO 1,2		F, C	10	-
2	Analyse interdisciplinary perspectives of sustainable livelihood	PSO 3,4. 5		Р	6	-

3	Develop skills in systems thinking to understand the interconnectedness of social, economic, and environmental systems for intervention towards sustainability.	PSO 3,4, 6		12	-
4	Equipped to contribute to sustainable development efforts in various professional roles.	PSO 3, 6. 7, 8		6	-
5	Explore strategies for achieving economic sustainability through green growth, circular economy approaches, sustainable business practices, and technology transfer, balancing economic development with environmental protection and social well-being			12	-

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	3	-	-	-	-						
CO 2	3	3	-	-	-	-						
CO 3	-	-	3	-	2	2						
CO 4	3	3	-	2	-	-		2				
CO 5	-	1	-	-	-	-		3	3			

CO 6	3	3	-	-	-	-			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4				\checkmark
CO 5		\checkmark		\checkmark

Discipline	ENVIRONMENTAL S	CIENCES			
Course Code	UK5DSCENS302				
Course Title	ENVIRONMENTAL H	AZARDS AN	D RISK MAN	AGEMENT	
Type of Course	DSC				
Semester	V				
Academic Level	300-399				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5

Pre-requisites	 Basic knowledge of physical, biological, chemical, and geological concepts related to the environment. An understanding of the ethical considerations related to environmental hazard issues and awareness of environmental policies and regulations
Course	In this course, the students will explore the concept of environmental
Summary	hazards, including their causes, impacts, and interconnectedness. They will analyze significant environmental disasters from the past by assessing and quantifying risks associated with them. They will also learn about strategies to mitigate and manage these risks effectively.

Module	Unit	Content	Hrs
I		Introduction to Environmental Hazards:	12
	1	Understanding the concept of environmental hazards (overview, definition and historical examples)	2
	2	Types of environmental hazards (classification-natural and anthropogenic, geological, biological, meteorological, climatological, technological).	3
	3	Risk assessment and management strategies (Risk analysis and assessment methods, Strategies for hazard mitigation and prevention)	2
	4	Role of government agencies and policies (International and national - UNDRR and The Sendai framework, Disaster Management Authorities at the central and state levels, DM Act, 2005)	3
	5	Case studies of significant environmental hazards	2
П		Climatological and Meteorological Hazards	12
	6	Droughts, sea level fluctuations and extreme temperatures- their causes, effects and mitigation strategies	3
	7	Floods, Cyclones and Cloud bursts - their causes, effects and mitigation strategies	3
	8	Climate change as a global environmental hazard.	2
	9	Ozone depletion and its consequences	2
	10	Risk and vulnerability assessment for climatological and meteorological hazards	2
III		Geological and Technological Hazards	12
	11	Earthquakes, landslides, and volcanic eruptions- their causes, effects and mitigation strategies	3
	12	Industrial accidents, fire and chemical hazards- their causes, effects and mitigation strategies	3
	13	Hazardous waste management and disposal.	2
	14	Urban planning for hazard resilience.	2
	15	Risk and vulnerability assessment for geological and technological hazards	2
IV		Biological Hazards	12

	16	Infectious diseases and their environmental origins in the context of global pandemics. (types, routes of exposure and mitigation strategies)	3
	17	Zoonotic diseases and their impact on human populations, in the context	3
		of global pandemics. (types, routes of exposure and mitigation strategies)	
	18	Bioterrorism and biosecurity measures. (bioterrorism-types and	2
		motivation, biosafety levels, laboratory practices)	
	19	Ecological factors influencing disease transmission.	2
	20	Risk and vulnerability assessment for biological hazards	2
V		Practicum	12
	21	Field Surveys and Hazard Mapping in their locality using citizen science	3
		apps	
	22	Analyze historical data and interview local residents to understand	3
		hazard patterns	
	23	Case study preparation on different types of hazards	3
	24	Expert sessions from industries and governmental/legal agencies	3
	25	Open Ended	15

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed
CO-1	Conceptual Understanding of Environmental Hazards, Identify and describe various types of environmental hazards, Analyze real-world examples of environmental disasters	U, An	PO-1 PSO-1,2,3
CO-2	Understanding Air Pollution and Its Impact, Comprehend the science behind climate change, Explore the role of greenhouse gases in altering the Earth's climate	R, U, An	PO-1 PSO-1,2
CO 3	Explore the underlying processes that lead to different geological and technical hazards, Understand regulations and best practices for handling hazardous wastes, Integrate hazard mapping, land-use zoning, and building codes to reduce vulnerability	U, Ap	PO-1,2 PSO-1,2,5
CO 4	Investigate the role of environmental factors in disease transmission, Explore biosecurity protocols to prevent unauthorized access to dangerous pathogens, and Practically apply the knowledge to local-level real-life situations to evaluate the risk factors involved.	Ev, Cr	PO-3,8 PSO-3,4,3

CO 5	Learn about field surveys, their importance, and how they contribute to hazard mapping, Explore community-based resilience measures and Develop policy recommendations based on survey results and expert insights	Un, An, Cr	PO-1,3 PSO-3,4,3	
------	--	------------	---------------------	--

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

References

- 11. Environmental Hazards: Assessing Risk and Reducing Disaster, Prof. Keith Smith, Routledge. 2013 (2nd edition).
- 12. Biological and Environmental Hazards, Risks, and Disasters, Ramesh Sivanpillai, Elsevier. 2018 (1st edition).
- Environmental Health Theory and Practice. Volume 1: Basic Sciences and their Relations to the Environment. Ramesha Chandrappa, Diganta Bhusan Das. Springer Link. 2019 (1st edition).
- 14. Environmental Hazards and Disasters: Contexts, Perspectives, and Management, Bimal Kanti Paul, John Wiley & Sons. 2016 (1st edition).
- 15. Routledge Handbook of Environmental Hazards and Society, Edited By Tara K. McGee, Edmund C. Penning-Rowsell. Taylor & Francis, 2022 (1st edition).
- 16. Natural Disasters, Patrick Leon Abbott, McGraw-Hill Education. 2014 (1st edition).
- 17. Natural Hazards and Disasters, Donald Hyndman and David Hyndman, Brooks/Cole, 2017(1st edition).
- 18. Environmental Hazards Methodologies for Risk Assessment and Management, IWA Publishing, 2017 (1st edition).
- 19. Environmental Risk Assessment: A Toxicological Approach by Ted Simon, CRC Press, 2008 (1st edition).
- 20. Risk Analysis in Engineering and Economics, Bilal M. Ayyub, CRC Press, 2014 (1st edition).

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutori al (T)	Practical (P)	Open Ended
1	Conceptual Understanding of Environmental Hazards, Identify and describe various types of environmental hazards, Analyze real-world examples of environmental disasters	PO-1 PSO- 1,2,3	U, An	F, C	13	2	2

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

2	Understanding Air Pollution and Its Impact, Comprehend the science behind climate change, Explore the role of greenhouse gases in altering the Earth's climate	PO-1 PSO-1,2	R, U, An	F,C	13	2	3
3	Explore the underlying processes that lead to different geological and technical hazards, Understand regulations and best practices for handling hazardous wastes, Integrate hazard mapping, land-use zoning, and building codes to reduce vulnerability	PO-1,2 PSO- 1,2,5	U, Ap	F,C	13	2	5
4	Investigate the role of environmental factors in disease transmission, Explore biosecurity protocols to prevent unauthorized access to dangerous pathogens, and Practically apply the knowledge to local-level real-life situations to evaluate the risk factors involved.	PO-3,8 PSO- 3,4,3	Ev, Cr	C,P	13	2	5
5	Learn about field surveys, their importance, and how they contribute to hazard mapping, Explore community-based resilience measures and Develop policy recommendations based on survey results and expert insights	PO-1,3 PSO-3,4	Un, An, Cr	P,M		4	

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	1	2	-	-	-	1	-	-	-	-	-
CO 2	1	2	-	_	-	-	2	-	-	-	-	-
CO 3	2	2	-	_	2	-	2	2	_	-	-	-
CO 4	-	-	2	3	-	-	-	-	3	-	-	-
CO 5	-	-	2	3	-	-	1	-	2	-	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Internal Exam
- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Project evaluation
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5			\checkmark	

Discipline	ENVIR	ENVIRONMENTAL SCIENCES						
Course Code	UK5DS	SCENS303						
Course Title	ENVIR	CONMENTAL PL	ANNING					
Type of Course	DSC							
Semester	V							
Academic Level	300-399)			-			
Course Details	Credit	Lecture per week	Tutorial	Practical	Total Hours/Week			
			per week	per week				
	4	3 hours	-	2 hours	5			
Pre-requisites	•	Basic understanding	g of ecologic	cal concepts	6			
	•	Background inform	ation related	l to the basi	cs of urban and land			
		use planning						
Course Summary		1	-		system and includes			
		2	•		rse also covers the			
		environmental issues we face today and development imperatives						
	attached to it. It also deals with the environmental design as applicable							
		to build environment and landscape development. Special area included						
	to addr	ess urban climatolo	ogy and eff	ects of clin	nate change on city			
	Plannin	g.						

Module	Unit	Content	Hrs			
Ι	Conc	epts of Environmental Planning	10			
	1	History of Environmental Planning				
	2	Development of habitat patterns	2			
	3	settlement structure and form in response to environmental challenges;	2			
	4	Concepts of Ecology and Ecosystem	2			
	5	Urban Ecosystem	2			
II	Resou	Irce Analysis and Conservation	10			
	6	Resource analysis for various ecosystems and development imperatives	2			
	7	Land, geology, soil, climate, water and vegetation characteristics	2			
	8	Over exploitation of resources	2			
	9	Causative factors for degradation	2			
	10	Analytical techniques	2			
III	Envir	onmental Zones	15			
	11	Environmental Zones- Hill, coastal, arid - characteristics	1			
	12	Resources, settlements pattern, problems and potentials	2			
	13	Regulating mechanisms for development				
	14	Conservation aspects of built-up areas				
	15	Environmental approaches to design and planning of rural settlements	3			

	16	Use of alternate technology in design of human settlements (Case studies/Practicum)						
IV	Urba	Climatology, Acoustics and Climate Change						
	17	Urban climatology						
	18	Effects of thermal pollution,	2					
	19	Factors causing heat sink effects-direct radiation	2					
	20	Climatic effects on Urban areas and control techniques	2					
	21	Urban acoustics:- source of noise, methods of control, design techniques						
	22	Climate Change and City Planning, Application of Energy code	2					
	23	Clean Development Mechanism (Case Studies-Practicum)						
V	Envir	onmental Policies, Significant Conventions, Conferences 1						
	24	Environmental Policies and initiatives, Policies, strategies, protocols, treaties and agreements.	10					
	25	Open Ended	15					

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Understand different concepts of available resources	U	PSO 1
CO- 2	Define the basic principles of environmental planning	R	PSO 4
CO3	Understand and identify resource analysis and conservation	U	PSO 5
CO4	Address major issues related to conservation of environmental zones	Ар	PSO 5
CO5	Analyse the possible alternatives to reduce urban heat	An	PSO 3, PSO 5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	со	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)	Open Ended
1	Understand different concepts of available resources	PSO 1	U	R,U	10		3
2	Define the basic principles of environmental planning	PSO 4	R	Ар	10		3

3	Understand and identify resource analysis and conservation	PSO 5	U	An	12	4	3
4	Address major issues related to conservation of environmental zones	PSO 5	Ap	An	10	4	3
5	Analyse the possible alternatives to reduce urban heat	PSO 3, PSO 5	An	Ар	10		3

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	1	-	-	-	1	-	1	-	1
CO 2	2	2	-	-	1	-	1	-	-	-	1	-
CO 3	-	-	1	-	_	-	-	-	2	-	-	-
CO 4	-	-	2	3	-	-	2	-	1	-	2	-
CO 5	-	1	-	-	-	-	-	-	1	2	-	-

REFERENCES

- 1. Andrews, Goudie, The Human Impact on the Natural Environment Past, Present and Future, 2006, Wiley Publishers
- 2. James K. Lein, Integrated Environmental Planning, 2002, Wiley Publishers
- 3. V.H. Dale, Mary R.English, Tools to Aid Environmental Decision Making, 2020, Swinger
- 4. William Fox, EnslinVan Rooyen (eds.), The Quest for Sustainable Development,2004, Juta & Co. Ltd., Cape Town.
- 5. Fabio Giudice, Guido La Rosa, Fabio Giudice, Guido La Rosa, Antonino Risitano, Product Design for the Environment: A Life Cycle Approach, 2006, Taylor and Francis Group
- Amos Rapoport, Meaning of the Built Environment: A Non-Verbal Communication Approach, 1990, Sage Publications, USA Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4			\checkmark	\checkmark
CO 5		\checkmark	\checkmark	\checkmark

Discipline	ENVIRONMENTAL SCIENCES								
Course	UK5DSEENS300								
Code									
Course	RENEWA	RENEWABLE ENERGY							
Title									
Type of	DSE								
Course									
Semester	V								
Academic	300-399								
Level									
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week				
Details		week	per week	per week					
	3	3 hours	-	2 hours	5				
Pre-	The studen	nts should have a	basic knowled	ge about differ	ent energy sources.				
requisites									
Course					nfrastructures for the				
Summary					the sustained growth				
					able source of energy,				
			1		s of energy crisis and				
					of non-conventional				
					gy courses will equip				
					of all the natural				
					ications of renewable				
					esources. Renewable				
	energy cou	urses give knowle	dge about vari	ious topics such	n as extracting natural				

ĺ	resources, environmental studies, sustainable energy, and renewable energy	7
	management.	

Module	v	s: Content	Hrs
Ι		Fundamentals of Sustainable Energy	10
	1	Introduction to Renewable energy	2
	2	Need of switching to Renewable Energy sources	2
	3	Difference between Renewable & Non-renewable source	2
	4	Main sources – solar, wind, tidal, biomass, geothermal, Applications	2
	5	Advantages & Disadvantages of Renewable Energy	2
Π		Renewable energy resources	15
	5	Major renewable energy sources- Biomass, wind, hydroelectric, ocean, geothermal; Secondary energy resources - electricity, hydrogen	2
	6	Alternate energy resources; Renewable energy usage, limitations and scope	2
	7	Modern techniques for energy resource recovery using microbes,	2
	8	Solar collectors, photovoltaics, solar ponds	2
	9	Nuclear-fission and fusion	4
	10	MagnetoHydrodynamic Power (MHD)	2
	11	Biomas gasification	1
III		Solar Energy and Thermo-electric power	12
	12	Technique for harvesting solar energy, direct utilization of solar energy by thermal conversion thermo-mechanical conversion	2
	13	Helio-electric conversion, Photo-voltaic conversion	2
	14	Indirect utilization through water power- Ocean Thermal Energy Conversion (OTEC), Solar ponds	2
	15	Thermo - Electric power- Basic Principles-Thermoelectric power generator-Thermionic Generation (Practicum/Field visit to Thermal power plant)	4
	16	Introduction-Thermionic emission & work function-Basic Thermionic generator-Chemical Energy Sources	1
	17	Introduction-Fuel cells – Principles of operation, classification & Types-Applications of fuel cells.	1
IV		Wind, Geothermal and Tidal resources	15
	18	Basic Principles of Wind energy conversion-The nature of wind- The power in the wind	4
	19	Wind power stations, wind turbines – types, efficiency: Betz limit(Field visit to sites of relevance)	4
	20	Geothermal energy sources, status, geo -thermal systems and their characteristics	2
	21	Tidal energy and Ocean waves	2

	22	Tidal Energy-Basic Principles of Tidal Power-Components of Tidal Power Plants- Schematic Layout of Tidal Power house-Advantages & Limitations of Tidal power.	3
V		Biomass energy	8
	23	Biomass based energy, Environmental impacts of renewable	4
		resources	
	24	Biogas systems, petro-plants, dendrothermal energy, urban waste to energy conversion-MSW incineration plant	4
	25	Open Ended	15

REFERENCES

- 1. Bent Sorensen. 2017. Renewable Energy- Physics, Engineering, Environmental Impacts, Economics and Planning, Fifth Edition. Academic Press, Elsevier Inc.
- 2. Tiwari, G.N and Ghosal.M.K.2005.Renewable Energy Resources Basic Principles and Applications. Narosa Publishing House. New Delhi.
- 3. Twidell, J. and Weir, T., 2006. Renewable Energy Resources, Taylor& Francis
- 4. Renewable Energy Systems, David Buchla, Thomas Kissell and Thomas Floyd, Pearson, 2015, ISBN: 978-0-13-262251-6.
- 5. Integration of Renewable Sources of Energy, 2nd Edition, Felix A Farret and M. Godoy Simoes, Wiley, 2018, ISBN: 978-1-11-913737-5
- 6. Walters, C. (1986), Adaptive Management of Renewable Resources, Macmillan Publishing Company, New York.
- 7. John, C., Sawhill, H. and Richard, C. (1986), Energy Conservation: Successes and Failures, Brookings Institution Press, Washington DC.
- 8. Widell, J. W., Weir, A. D. (1986), Renewable Energy Resources, E & F N Spon Limited, London.
- 9. Goldemberg, J., Johansson, T. B., Reddy, A. K. N. and Williams, R. H. (1988), Energy for Sustainable World, Wiley Eastern Ltd, New Delhi.
- 10. Mittal, K. M. (1997). Non conventional Energy Systems: Principles, progress and prospects. Wheeler Publications, Chennai.
- 11. Falmer, P., Elliot, D. (2003), Energy, Society and Environment, Technology for a Sustainable Future, Rutledge, USA.
- 12. Robert A. R. and Jack P. K. (2005), Energy and the Environment, Wiley Eastern Ltd, New Delhi

	<u>Course Outcomes</u>										
No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed								
CO- 1	Able to understand the renewable energy sources available at present.	U	PO1, PSO 1								
CO- 2	Able to understand the solar energy operation and its characteristics.	U	PO1, PSO 3								
CO- 3	To educate the wind energy operation and its types.	R	PO1, PSO 2, PSO 3								
CO- 4	To educate the tidal and geothermal energy principles and its operation.	U	PO1, PSO 6								
CO- 5	Understand the need of energy conversion and the various methods of energy storage	R, U, An	PO7,8, PSO 3, PSO 4								

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

C O No	СО	PO/PS O	Cognitiv e Level	Knowledg e Category	Lecture (L)/Tutoria l (T)	Practica l (P)	Open Ende d
1	Able to understand the renewable energy sources available at present.	PO1, PSO 1	U	F, C	10	2	3
2	Able to understand the solar energy operation and its characteristics.	PO1, PSO 3	U	Р	10	4	3
3	To educate the wind energy operation and its types.	PO1, PSO 2, PSO 3	R	F, C	12	2	3

4	To educate the tidal and geothermal energy principles and its operation.	PO1, PSO 6	U	F, M	10	3
5	Understand the need of energy conversion and the various methods of energy storage	PO7,8, PSO 3, PSO 4	R,U,An	F, P	10	3

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO 4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	1	-	3	1	-	3	-	-	2
CO 2	2	2	-	-	1	-	-	2	-	2	-	-
CO 3	-	-	1	-	-	2	1	-	-	3	2	1
CO 4	-	-	2	3	-	1	2	3	1	-	-	1
CO 5	-	1	-	-	3	-	1	3	-	2	-	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

• Quiz / Assignment/ Quiz/ Discussion / Seminar

- Midterm Exam
- Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark		\checkmark	\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark	\checkmark	\checkmark

Discipline	ENVIRONMENTA	L SCIENCI	E			
Course Code	UK5DSEENS301					
Course Title	WATER RESOURC	CE MANAC	GEMENT			
Type of Course	DSE					
Semester	V					
Academic	300 - 399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3 hours	-	2 hours	5	
Pre-requisites	1. Basic understanding	ng of hydrolo	ogy, ecology,	and environm	nental policy.	
Course	comprehensive understanding of water resource management, covering					
Summary	various aspects such	as hydrologi	cal processes	5		

Module	Unit	Content	Hrs						
Ι		Introduction to Water Resource Management							
	1	Water Cycle and Hydrological Processes	1						
	2 Water Quality Assessment								
	3	Water Demand and Supply Management, Irrigation Systems and	2						
		Practices							
	4	Urban Water Management, Agricultural Water Management Industrial	1						
		Water							
II		Climate and water resources	8						

	5	Climate Change and Water Resources	2
	6	Water Policy and Legislation	2
	7	Water Governance and Institutions	2
	8	Mitigation measures to reduce greenhouse gas emissions in the water	2
		sector	
Ш		Water Governance	17
	9	Water Economics, water governance structures at local, national, and	3
		international levels	
	10	Social and Cultural Aspects of Water	2
	11	Environmental Impact Assessment in Water Projects,	1
	12	Water Ethics and Equity	1
	13	Case Studies in Water Resource Management	3
	14	Emerging Trends in Water	1
	15	Irrigation techniques and efficiency, Sustainable agriculture practices to	1
		conserve water and reduce environmental impacts.	
	16	Water recycling and treatment technologies.	2
	17	Vulnerability assessment and adaptation strategies for water resources	3
		management	
IV		Water Resource Management	15
	18	Groundwater Management, Surface Water Management Flood	4
		Management and Control, Drought Management and Mitigation	
	19	Landscape Water Conservation	3
	20	Strategies for reducing outdoor water use through xeriscaping, native	4
		plant selection, soil improvement, mulching, and irrigation efficiency.	
	21	Integrated Water Resource Management (IWRM)	2
	22	Case studies illustrating successful implementation of IWRM principles.	2
V		Water Conservation Techniques (Practicum)	30
	23	Rainwater Harvesting: Overview of rainwater harvesting, historical	5
		perspectives, and importance in water conservation	
	24	Rainwater Collection Systems: Types of rainwater collection systems	10
		including rooftop harvesting, surface runoff collection, and stormwater	
		management	
	25	Open ended	15

References

- 1. American Water Works Association. (2017). *Water Audits and Loss Control Programs.* American Water Works Association.
- 1. Biswas, A. K. (Ed.). (2008). *Integrated Water Resources Management in South and South-East Asia.* Oxford University Press.

- 2. DeOreo, W. B., & Mayer, P. (2016). *Residential End Uses of Water.* American Water Works Association.
- 2. Gleick, P. H. (2018). *Water in the 21st Century.* Oxford University Press.
- 3. Global Water Partnership. (2000). *Integrated Water Resources Management.* TEC Background Papers, No. 4.
- 3. Hunt, W. F., et al. (2018). *Water-Efficient Landscaping in the Intermountain West: A Step by Step Guide for Landscaping.* Utah State University Extension.
- 4. Pitt, R., et al. (2018). *Rainwater Harvesting: System Planning.* CRC Press.
- 4. UNESCO. (2018). *World Water Development Report 2018: Nature-Based Solutions for Water.* United Nations Educational, Scientific and Cultural Organization.
- 5. Ward, S. D., & Pulido-Velazquez, M. (2008). *Water Conservation in Irrigated Agriculture: Trends and Challenges in the Face of Emerging Demands.* Water Resources Research, 44(3).
- 5. Zimmerman, R., & Dodge, M. (Eds.). (2019). *Water-Efficient Landscaping: Principles and Practices.* CRC Press.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	significance in water resource management	U	PSO-1,2
CO-2	Assess water quality parameters and implement measures for water quality improvement	R, U	PSO-3
CO-3	Analyse water supply and demand dynamics and propose strategies for sustainable water management.	An, E	PSO-4
CO-4	Apply integrated approaches to water resource management in diverse contexts.	Ap, C	PSO-5
CO-5	Apply Water Resource Management	Ap, C	PSO-4
CO-5	Apply Water Conservation Techniques	Ap, C	PSO-5

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Lecture	1		F, C		
2	Lecture, Tutorial	2		С, Р		

3	Lecture, Tutorial	3,4	Р, М	
4	Tutorial, Practical	5	М	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-		3	3	3		3
CO 2	2	3	-	-	-	-	3				4	4
CO 3	-	-	1	-	_	-	4		4	3	3	4
CO 4	-	-	2	3	-	-		3	4	4		4
CO 5	-	1	-	-	-	-	4	-	4	4		4
CO 6	-	-	-	3	-	-	3		4	4	4	4

Correlation Levels:

Lev el	Correlation
1	Nil
2	Slightly / Low
3	Moderate / Medium
4	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark

CO 5	\checkmark		\checkmark
CO 6		\checkmark	

D · · · · ·			~						
Discipline	ENVIRONMENTAL	L SCIENCE	S						
Course Code	UK5DSEENS302								
Course Title	Bioremediation	Bioremediation							
Type of Course	DSC / DSE / MDC / SEC / VAC / AEC								
Semester	V								
Academic	300-399								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	4 hours	-		4				
Pre-requisites	The learners should	have an unde	erstanding of	environmenta	al pollution				
	and remediation								
Course	This course includes	an overview	of the bioren	nediation proc	cess; describes				
Summary	the typical bioremed	iation strateg	gies for conta	minated envi	ronments; and				
	explores bioremediat	tion technolo	gies' applica	tions.					

Detailed Syllabus:

Module	Unit	Content	Hrs				
Ι		Introduction to bioremediation	2				
	1	Definition and types of bioremediation	1				
	2	Role and importance of bioremediation in environmental restoration	1				
II		Microbial strategies and concerns of bioremediation	6				
	3	Strategies of microbial degradation and bioremediation	2				
	4	Biodegradation, biotransformation, Mineralisation	2				
	5 Constraints of bioremediation						
		Factors affecting bioremediation	6				
	6	Requirements for bioremediation	1				
III	7	Biotransformation of chemicals	1				
	8 Environmental effects on microbial degradation						
	9	Kinetics of biodegradation	2				
IV		Types of bioremediation	30				
	10	Bioremediation of organic and inorganic pollutants	2				
	11	Biotransformation of pesticides and hydrocarbons	2				
	12	Bioremediation techniques for heavy metal removal	2				
	13	Insitu Bioremediation: Biostimulation and Bioaugmentation; Bioventing	2				
		and Biosparging					
	14	Ex-situ Bioremediation: Landfarming, biopiles, bioreactors, composting	2				
	15	Phytoremediation: Types: Advantages and Disadvantages	2				
	16	Microbial-assisted phytoremediation, endosymbiotic relationships (plant-	2				
		bacteria) – plant growth promotion (metabolites)					

	17	Methods used in phytoremediation: Rhizoremediation	2				
	18	Genetically modified organisms used in bioremediation: Pros and Cons	2				
	19	Application of bioremediation technologies	2				
	20Bioremediation of industrial wastes21Bioconversion of organic wastes: composting						
	22	Bioremediation of gaseous pollutants	2				
	23	Biosensors and their applications	2				
V		Biofilms	16				
	24	Biofilms and their applications	4				
	25	Open-ended	12				

References

- 1. Atlas, R. M., & Unterman, R. (1995). Bioremediation. *Chem. Eng. News*, 73(14), 32-42.
- 2. Baker, K.H. and D.S. Herson. 1994. Bioremediation, , McGraw-Hill, Inc., New York (1994)
- 3. Bharagava, R. N. (Ed.). (2017). *Environmental pollutants and their bioremediation approaches*. CRC Press.
- 4. Cookson, J. J. (1995). *Bioremediation engineering: design and application* (pp. xv+-524).
- 5. Eweis, J. B., Ergas, S. J., Chang, D. P., & Schroeder, E. D. (1998). *Bioremediation principles*. McGraw-Hill Book Company Europe.
- 6. Hakeem, K. R., Bhat, R. A., & Qadri, H. (2020). *Bioremediation and biotechnology*. Springer: Cham, Switzerland.
- 7. Heidelberg, Germany. Atlas R.A. and Philp J. (2005). Applied Microbial Solutions for Real-World Environmental Cleanup. ASM, Washington, D.C., USA.
- Prasad, R., & Aranda, E. (2018). *Approaches in bioremediation*. Springer International Publishing https://www.springer.com/de/book/9783030023683.
- 9. Shah, M. P., Rodriguez-Couto, S., & Sengor, S. S. (Eds.). (2020). Emerging technologies in environmental bioremediation.
- 10. Singh A., Kuhad R.C. and Ward O.P. (2009). Advances in Applied Bioremediation. Springer-
- Verlag Berlin Heidelberg, Germany. Recommended Textbook: Singh A., and Ward O.P.(2004). Applied Bioremediation and Phytoremediation. Springer Verlag Berlin
- 12. Verma, J. P., & Jaiswal, D. K. (2016). Book review: advances in biodegradation and bioremediation of industrial waste. *Frontiers in Microbiology*, *6*, 175774.

Course Outcomes

No.	Upon completion of the course, the graduate will	Cognitive	PSO	
	be able to	Level	addressed	

CO-1	Explain the nature and importance of bioremediation	R, U	PSO- 3,4 PO- 2,3,6
CO-2	Evaluate the impacts of contaminant characteristics to the bioremediation process	R, U, An	PSO- 1,2,3,4 PO- 1,2,8
CO-3	Elaborate the use of bioremediation in real-world applications	Ар	PSO-3,4,6 PO-1,2,5,8
CO-4	Apply the principles of bioremediation	Ар	PSO-3,4,6 PO-1,2,5,8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Explain the nature and importance of bioremediation	PSO- 3,4 PO- 2,3,6	U, Ap	F, C, P	14	-
CO-2	Evaluate the impacts of contaminant characteristics to the bioremediation process	PSO- 1,2,3,4 PO- 1,2,8	An, Ap	С, Р, М	30	
CO-3	Elaborate the use of bioremediation in real-world applications	PSO- 3,4,6 PO- 1,2,5,8	Ар	F, C, P	16	
CO-4	Apply the principles of biormediation					

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

PS	O1 PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6

CO 1	-	-	3	3	-	-	-	3	2	3	-	-
CO 2	3	3	3	3	-	-	3	3	-	-	-	-
CO 3	-	-	3	3	-	3	3	3	-	-	3	-
CO4	-	-	3	3	-	3	3	3	-	-	3	-

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar Midterm Exam
- Analytical skills
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark		\checkmark	\checkmark
CO 2	\checkmark		\checkmark	\checkmark
CO 3	\checkmark			\checkmark
CO4	\checkmark			\checkmark

Discipline	ENVIRONMENTAL SCIENCE
Course Code	UK5SECENS300
Course Title	ENVIRONMENTAL AUDITING
Type of Course	SEC
Semester	V

Academic Level	300 - 399				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	regulations 2.Students	should aware abo	ut the basic	environm	ental pollution
Course Summary	human ac techniques consequen equips stud with envir ensuring th protecting potential e processes, mitigate or students le opportunit	tivities, industries, , students can ev ces of various act dents with the known commental regulations the environment. A environmental risk products, and prace eliminate these rise arn to analyze res	s, and poly valuate and ions. Audit owledge and ions and s and indust Auditing tea s and haza etices. This sks. By con ource cons nservation	licies. By l quantify ting in envi d skills to tandards. T ries adhere aches stude ards associa enables pro- ducting envi umption pa and efficien	onmental impact of learning auditing the environmental ironmental science assess compliance This is crucial for to laws aimed at nts how to identify ated with different bactive measures to vironmental audits, itterns and identify ncy improvements. tices.

Module	Unit	Content	Hrs		
Ι		Environment Audit	10		
	1	Environmental Audit- Definition, Origin, Objectives, Scope of audit	1		
	2 Types of Environmental audit- General audit methodology and audit process, basic steps for environmental audit.				
	3	Reporting Environmental Audit Findings - Importance of Environmental Audit Report to industry, public and the governments.	3		
	4	Approaches for environmental auditing, benefits of environmental auditing	3		
		Environment Audit Methodologies	17		
	5	Types of environmental audits (compliance audit, management systems audit, performance audit)	2		
	6	Audit planning process, preparation and resource allocation	2		

II	7	Data collection techniques: Data collection tools, sampling methods, Fieldwork	2		
	8	Audit data analysis methods and interpretation of audit findings	2		
	9 Risk assessment and prioritization				
	10 Reporting: Preparation of audit reports				
	11 Communicating findings and recommendations				
	12	Documentation: documentation standards and requirements	2		
	13	Structure and Content of Environment Audit Report	1		
III		Green Auditing	10		
	14	Introduction, Necessity, procedure	1		
	15	Environmental Management System- ISO 14000 series of standards	2		
	16	Green Entrepreneurship- Green Consumerism, Green Technology	3		
	17 Certification Process – Different Phases of Audit, Certification				
		Audit. Various Certifying Agencies in Operation			
IV		Environmental Impact Assessment and Sustainability	10		
	18	Introduction to Environmental Impact Assessment (EIA)	1		
	19	EIA process and requirements	2		
	20	Role of auditing in EIA	1		
	21	Sustainable development concepts	2		
	22	Auditing for sustainability, Green auditing practices	4		
V		Case Studies and Real-world Examples	5		
	23	Emerging Trends in Environmental Auditing: Technology in Environmental Auditing, Lessons learned and best practices	5		
	24	Analysis of environmental audit case studies-water, energy, waste, green audit, biodiversity audit(case study)	8		
	25	Open Ended	15		

References

- 1. Anjaneyalu, Y. and Valli Manickam. 2014. Environmental Impact Assessment Methodologies. BS Publications, Hyderabad.
- 2. Barton, H., & Bruder, N. (2014). A guide to local environmental auditing. Routledge.
- 3. Internal Audit Standards Board. (2012).Guide on Environment Audit. Published by Institute of Chartered Accountants of India.
- 4. Jones, B. W. (1996). Environmental Auditing: A Guide to Best Practice in the UK and Europe.
- 5. Nelson, D. D. (1998). International environmental auditing. Government Institutes.
- 6. Rao, P. S. B. and Rao, P. M. (Eds). 2001. Environment Management and Audit. Deep and Deep Publications Pvt. Ltd.
- 7. Schneider, J. P. (2002). Environmental Auditing: Theory and Applications
- 8. Shrivastva, A.K. (2003). Environment Audit. A.P.H Publishing Corporation, New Delhi

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Explain the types, needs and benefits of environmental auditing.	U,R	PO 1 PSO-1,2
CO-2	Understand the methodologies in environmental auditing.	R, U, Ap	PO 1,2 PSO-3,4,3
CO-3	Explain the green auditing and its certification process.	U, An, Ap	PO 1,2 PSO-1,2
CO-4	Describe the environmental impact assessment and role of auditing in EIA.	U, Ap	PO 2 PSO-1,2,3,3
CO-5	Analyse the case studies and technology in environmental auditing.	U, Ap ,An, E	PO 1,2 PSO-3,6,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create*Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PS O	Cognitiv e Level	Knowledg e Category	Lecture (L)/Tutoria l (T)	Practica l (P)	Open Ende d
CO -1	Explain the types, needs and benefits of environmenta 1 auditing.	PO 1 PSO-1,2	U,R	F	10		3
CO -2	Understand the methodologie s in environmenta 1 auditing.	PO 1,2 PSO- 3,4,3	R, U, Ap	F,P	17		3

CO -3	Explain the green auditing and its certification process.	PO 1,2 PSO-1,2	U, An, Ap	F	10		3
CO -4	Describe the environmenta l impact assessment and role of auditing in EIA.	PO 2 PSO- 1,2,3,3	U, Ap	F,P	10		3
CO -5	Analyse the case studies and technology in environmenta l auditing.	PO 1,2 PSO- 3,6,3	U, Ap ,An, E	C,P	5	8	3

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7	PO 8
CO 1	2	1	-	-	-	-	2	-	-	-	-	-	-	-
CO 2	2	1	2	1	-	-	1	2	-	-	-	-	-	-
CO 3	2	1	1	-	-	-	2	1	1	-	-	-	-	-
CO 4	2	2	1	1	-	-	2	2	1		-	-	-	-
CO 5	-	1	-	-	-	-	2	1	1	1	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- § Quiz / Assignment/ Quiz/ Discussion / Seminar § Midterm Exam

§ Programming Assignments § Final Exam Mapping of COs to Assessment Rubrics :

	* * · · ·		Droject Evoluction	End Semester Examinations
	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			<u>_</u>
	v			v
CO 2	/			/
002	V			\mathbf{v}
CO 2	,			
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	J	J.		<u>_</u>
	v	v		v
CO 6			/	/
			\checkmark	\checkmark

Discipline	ENVIRONMENTAL S	ENVIRONMENTAL SCIENCE						
Course Code	UK5SECENS301	UK5SECENS301						
Course Title	ENVIRONMENT AND GREEN MARKETING							
Type of Course	SEC							
Semester	V							
Academic Level	300 - 399							
Course Details	Credit Lecture Tutorial Practical Total							
		per week	per week	per week	Hours/Week			
	3	3 hours	-		3			
Pre-requisites	1. Prose and cones c	of current ma	arketing syste	ems				
	2. Consequence of h	azardous wa	iste					
	3. Harmful effects of	f E-waste						
Course	The course is des	igned to u	nderstand t	he importar	ice of Green			
Summary	Marketing on consu	umer satisfa	ction and en	vironmental	safety. Green			
	revolution, going	green, envi	ronment pro	otection, an	d sustainable			
	development have	become th	e buzz wor	ds today. Co	onsumers are			
	gradually becoming	conscious b	uying eco-frie	endly product	ts. This course			
	aims at understand	ing the conc	ept of Gree	n Products a	nd Marketing.			
	This course also re-	visits the fa	ctors that a	ffect consum	ers' purchase			
	decision in general.							

Module	Unit	Content	Hrs
I		Fundamentals of Green Marketing	5
	1	Marketing Vs Green Marketing	1
	2	Concept & Evolution of Green Marketing	1
	3	Adoption and status of green products	1
	4	Benefits of green marketing: Environmental, Commercial and Social	2

II		Environmental Concerns of Green Marketing	5
	5	Green design, green positioning, green pricing, green logistics, green disposal	2
	6	Segments of green marketing: Green Spinning, Green Selling, Green Harvesting, Green washing	3
	7	Climate Performance, Leadership Index and Promotional Channels of Green Marketing.	3
	8	3Ps of green marketing: Passion, Purpose, and Precision	2
III		Green Marketing Policies	10
	9	Introduction to green marketing policy & process	2
	10	Utilising sustainable resources	2
	12	Making sustainable products	2
	13	Implementing eco-friendly energy practices	1
	14	Using shipping methods that are conscious of emissions	1
	15	Green firm's initiatives and green management policies	1
	16	Status of ecofriendly electronic products	1
IV		Environmental Consciousness	10
	17	Introduction and types of Environmental Consciousness	2
	18	Environmental movement and Importance of environmentalism	2
	19	Benefits of green environment to the society	2
	20	E-waste exchange: Guidelines for collection, storage transport and disposal	2
	21	Environmentally Sound Recycling of E-Waste.	2
V		Environmental, Technological and Legal aspects of green marketing	15
	22	Opportunities of green marketing	2
	23	Green Protocol of marketing: Certification, Green packing, and	2
		Ecolabelling	
	24	Limitations and future directions	2
	25	Open ended	9

Books and References:

- 1. Green Marketing Management by Robert Dahlstrom, Cengage Learning India. Latest Edition.
- 2. Green Marketing Concepts, Literatures and Examples. M. Meera. Evincepub Publishing. Latest Edition.
- 3. Green Marketing and Environmental Responsibility in Modern Corporations, Esakki and Thangasamy, IGI Global, 2017. Latest Edition.
- 4. Green Marketing: Challenges and Opportunities for the New Marketing Age, Jacquelyn A. Ottman, NTC Business Books, 1993. Latest Edition.
- 5. The New Rules of Green Marketing, Jacquelyn A. Ottman, Berrett-Koehler Publishers, 2011. Latest Edition.
- 6. Belz F., Peattie K. (2009): Sustainability Marketing: A Global Perspective. John Wiley & Sons

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Students should gain a deep understanding of sustainable development principles and how they relate to marketing practices. This includes learning about environmental, social, and economic dimensions of sustainability.	U R	PSO-1,2
CO-2	Students should learn how to design, develop, and market environmentally sustainable products and services. This includes considerations such as eco- friendly materials, energy efficiency, recyclability, and product lifecycle analysis.	R, Ap, C	PSO 4
CO-3	Students should analyse real-world examples of successful green marketing campaigns and initiatives across various industries, learning from both the successes and failures of companies in integrating sustainability into their marketing strategies	An, Ap	PSO 6, 7
CO-4	Topic equips students with the knowledge, skills, and mindset needed to develop and implement environmentally sustainable marketing strategies that contribute to both business success and environmental stewardship. It also fosters an understanding of the ethical implications of green marketing, including issues such as greenwashing, transparency, and corporate accountability	U, An, Ap	PSO 8
CO-5	The topic should cover strategies for building and promoting green brands, including green messaging, eco-labeling, green advertising, and corporate social responsibility initiatives.	An, E, C	PSO 9, 10

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Explain green marketing and its importance to the	PSO-1,2	U R	F, C	10	

	environment from the perspective of consumers and businesses					
2	Describe the current state of the environment resulting from the past and present practices of the human consumption.	PSO 4	R, Ap, C	Р	6	
3	Demonstrate evidence of emerging green consumer segments and how marketers are addressing those needs	PSO 6, 7	An, Ap	F, P	20	
4	Strategic approach and awareness about environmental problems and mitigation related to green marketing.	PSO 8	U, An, Ap	Р, М	6	
5	Understand the opportunities, challenges, and issues in designing and implementing green marketing strategies.	PSO 9, 10	An, E, C	Р, М	15	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PO1 PO2 PO3 PO4 PO5 PO6

CO 1	1	-	-	2	-	1	3	-	1	-	-	-
CO 2	2	3	-	-	1	-	1	-	-	2	-	3
CO 3	-	2	1	-	-	-	-	1	-	-	-	3
CO 4	-	-	2	3	-	-	1	3	-	2	-	-
CO 5	-	1	-	1	3	-	1	1	-	-	-	3
CO 6	1	-	-	2	-	1	3	-	1	-	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			✓
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	\checkmark

Semester VI

Discipline	ENVIR	ENVIRONMENTAL SCIENCE							
Course Code	UK6DS	CENS300							
Course Title	ENVIR	ENVIRONMENTAL TOXICOLOGY							
Type of	DSC	DSC							
Course									
Semester	VI	VI							
Academic									
Level	300-399	300-399							
Course	Credit	Lecture	Tutorial	Practical	Total hours per				
Details		per	per	per week	week				
		week	week						
	4	3 hours	-	2 hours	5				
Pre-	Students	should kr	now the ba	sic knowledge abou	it the toxic				
requisites	substanc	e in the er	vironmen	t.					
Course	In this co	ourse the s	tudents w	ill understand the b	asic principles and				
Summary	scope of	f environ	mental toy	kicology, including	the history. The				
				hemical effects an	5				
	-			ity. They also learn					
		•	-	e environment. Thi					
				egulation of food c					
	students	can also l	earn the m	ethods for toxicity	testing.				

Module	Unit	Content	Hrs						
Ι		Introduction to Environmental Toxicology	10						
	1	Definition, history, scope and principles of Environmental	1						
		Toxicology							
	2	Concept of toxins, toxicity and toxicology; types of toxic substances	2						
	3	- 55 55							
		toxicity.							
	4 Classification of toxicant-, natural toxins - animal toxins, plant								
		toxins; food toxins, genetic poisons and chemical toxins;							
	5	Factors affecting toxicity	1						
II		Metabolism of Toxicants	10						
	6	Biotransformation, biomagnification, bioaccumulation,	3						
		bioconcentration, bio activation							
	7	Routes of toxicants to human body	2						
	8	ADME (Absorption, distribution, metabolism and excretion)	5						
III		Environmental toxicants and their mode of action	16						
	9	Toxic chemicals in the environment - air, water, soil and their	2						
		effects							

	10	Sources and entry route of toxicants in the environment	2		
	11	Biochemical effects of arsenic, cadmium, lead mercury	2		
	12	Biochemical effects of carbon monoxide, ozone and PAN pesticide			
	13	Fate and transport of toxicants in air, water and soil	2		
	14	Trans boundary pollutants and its effects	1		
	15	Teratogens	2		
	16	Mutagens	2		
	17	Carcinogens	1		
IV		Dose-response relationship	10		
	18	Introduction of dose and response	2		
	19	Selection of doses	2		
	20	Duration and types of exposure	2		
	21	Types of dose-response relationship-Quantitative and Quantum	2		
	22	Cumulative response and therapeutic index	2		
V		Effects and Evaluation of Toxicity	6		
	23	Classification, Methods of assessment, Types of Bioassay, bioassay	6		
		test, Threshold Limit Value (TLV), Toxicity testing: acute, sub -			
		acute and chronic tests			
	24	Lethal Concentration (LC ₅₀ , Lethal Dose LD ₅₀ , Median Lethal	8		
		Dose, Maximum Acceptable Toxicant Concentration (MATC)			
		(Practicum)			
	25	Open Ended	15		

References

- 1. Balram Pani. (2019). Text Book of Ecotoxicology. Dram tech Press, New Delhi.
- 2. Calow P.(1994) Handbook of Ecotoxicology. Blackwell Scientific publications, London.
- 3. Donald G.Crosby(1998).Environmental Toxicology and Chemistry.Oxford University Press.
- 4. Gupta P.K (2010). Modern Toxicology, Pharmamed Press/BSP Books, Hyderabad
- 5. Jacobson-Kram, D. (2006). Toxicological testing Handbook; Principles, Application and Data Interpretation, Taylor and Francis New York.
- 6. John H,D.,Howard G.J.W(2006).Fundamental Toxicology.RSC Publishing.
- 7. Soumitro Ghose.(2005).Toxicology.Dominant Publishers and Distributors,New Delhi
- 8. Wayne G.L., Sofield, M.S., Ming, Ho.Yu. (2011). Environmental Toxicology. CRC Press

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PO/PSO
	able to	Level	addressed

CO- 1	Introduce the basic concepts, history and principles of toxicology	U	PO 1 PSO-3
CO- 2	To understand the biological concepts and the xenobiotics transport and its mechanism in the human body	R, U	PO 1,2 PSO-1
CO- 3	Provide fundamental knowledge on the environment's fate and transport of toxicants and how these processes affect their toxicity	R,U	PO 1,2 PSO 1
C0 - 4	Explain the dose-response relationship and its types	R,U,A	PO 1,2 PSO-3,4,6
CO - 5	To apply the knowledge acquired for evaluating toxicity	U,Ap,An	PO 1,2 PSO-3,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PS O	Cognitiv e Level	Knowledg e Category	Lecture (L)/Tutori al (T)	Practic al (P)	Open Ende d
CO -1	Introduce the basic concepts, history and principles of toxicology	PO 1 PSO-3	U	F	10	-	3
CO -2	To understand the biological concepts and the xenobiotics transport and its mechanism in the human body	PO 1,2 PSO-1	R, U	F	10	-	3
CO -3	Provide fundamental knowledge on the environment's fate and transport of toxicants and how these processes affect their toxicity	PO 1,2 PSO 1	R,U	Р	16	-	3

C0 -4	Explain the dose-response relationship and its types	PO 1,2 PSO- 3,4,6	R,U,A	F,C	10	-	3
CO -5	To apply the knowledge acquired for evaluating toxici ty	PO 1,2 PSO- 3,3	U,Ap,An	Р	6	8	3

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO 1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8
CO 1	1	-	2	-	-	-	2	-	-	1	-	-	-	-
CO 2	2	1	-	-	-	-	2	1	-	-	-	-	-	-
CO 3	2	-	1	-	-	-	3	2	-	1	-	1	-	-
CO 4	-	-	1	3	3	1	3	1	-	1	-	-	-	-
CO 5	-	-	2	2	-	-	2	2	-	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1				\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	L SCIENC	ES			
Course Code	UK6DSCENS301					
Course Title	RESEARCH MET	HODS IN E	NVIRONM	ENTAL SCI	ENCES	
Type of Course	DSC					
Semester	VI					
Academic	300 - 399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	4 hours	-		4	
Pre-requisites	The learners should	have an aptit	tude in reseau	ch		
Course	This course is destin	ed to give le	arners the ba	sics of pursu	ing research. It	
Summary	discusses the purpos	se of doing re	esearch, the t	types of data	to be collected	
	for research, and m	for research, and methods of data analysis. The course also deals with				
	design of experimen	ts and ethics	in research.			

Module	Unit	Content	Hrs
Ι		Research Basics	22
	1	Definition, purpose, and types; Significance of research in	3
		applied sciences; Objectives and Dimensions of Research	
		problem, Research questions, Research design; Tools of	
		Research: Library, Field, Laboratory; Methods of research:	
		Qualitative and Quantitative	
	2 Data Types (primary and secondary data), collect		3
		presentation (Graphical and diagrammatic)	
	3	Data Processing: checking, editing, coding, transcriptions,	3
		classification, and tabulation	
	4	Data analysis: meaning and methods; quantitative and	3
		qualitative analysis; Bivariate Data Analysis using Correlation	
		and Regression analysis	
	5 Analysis of time series, Interpolation, and Extrapolation		3
		misuse of various tools like mean, median, mode, dispersion,	
		correlation, technical errors	

	-		-
	6	Theoretical distribution: Normal, Poisson, Binomial with application in various areas/ disciplines	3
	7	Sampling types, steps; sampling errors, sampling of attributes	4
	,	(including Chi-square test), sampling of small and large	
		sample variables (including ANOVA); Hypothesis Testing	
II		Environmental Sampling and Analysis (Practicum)	12
	8	Environmental sampling: Finite-population sampling,	2
		stratified random sampling, composite sampling, ranked set	
		sampling, capture-recapture methods	
	9	Time series analysis	4
	10	Introduction of statistical packages: Calculation of various	6
		statistical parameters, tests, temporal and spatial data analysis,	
		preparation of charts; Interpretation of statistical outputs in	
		reports and papers (Practicum)	-
	11	Laboratory Safety	7
III	11	Laboratory safety measures	1
111	12	Disposal of Hazardous/Poisonous/chemical and biological agents	2
	13	Laboratory waste disposal with field study	3
	13	Dealing with electrical and fire hazards	1
IV	11	Experimental Design (Practicum)	12
1,	15	Randomization, replication, and local control	2
	16	Completely Randomized Design (CRD)	2
	17	Randomized Block Design (RBD)	2
	18	Latin Square Design (LSD)	2
	19	Factorial designs	2
	20	Split Plot and Strip Plot designs	2
V		Research Ethics	22
	21	Definition, moral philosophy, nature of moral judgments and	1
		Intellectual honesty and research integrity	
	22	Scientific misconducts: falsification, fabrication, and	1
		Plagiarism (FFP)	
	23	Redundant publication: duplicate, overlapping, salami slicing,	3
		Violation of publication ethics, authorship and contributorship	
	24	Predatory publishers and journals	2
	25	Open ended	15

References

- 1. Bhattacharyya, D. K. (2006). Research methodology. Excel Books India.
- 2. Chawla, D., & Sodhi, N. (2011). *Research methodology: Concepts and cases*. Vikas Publishing House.
- 3. Davidavičienė, V. (2018). Research methodology: An introduction. *Modernizing the academic teaching and research environment: Methodologies and cases in business research*, 1-23.

- 4. Graf, C., Wager, E., Bowman, A., Fiack, S., Scott-Lichter, D., & Robinson, A. (2007). Best practice guidelines on publication ethics: a publisher's perspective. *International journal of clinical practice*, *61*, 1-26.
- 5. Introductory Biological Statistics, Raymond Hampton, John Havel, and Scott Meiners, 4th Edition. Waveland Press, ISBN: 9781478638186
- 6. Pandey, P., & Pandey, M. M. (2021). *Research methodology tools and techniques*. Bridge Center.
- 7. PANNEERSELVAM, R. (2014). Research methodology. PHI Learning Pvt. Ltd..
- 8. Sengupta, S., & Honavar, S. G. (2017). Publication ethics. *Indian journal of ophthalmology*, 65(6), 429-432.
- 9. Singhal, S., & Kalra, B. S. (2021). Publication ethics: Role and responsibility of authors. *Indian Journal of Gastroenterology*, 40, 65-71.
- 10. Watts, Simon, and Lyndsay Halliwell. 1996. Essential Environmental Science: Methods and Techniques. Routledge, London, England.

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe the basics of research such as data types, data processing, and data analysis	R, U	PSO-3,4 PO-1,2,6
CO-2	Explain environmental sampling, time series analysis, and perform statistical analysis of the data	U, Ap	PSO-3,4 PO-1,2,7
CO-3	Describe and practice lab safety practices	U, Ap	PSO-3 PO-1,2
CO-4	Describe and select the proper experimental design	U, Ap	PSO-3,4 PO-1,3
CO-5	Apply the principles of ethics in research	U, An	PO-8

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Describe the basics of research such as data types, data processing, and data analysis	PSO-3,4 PO-1,2,6	R, U	F, C, P		

CO-2	Explain environmental sampling, time series analysis, and perform statistical analysis of the data	PSO-3,4 PO-1,2,7	U, Ap	С, Р, М	
CO-3	Describe and practice lab safety practices	PSO-3 PO-1,2	U, Ap	С. Р, М	
CO-4	Describe and select the proper experimental design	PSO-3,4 PO-1,3	U, Ap	С, Р, М	
CO-5	Apply the principles of ethics in research	PO-8	U, An	С, Р	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	-	3	3	-	-	3	3	-	-	-	3
CO 2	-	-	3	3	-	-	3	3	-	-	-	-
CO 3	-	-	3	-	-	-	2	2	-	-	-	-
CO 4	-	-	2	3	-	-	2	-	2	-	-	-
CO 5	-	-	-	-	-	-	-	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Perform data analysis using statistical packages
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark

CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	ENVIRONMENTAL SCIENCES						
Course code	UK6DSCENS302							
Course Title	TECHNIQUES IN ENVIRONMENTAL SCIENCES							
Type of Course	DSC							
Semester	VI							
Academic Level	300 - 399							
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	 Basic knowle Recall what 	0 0	0		nants			
Course Summary	necessary for unders a combination of the gain proficiency in research and analys analysis, laboratory is placed on hands-o	The course provides students with fundamental skills and knowledge necessary for understanding and analysing environmental issues. Through a combination of theoretical lectures and practical exercises, students will gain proficiency in various techniques used in environmental science research and analysis. Topics covered include sampling methods, data analysis, laboratory techniques, and fieldwork methodologies. Emphasis is placed on hands-on learning experiences to develop critical thinking and problem-solving skills in the context of environmental science.						

Module	Unit	Content	Hrs					
Ι		Introduction to Environmental Monitoring						
	1	Environmental monitoring - Definition and concepts						
	2	2 Types of environmental monitoring (air quality monitoring, water						
		quality monitoring)						
	3	Types of environmental monitoring (biodiversity monitoring)	3					
	4	Case studies illustrating the importance of monitoring for	2					
		environmental management						
II		Sampling Methods	10					
	5	Sampling methods - air and water	2					
	6	Sampling methods - soil and sediment	2					

	7	Sampling devices - principles and working of water samplers, sediment	4				
		corers and air samplers					
	8	Sample preparation and handling techniques	2				
III		Laboratory Techniques	15				
	9						
	10	Microscopy	3				
	11	Introduction to laboratory analysis methods (Physical, Chemical and	4				
		biological)					
	12	Instrumentation techniques used in Environmental Analysis	4				
	13	Flora and fauna	1				
	14	Phytoplanktons and Zooplanktons	1				
	15	Biodiversity indices	1				
	16	Hands-on demonstrations of basic laboratory techniques by using	3				
		various instruments (e.g, pH meters, spectrophotometry,					
		chromatography, microbiological analysis)					
	17	Online environmental monitoring	1 15				
IV		Data Analysis and Interpretation					
	18	Basics of data analysis using statistical tools	4				
	19	Interpretation of environmental data	4				
	20	Integration of field and laboratory data for environmental assessment	6				
	21	Data handling by using Excel through graphical representations, mean,	5				
		SD, correlation, Regression					
	22	Designing effective presentations on scientific findings	1				
V		Environmental Management for Air, Water and Soil	10				
	23	Concepts of Environmental management	4				
	24	Case studies illustrating the importance of monitoring for	6				
		environmental management					
	25	Open ended	15				

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the principles and importance of environmental monitoring.	U	PSO-1,2
CO-2	Familiarize the essential field and laboratory techniques commonly used in Environmental Science.	R, U	PSO-1,2,3
CO-3	Enable students to apply basic techniques for sampling, analysis, and interpretation of environmental data.	Ар	PSO-3,4,6
CO-4	Develop critical thinking skills regarding environmental issues and solutions.	Е	PSO 4,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

References

- 1. APHA (2012). Standard Method for the Examination of Water and Waste water, Washington, D.C.
- Bard, A.J. and Faulkner, L.R. (2001) Electrochemical Methods, 2nd Ed., John Wiley Sons.
- 3. Christian G.D. (2000), Analytical Chemistry, 6thed, John Wiley & Sons.
- 4. De, A.K. (1994). Environmental Chemistry. New Age International Ltd. New Delhi.
- 5. Eving, G.W. (1985). Instrumental Methods of Chemical Analysis, 5th Ed.,,Mc-Graw Hill Book Company.
- 6. Radojecic, M. and Bashkin, V.N. (2007). Practical Environmental Analysis. RSC Publishing, Cambridge.
- 7. Skoog, D.A., Holler F.J. and Nieman (2003). Principles of Instrumental Methods, 5th Ed., Thomson Asia Pvt. Ltd., Singapore.
- 8. Vogel A.I. (1999). Textbook of Quantitative Chemical Analysis, 5th Ed., Addison Wesley Longman Singaporepte Ltd.
- Willard, Merritt, Dean and Settle (1986). Instrumental Methods of Analysis, 7th Ed., C B S Publishers & Distributors

CO No.	СО	PO/PSO	Cognitive Level	Knowledg e Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand the principles and importance of environme ntal monitoring.	PSO-1,2	U	F, C		
CO-2	Familiarize the essential field and laboratory techniques commonly used in Environme ntal Science.	PSO-1,2,3	R, U	Р		

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO-3	Enable students to apply basic techniques for sampling, analysis, and interpretati on of environme ntal data.	PSO-3,4,6	Ap	P,M	
CO-4	Develop critical thinking skills regarding environme ntal issues and solutions.	PSO 4,5	Ε	М	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	3	2	1	-	-	-
CO 2	-	-	2	-	-	-	-	-	-	-	2	3
CO 3	3	2	-	-	-	-	1	-	-	3	-	-
CO 4	2	-	-	-	3		3	-	2	-	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Quiz / Assignment/ Quiz/ Discussion / Seminar

- Midterm Exam
- Programming Assignments
 Final Exam

Mapping of COs to Assessment Rubrics:

	Internal	Assignm	Project Evaluation	End Semester
	Exam	ent	Evaluation	Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark

Discipline	ENVIRONMENTA	L SCIENC	E					
Course Code	UK6DSCENS303							
Course Title	WILDLIFE PROT	ECTION A	ND MANA(GEMENT				
Type of Course	DSC							
Semester	VI							
Academic Level	300 - 399	300 - 399						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	 Familiarity with wildlife policy issue wildlife protection a A genuine interest biodiversity 	es can provi nd managem	de a valuabl ient	le backgroun	d for studying			
Course Summary	Wildlife Protection the knowledge, skil challenges facing w century. By foster collaboration among to become effective sustainable manager	ls, and persp wildlife cons ing an inte g stakeholder e leaders and	pectives need servation and rdisciplinary rs, the course	led to addres d managemen approach a seeks to emp	s the complex nt in the 21st nd promoting power students			

Module	Unit	Content	Hrs
Ι		Introduction to Wildlife Protection and Management	15
	1	Overview of Wildlife Conservation History of Wildlife Management	3
	2	Legal Frameworks for Wildlife Protection, Wildlife Policies and	3
		Governance	
	3	Wildlife Ecology and Behaviour, Principles of Wildlife Ecology	5
		Population Dynamics and Demography	

	4	Habitat Selection and Use, Animal Behaviour and Communication,	4					
		Protected areas, RET species, IUCN, WWF, Major protected species in						
		India						
II		Wildlife Conservation Genetics	10					
	5	Genetic Diversity and Conservation	2					
	6	6 Molecular Tools in Wildlife Conservation						
	7							
	8	Conservation Genomics	2					
III		Wildlife Habitat Management	20					
	9	Habitat Assessment and Mapping Habitat Restoration and Enhancement,	3					
	10	Landscape Ecology and Connectivity Urban Wildlife Management	3					
	11	Wildlife Health and Disease Management	3					
	12	Wildlife Disease Ecology Emerging Infectious Diseases in Wildlife	3					
	13	Wildlife Health Assessment Techniques	3					
	14	Human-Wildlife Conflict Management	2					
	15	Understanding Human-Wildlife Interactions	2					
	16	Conflict Resolution Strategies Human Dimensions of Wildlife	3					
		Management						
	17	Livelihoods and Conservation	1					
IV		Conservation Policy and Planning	15					
	18	Conservation Planning Principles, Conservation strategies, Protected Areas Management	3					
	19	Wildlife Economics and Sustainable Development	3					
	20	Sustainable Use and Wildlife Trade, Economic Valuation of Wildlife	3					
		Resources						
	21	Ecotourism and Wildlife-based Enterprises, Integrating Conservation into	3					
		Development Planning						
	22	International Conservation Agreements	3					
V		Wildlife Education	15					
	23	Public Engagement in Conservation	4					
	24	Environmental Education Strategies Communication and Advocacy Skills	11					
		Community-based Conservation Initiatives, Field study to protected areas						
		to create a model conservation strategy for wildlife						
	25	Open ended	15					

References

1. Duffus, D. A. (Ed.). (2017). *Wildlife and Society: The Science of Human Dimensions.* Island Press.

2. Sinclair, A. R. E., & Arcese, P. (Eds.). (1995). *Serengeti II: Dynamics, Management, and Conservation of an Ecosystem.* University of Chicago Press.

3. Groom, M. J., Meffe, G. K., & Carroll, C. R. (2006). *Principles of Conservation Biology.* Sinauer Associates.

4. Primack, R. B. (2014). *Essential of Conservation Biology.* Sinauer Associates.

5. Caughley, G., & Sinclair, A. R. E. (1994). *Wildlife Ecology and Management.* John Wiley & Sons.

6. Conover, M. R. (2002). *Resolving Human-Wildlife Conflicts: The Science of Wildlife Damage Management.* CRC Press.

7. Redford, K. H., & Taber, A. (2000). *Wildlife Conservation Society Birds of Brazil.* University of California Press.

8. Knight, R. L., & Gutzwiller, K. J. (Eds.). (1995). *Wildlife and Recreationists: Coexistence through Management and Research.* Island Press.

9. Dickman, A. J., Macdonald, E. A., & Macdonald, D. W. (Eds.). (2011). *Human-Wildlife Conflicts: The Challenges of Shared Spaces.* Cambridge University Press.

10. Western, D., Wright, R. M., & Strum, S. C. (Eds.). (1994). *Natural Connections: Perspectives in Community-based Conservation.* Island Press.

11. Conover, M. R. (2001). *Human dimensions of wildlife management in North America.* Wildlife Society.

12. Knight, R. L., & Gutzwiller, K. J. (Eds.). (1995). *Wildlife and Recreationists: Coexistence through Management and Research.* Island Press.

13. Hoare, R. E., & Du Toit, J. T. (Eds.). (1999). *Coevolution of Humans and Large Herbivores in Africa.* John Wiley & Sons.

14. Western, D., Wright, R. M., & Strum, S. C. (Eds.). (1994). *Natural Connections: Perspectives in Community-based Conservation.* Island Press.

15. Terborgh, J., & Van Schaik, C. (Eds.). (2002). *Making parks work: Strategies for preserving tropical nature.* Island Press.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	comprehensive understanding of the principles, practices, and challenges associated with conserving wildlife	U	PSO-1,2
CO-2	Evaluate and apply tools for managing wildlife populations and habitats	R, U	PSO-2,3
CO3	Address complex issues related to wildlife conservation and sustainable management.	Ар	PSO-3,4
CO4	Integrates ecological, social, economic, and policy perspectives	An, Ap, C	PSO- 5
CO5	Analyze strategies and techniques for wildlife management	An, Ap,	
CO6	Apply field research methods and monitoring techniques	Ap, C	

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

СО	СО	PO/PSO	Cognitive	Knowledge	Lecture	Practical
No.			Level	Category	(L)/Tutorial	(P)

				(T)	
1	Lecture	1	F, C		
2	Lecture, Tutorial	2	С, Р		
3	Lecture, Tutorial	3,4	Р, М		
4	Tutorial, Practical	5	М		

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	-	-	5	-	-	3
CO 2	2	3	-	-	-	-	-	-	2	-	3	-
CO 3	-	-	1	-	-	-	-	-	-	2	-	3
CO 4	-	-	2	3	-	-	-	-	-	2	3	4
CO 5	-	1	-	-	-	-	-	-	3		-	4
CO 6	-	-	-	3	-	-	-	-	-	3	3	4

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignm	Project	End Semester
	Exam	ent	Evaluation	Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIR	ONMENTAL SO	CIENCE				
Course Code	UK6DS	UK6DSEENS300					
Course Title	SUSTAINABLE AGRICULTURE						
Type of Course	DSE						
Semester	VI						
Academic Level	300 - 399.						
Course Details	Credit	Lecture per	Tutorial	Practical	Total		
		week	per	per	Hours/Week		
			week	week			
	4	3 hours	-	2	5		
Pre-requisites	 Basics of Agronomy Basics of agricultural and farming practices 						
	3. Pros	3. Pros and cons of Agrochemicals					
Course Summary	also cov water re agricult the scho internsh	vers other topics lessource manageme ure in order to pro- blar. The course de tips, or laborato	ike soil hea ent and mod vide better u evelops han ry work,	alth and nut ern technolo inderstandir ds-on skills including	ble agriculture and trient management, ogies in sustainable ng of these topics to through fieldwork, soil testing, crop arming techniques.		

Module	Unit	Content	Hrs		
Ι	Introduction to Sustainable Agriculture				
	1	Principles of Agronomy	1		
	2	Overview of sustainable agriculture - definitions and goals, background, importance and need of sustainable agriculture	3		
	3	Sustainable water and soil management	3		
	4	Sustainable disease and pest management	3		

II		Principles and process of Sustainable Agriculture	10
	5	Economics of sustainable agriculture	2
	6	National Mission for Sustainable Agriculture (NMSA)	2
	7	Climate change and sustainable agriculture	2
	8	Biopesticides and bioherbicides – role, importance and commercialization	2
	9	Green manures and biocontrol agents	2
III		Soil health and Nutrient Management	15
	10	Soil fertility, micro and macro nutrients	2
	11	Organic matter, soil pH, soil moisture and aeration	2
	12	Role of organic manures in soil health	3
	13	Integrated nutrient management	2
	14	Crop rotation systems	3
	15	Soil conservation systems	3
IV		Water Resource Management	10
	16	Effect of water quality on soil and plants	2
	17	Water harvesting techniques and Watershed management	2
	18	Irrigation and Drainage systems	2
	19	Environmental concerns and sustainable water management practices in agriculture	4
V		Emerging trends in sustainable agriculture	15
	20	Application of biotechnological tools in sustainable agriculture	3
	21	Remote sensing and GIS in land use planning	
	22	Sustainable Farming practices: Vertical farming, farm automation, rainfed farming, live stock farming, precision agriculture, flood- based farming system, drought proof farming system, Chemigation, Fertigation (practicum)	5
	23	Innovative farm integrations: Agriculture-Aquaculture-Animal husbandry integrations	5
	24	Artificial intelligence and nanotechnology in agriculture	2
	25	Open ended	15

Books and References:

- 1. Chatterjee, A., & Clay, D. (2016). Soil fertility management in agroecosystems, Madison, USA: American Society of Agronomy.
- 2. Coleman, D.C., Crossley, Jr. D.A., & Hendrix, P.F. (2004). Fundamentals of soil ecology (2nded.). Burlington, MA: Elsevier Academic Press.
- 3. Drinkwater, L.E., Friedman, D., & Buck, L. (2016). Systems research for agriculture: Innovative solutions to complex challenges, Brentwood, California: SARE Outreach Publications.
- Gugino, B. K., Idowu, O.J., Schindelbeck, R.R., van Es, H.M., Moebius-Clune, B.N., Wolfe, D.W., Thies, J.E., & Abawi, G.S. (2009). Cornell soil health assessment training manual (2nd ed.). Ithaca: Cornell University.

- 5. Kumar, S. (2013). Modern technologies for sustainable agriculture, New Delhi, India: New India Publishing Agency.
- 6. Lichtfouse, E., Hamelin, M., Navarrete, M., &Debaeke, P. (2011). Sustainable Agriculture, Netherlands: Springer
- 7. Magdoff F., &Es, H.V. (2009). Building soils for better crops: Sustainable soil management (3rd ed.). Bretwood, California: SARE Outreach Publications.
- 8. Poonia, R.C., Gao, X-Z., Raja, L., Sharma, S., & Vyas, S. (2019). Smart farming technologies for sustainable agricultural development, Hershey, USA: IGI Global.
- 9. Reicosky, D. (2018). Managing soil health for sustainable agriculture: Monitoring and management, Cambridge, UK: Burleigh Dodds Science Publishing.
- 10. M.A Khan and M.Y Zargar (2004), Agriculture and Environment, APH Publishing Corporation, New Delhi.
- 11. Edwards, C.A. et al. (ed.) 1990. Sustainable agricultural systems. Soil and Water Conservation Society. Akeny, IA.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Understand the various aspects of sustainable agriculture, their role and importance in the present scenario The student will be able to explain in general the relationships among culture, economics, politics, science, and agricultural development. Students will develop a deep comprehension of the principles and concepts of sustainable agriculture, including its ecological, economic, and social dimensions.	U	PSO-1,2
CO- 2	The student will be able to explain the major aspects of agricultural practices in terms of sustainable water and soil management and traditions through time and throughout the world. Understand the policy frameworks and regulations relevant to sustainable agriculture, including government incentives, certification programs, and environmental regulations.	R, U	PSO-3,5
CO- 3	Gain knowledge of ecological processes and how they apply to agricultural systems, including soil health, nutrient cycling, water management, and biodiversity conservation. Learn techniques for soil conservation, soil fertility management, erosion control, and the importance of soil health for sustainable agriculture.	U, E	PSO 7

CO- 4	Learn sustainable water use practices, including irrigation efficiency, rainwater harvesting, and water conservation strategies.	R, U, An	PSO 2,3
CO- 5	A solid understanding of the cross-cultural interactions and exchange that linked the world's people and facilitated agricultural development is also expected in addition to analyse the importance of advanced technologies in agriculture. Enhance critical thinking skills to analyse complex agricultural problems and develop innovative solutions that balance environmental, social, and economic considerations. Develop hands-on skills through fieldwork, internships, or laboratory work, including soil testing, crop monitoring, pest identification, and sustainable farming techniques	A, An	PSO 8,9

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Understanding the overview of Sustainable agriculture	PSO-1,2	U	F, C	10	
2	Understand the policy document and the upcoming vision of Sustainable agriculture		R,U	С, Р	10	5
3	Learn and analyse the soil management practices and understand the soil conservation systems.	PSO-3,5	U, E	С	15	4
4	Learn sustainable water management practices in terms of agricultural sustainability.	PSO 2,3	R, U, An	С	10	2
5	Apply value added agricultural integration and its implementation of the faming integration for public services.	PSO 8,9	A, An	Р	15	4

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	1	-	3	1	-	3	-	-	
CO 2	2	2	-	-	1	-	-	2	-	2	-	1
CO 3	-	-	1	-	-	2	1	-	-	3	2	
CO 4	-	-	2	3	-	1	2	3	1	-	-	3
CO 5	-	1	-	-	3	-	1	3	-	2	-	1
CO 6	1	-	-	1	-	3	1	-	3	-	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
 Midterm Exam
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	\checkmark

Discipline	ENVIRONMENTA	ENVIRONMENTAL SCIENCE				
Course Code	UK6DSEENS301					
Course Title	GREEN PRODUC	TS AND EN	TREPREN	EURSHIP		
Type of Course	DSE					
Semester	VII					
Academic	300 - 399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3 hours	-	2 hours	5	
Pre-requisites	1. Basic understandi	ng of entrep	reneurship pr	inciples.		
	2. Familiarity with s	•	1			
	3. Knowledge of bus					
	4. Understanding of	environmen	tal science ar	nd its relevand	ce to product	
	development.					
Course Summary	entrepreneurship, in	Understand the principles of sustainability and their application to entrepreneurship, including the triple bottom line approach (economic,				
	environmental, and social). Evaluate green product development strategies, considering factors such as lifecycle assessment, eco-design					
	principles, and sustainable sourcing practices. Analyze the market demand					
	for green products, identifying consumer trends, market niches, and opportunities for innovation. Develop a business plan for a green venture,					
	integrating concepts		•	-	0.	
	including product de	evelopment,	marketing, o	perations, and	i iinance.	

Module	Unit	Content	Hrs				
Ι		Introduction to Green Products and Entrepreneurship	10				
	1	Understanding Green Products - Definition and characteristics of green products, Importance of sustainability in product design and development.	3				
	2	Market Trends and Opportunities - Analysis of consumer preferences towards sustainable products, Identification of market niches and opportunities for green entrepreneurs	3				
	3 Principles of Sustainable Design - Eco-design principles and life cycle thinking, Integration of sustainability criteria into product development processes						
	4	Sustainable Materials and Manufacturing - Selection of eco-friendly materials and production processes, Strategies for reducing environmental impacts in manufacturing. Sustainable Packaging and Distribution - Eco- friendly packaging options and alternatives.	2				
Π		Green Product Development (practicum) 1					
	5	Ideation and Conceptualization - Generating ideas for green products, Concept development and feasibility analysis	4				

	6	Design Thinking for Sustainability - Human-centered design approaches,	4
	0	Prototyping and testing green product concepts	4
	7	Sustainable Product Engineering - Design for disassembly, recycling, and	3
	/		3
		reuse, Incorporating renewable energy and resource efficiency into	
	0	product design	4
	8	Life Cycle Assessment (LCA) - Methodologies for assessing	4
		environmental impacts throughout a product's life cycle, Case studies and	
		applications of LCA in green product development. Certification and	
		Standards. Overview of eco-labels, certifications, and environmental	
		standards, Compliance requirements and benefits for green products	
III		Sustainable Business Models	25
	9	Circular Economy Principles - Understanding the principles of the	3
		circular economy, Implementing circular business models and strategies	
	10	Product-Service Systems (PSS) - Concept and benefits of PSS for	3
	-	sustainability, - Examples of successful PSS implementations	
	11	Collaborative Consumption and Sharing Economy - Role of collaborative	3
		consumption in promoting sustainability, Business opportunities and	-
		challenges in the sharing economy	
	12	Cradle-to-Cradle (C2C) Approach - Principles of C2C design and	3
	12	manufacturing, Case studies of companies adopting C2C principles	5
	13	Social Entrepreneurship and Impact Investing - Using entrepreneurship	3
	15	for social and environmental impact, Financing options and support	5
		networks for green entrepreneurs	
	14	Marketing and Branding Green Products - Green Marketing Strategies,	3
	17	Communicating sustainability attributes to consumers, Ethical marketing	5
		practices and greenwashing avoidance	
	15	Building Sustainable Brands - Branding strategies for green products and	3
	15	companies, - Creating brand value through environmental and social	5
		responsibility	
	16	Consumer Behavior and Psychology - Understanding consumer	2
	10	motivations and barriers towards sustainable consumption, - Behavior	~
		change strategies and marketing interventions	
	17		2
	1/	Green Product Promotion and Distribution - Strategies for promoting	2
		green products through various channels, - Sustainable retailing and online marketing tactics	
IV		Scaling Up and Impact Measurement	10
1 V			
	18	Scaling Green Ventures - Strategies for scaling up green businesses,	2
		Challenges and opportunities in expanding market reach	
	19	Access to Finance and Investment - Financing options for green	2
			I
		entrepreneurs, - Impact investment and venture capital for sustainability	
		ventures	
	20		2
	20	ventures	2

	21	Impact Assessment and Reporting - Methods for measuring and reporting environmental and social impact, Communicating impact to stakeholders and investors	2
	22	Stakeholder Engagement and Partnerships - Building relationships with stakeholders and influencers, Collaborating with NGOs, governments, and other organizations to promote green products	2
V	Case	Studies and Practical Applications – Open ended	15
		: Case Studies and Best Practices - Analysis of successful green product ventures and entrepreneurs, Lessons learned and best practices for aspiring green entrepreneurs	

References

1. Smith, J. (2018). "Sustainability in Business: Concepts, Cases, and Practices." Routledge.

2. Johnson, M. (2016). "Green to Gold: How Smart Companies Use Environmental Strategy to Innovate, Create Value, and Build Competitive Advantage." HarperBusiness.

3. Hart, S. L. (2010). "Capitalism at the Crossroads: Next Generation Business Strategies for a Post-Crisis World." Pearson Education.

4. Hawken, P. (1993). "The Ecology of Commerce: A Declaration of Sustainability." HarperBusiness.

5. Elkington, J. (1998). "Cannibals with Forks: The Triple Bottom Line of 21st Century Business." Capstone.

6. Gladwin, T. N., Kennelly, J. J., & Krause, T. S. (1995). "Shaping the Ethical Context of Organizations: The Role of Social Capital and Moral Community." Journal of Business Ethics, 14(6), 437-448.

7. Esty, D. C., & Winston, A. S. (2009). "Green to Gold: How Smart Companies Use Environmental Strategy to Innovate, Create Value, and Build Competitive Advantage." Yale University Press.

8. Walker, H., & Brammer, S. (2009). "Sustainable Procurement in the Public Sector: An International Comparative Study." International Journal of Operations & Production Management, 29(12), 1234-1253.

9. Schaltegger, S., & Wagner, M. (2006). "Managing the Business Case for Sustainability: The Integration of Social, Environmental and Economic Performance." Greenleaf Publishing.

10. Waddock, S. (2008). "Building a New Institutional Infrastructure for Corporate Responsibility." Academy of Management Perspectives, 22(3), 87-108.

11. Bansal, P. (2005). "Evolve: A High-Level Framework for Understanding Sustainable Enterprise." Academy of Management Review, 30(2), 446-466.

12. Henderson, R., & Van Den Bosch, F. A. (2009). "Managing Business and Innovation Networks." Long Range Planning, 42(1), 79-90.

13. Elkington, J. (1994). "Towards the Sustainable Corporation: Win-Win-Win Business Strategies for Sustainable Development." California Management Review, 36(2), 90-100.

14. Hart, S. L., & Milstein, M. B. (2003). "Creating Sustainable Value." Academy of Management Executive, 17(2), 56-67.

15. Starik, M., & Rands, G. P. (1995). "Weaving an Integrated Web: Multilevel and Multisystem Perspectives of Ecologically Sustainable Organizations." Academy of Management Review, 20(4), 908-935.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understanding of Green Products	U	С	Instructor-created exams / Quiz
CO2	Entrepreneurial Mindset	An	Р	Group Discussions/ Debates
CO3	Market Analysis and Opportunity Identification	Ар	Р	Seminar Presentation / Group Tutorial Work
CO4	Product Development and Design	An	С	Instructor-created exams / Home Assignments
CO5	Business Model Innovation	An	С	Instructor-created exams / Home Assignments
CO6	Supply Chain Management	An	С	Instructor-created exams / Home Assignments

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Lecture	1		F, C		
2	Lecture, Tutorial	2		С, Р		
3	Lecture, Tutorial	3,4		Р, М		
4	Tutorial, Practical	5		М		

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6

CO 1	1	-	_	-	_	_		3	3	3		3
CO 2	2	3	-	-	-	-	3				4	4
CO 3	-	-	1	-	-	-	4		4	3	3	4
CO 4	-	-	2	3	-	-		3	4	4		4
CO 5	-	1	-	-	-	-	4		4	4		4
CO 6	-	-	-	3	-	-	3		4	4	4	4

Correlation Levels:

Level	Correlation
1	Nil
2	Slightly / Low
3	Moderate / Medium
4	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	L SCIENCI	ES					
Course Code	UK6DSEENS302	UK6DSEENS302						
Course Title	RESTORATION ECOLOGY							
Type of Course	DSC							
Semester	VI							
Academic Level	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	 Need basic unders policy, with an outling Have a basic known behind consultation, reporting for restorat 	ne of all the f vledge to rev planning, im ion work.	oundational iew tools, str plementation	concepts ategies, and p n, monitoring,	principles and			
Course Summary	The United Nations Decade on Ecosyster the protection and re of people and nature restoring degraded targets to address th ecosystem services the CBD 2050 Vision loke this detailing a experts in the field to decline in our surrou	n Restoration vival of ecos . It calls for of ecosystems and function n of "Living .ll aspects of praise awaren	n. The UN D ystems arour commitment through cle s loss of bio nality, and 1 in Harmony f ecosystem	ecade is a uni nd the world, a of the global ar, measurab diversity and ead the way with Nature" restoration w	versal call for for the benefit community to le goals and safeguarding to achieving . So, a course ill help build			

Module	Unit	Content	Hrs		
Ι		Basics of Restoration Ecology	10		
	1	Restoration Ecology-Definition and Concept	2		
	2 History of Restoration Ecology and Impacts on Ecosystems				
	3	Goals of Restoration Ecology	1		
	4	Principles of Restoration Ecology	1		
	5	Examples of ecological restoration (National and International)-Field	4		
		Visit to Sites of Importance			
II		Types of Ecological Restoration	10		
	6	Passive restoration	3		
	7	Active restoration	3		
	8	Rehabilitation	2		
	9	Reclamation	2		
III		Concepts Underpinning Restoration	15		
	10	Disturbance	3		
	11	Genetics	3		

	12	Succession	3
	13	Community Assembly Theory	3
	14	Landscape Ecology	3
IV		Approaches to Ecological Restoration	15
	15	Importance of Ecological Restoration	2
	16	Assessing the site	1
	17	Formulating project goals	1
	18	Removing sources of disturbance	1
	19	Restoring processes/disturbance cycles	1
	20	Rehabilitating substrates	2
	21	Restoring vegetation- Field Visit/Practicum	4
	22	Monitoring and maintenance	2
V		Challenges and Solutions	10
	23	Climate Change Impacts	5
	24	Solutions - Collaborative and adaptive approaches	5
	25	Open ended	15

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the basics of ecological restoration	U	PSO 1
CO-2	Define the goals and principles involved with valid proof	R	PSO 2
CO3	Understand the different steps involved in the restoration process	U	PSO 6
CO4	Address the major challenges involved in the restoration process and come up with possible solutions to solve the problem	Е	PSO 4
CO5	Recognize the importance of environmental changes, demonstrate an understanding of theoretical and practical environmental issues	An	PSO 6, PSO 10

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

C O No	СО	PO/PS O	0	Knowledg e Category	Lecture (L)/Tutoria l (T)	Practica l (P)	Open Ende d
•							

1	Understand the basics of ecological restoration	PSO 1	U	F, C	10		3
2	Define the goals and principles involved with valid proof	PSO 2	R	P, C	10		3
3	Understand the different steps involved in the restoration process	PSO 6	U	М	12	4	3
4	Address the major challenges involved in the restoration process and come up with possible solutions to solve the problem	PSO 4	Ε	М	10	4	3
5	Recognize the importance of environmenta l changes, demonstrate an understandin g of theoretical and practical environmenta l issues	PSO 6, PSO 10	An	Р	10		3

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PS O2	PS O3	PSO 4	PSO 5	PSO 6	PSO1 0	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	1	-	1	-	-	-	1	-	1	_	1	-	1
CO 2	2	3	-	-	-	-	-	1	-	-	-	1	-
CO 3	-	-	1	-	-	2	-	-	-	2	-	-	-
CO 4	-	-	2	3	-	-	-	2	-	1	-	2	-
CO 5	-	1	-	-	-	3	1	-	-	1	2	-	-

REFERENCES

- Botkin, Daniel B. 2011. Environmental Science: Earth as a Living Planet, John Wiley and Sons, New Delhi.
- Chapman, J.L. and Re is s, M. J. 2005. Ecology P rincip l e s a n d Ap p licatio n s , Cambridge University Press, London.
- Dash, M.C. 1994. Fundamentals of Ecology, Tata McGraHill, New Delhi
- Groom. B. and Jenkins. M. 2000.*Global Biodiversity: Earth's Living Resources in the 21st Century*. World Conservation Press, Cambridge, UK.
- Gurevitch, J., Scheiner, S. M., & Fox, G. A. 2002. *The Ecology of Plants*. Sinauer associates incorporated.
- Gunther, O. 1998 Environmental Information Systems. Berlin, New York, Springer.
- Loreau, M. & Inchausti, P. 2002. *Biodiversity and Ecosystem functioning: Synthesis and Perspectives*. Oxford University Press, Oxford, UK.
- Miller G.Taylor and Scott Spoolman. 2011. Essentials of Ecology, Brooks/ColeLearning, USA.
- Odum, E.P. 1971. Fundamentals of Ecology, W.B.Saunders Company, Philadelphia.
- Sharma.P.O. 1996. Environmental Biology, Rastogi Publications, Meerut.
- Singh, J.S., Singh, S.P. & Gupta, S.R. 2006. *Ecology, Environment and Resource Conservation*. Anamaya Publications.
- Verma.P.S. andV.K.Agarwal. 1985. Principles of Ecology. S.Chand and Company, New Delhi.
- Wilson, E. O. 1985. The Biological Diversity Crisis. *BioScience* 35: 700-706.

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	ENVIRONMENTAL SCIENCES						
Course Code	UK6DSEENS303							
Course Title	SOIL CONSERVA	TION						
Type of Course	DSE							
Semester	VI							
Academic	300-399							
Level					•			
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	 Basic knowle Understandir Familiarity w 	ng of ecologi	cal principle	s	gy			
Course Summary	This course provid practices of land ma about the importan classification, erosio of policy and regu discussions, case stu gain the necessary k land degradation and	nagement and nee of sustant on control tectulations in l dies, fieldword cnowledge and	nd soil conse ainable land hniques, wat and conserv ork, and prac ad skills to a	ervation. Stud use, soil p er manageme ration. Throu tical exercises ddress challe	ents will learn properties and nt, and the role gh theoretical s, students will nges related to			

Module	Unit	Content	Hrs
Ι		Introduction to Land Management and Soil Conservation	8

	1	Definition of land management and soil conservation	2
	2	Importance of sustainable land management	3
	3	Historical perspectives and development of soil conservation practices	3
II		Soil Properties and Classification	8
	4	Soil formation processes	2
	5	Soil texture, structure, and composition	3
	6	Soil classification systems (e.g., USDA soil taxonomy)	3
III		Erosion Control and Soil Conservation Practices	15
	7	Types of soil erosion (water, wind, tillage)	2
	8	Erosion control practices (e.g., contour ploughing, terracing, windbreaks)	3
	9	Soil erosion modelling and prediction	2
	10	Conservation tillage methods (e.g., no-till, reduced tillage)	2
	11	Cover cropping and crop rotation	1
	12	Conservation buffer zones	2
	13	Soil amendments and organic matter management	3
IV		Land Use Planning and Sustainable Agriculture	7
	14	Principles of sustainable land use planning	1
	15	Integrated land management approaches	2
	16	Agroforestry and silvopastoral systems	3
	17	Urban land management and green infrastructure	1
V		Soil Degradation and Remediation	7
	18	Soil degradation: causes and consequences	1
	19	Soil pollution and contamination	2
	20	Soil remediation techniques (e.g., phytoremediation, bioremediation)	2
	21	Land rehabilitation and restoration strategies	2

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the importance of sustainable land management practices for environmental conservation and food security.	U	PSO-1,2
CO-2	Identify different types of soil erosion and apply appropriate erosion control techniques.	R, U	PSO-2,3
CO-3	Implement conservation tillage methods and sustainable agricultural practices to reduce soil erosion and improve soil health.	Ар	PSO-3,4
CO-4	Evaluate water management strategies and their	Е	PSO-2,3.4

	impact on soil conservation.		
CO-5	Analyze the role of land use planning and policy frameworks in promoting sustainable land management.	An	PSO-4,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

References

- 1. Brady, N.C., Weil, R.R. (2016). The Nature and Properties of Soils. Pearson.
- 2. Lal, R. (2015). Soil and Water Conservation: An Annotated Bibliography. CRC Press.
- 3. Conservation Agriculture: Global Prospects and Challenges. (2014). FAO.
- 4. Best Management Practices for Agricultural Soil Conservation. (2018). USDA Natural Resources Conservation Service.
- 5. Soil and Water Conservation Society (SWCS). (<u>https://www.swcs.org/</u>)
- 6. International Soil Conservation Organization (ISCO). (<u>https://www.isco.org/</u>)

Note: 1 or 2 COs/module

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand the importance of sustainable land management practices for environmental conservation and food security.	PSO-1,2	U	F, C		
CO-2	Identify different types of soil erosion and apply appropriate erosion control techniques.	PSO-2,3	R, U	C,P		
CO-3	Implement conservation tillage methods and sustainable agricultural practices to	PSO-3,4	Ар	P,M		

	reduce soil erosion and improve soil health.				
CO-4	Evaluate water management strategies and their impact on soil conservation.	PSO- 2,3.4	Ε	М	
CO-5	Analyze the role of land use planning and policy frameworks in promoting sustainable land management.	PSO-4,5	An	P,M	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	1	-	-	-	-	2	-	-	-	-	-
CO 2	-	2	3	-	-	-	-	-	-	-	-	-
CO 3		-	2	1	-	-	-	2	-	-	-	-
CO 4	-	1	2	3	-	_	-	-	2			-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial / High

Assessment Rubrics:

Quiz / Assignment/ Quiz/ Discussion / Seminar

- Midterm Exam
- Programming Assignments Final Exam
- •

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENT	ENVIRONMENTAL SCIENCES						
Course Code	UK6DSEENS304	UK6DSEENS304						
Course Title	WASTE TO ENE	RGY						
Type of Course	DSE							
Semester	VI							
Academic Level	300-399	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	4 hours	-		4			
Pre-requisites	The learners should have an understanding of environmental problems created by various kinds of waste. The learner also should have a basic idea of the problems associated with the availability of energy and alternative sources of energy.							
Course Summary	This course provid energy systems and				lifferent waste-to-			

Module	Unit	Content	Hrs			
Ι		Introduction to waste management	2			
	1	Principles of waste management and waste utilization	1			
	2	Waste management hierarchy: 3R Principle	1			
II	Classification of wastes					
	3 Waste production in different sectors: domestic, industrial, agriculture:		2			
	International and National scenario					
	4	Classification of wastes: biodegradable/ non-biodegradable; hazardous	2			
		and non-hazardous				
		Waste Conversions				
	5	Technologies for waste to energy: biochemical conversion	2			

III	6	Anaerobic digestion and fermentation; biogas production	2				
	7	Biogas plant technology: Design and construction features	2				
	8	Types of biogas plants - applications	2				
	-		2				
	9	,					
	10	Incineration and pyrolysis	2				
IV		Energy from wastes	26				
	11	Gasification, Plasma Arc Technology	2				
	12	Landfill gas: collection and recovery	2				
	13	Conversion of wastes to fuel resources	2				
	14	Plastic wastes and energy recovery	2				
	15	Biomass extraction and valorization	2				
	16	Hydrogen production: Pyrolysis of biomass; gasification	2				
	17	Bioethanol production from biomass wastes	2				
	18	Biodiesel production from biomass waste and vegetable oil	2				
	19	Transesterification of triglycerides	2				
	20	Biodiesel from spent oil	2				
	21	Determination of biodiesel viscosity and flammability point	2				
	22	Alcohol production from biomass	2				
	23	Bioconversion of organic wastes: composting	2				
V		Biomass energy program	16				
	24	Urban wastes to energy conversion and biomass energy program in India	4				
	25	Open-ended	12				

References

- 1. Brunner, P. H., & Rechberger, H. (2015). Waste to energy-key element for sustainable waste management. *Waste management*, *37*, 3-12.
- 2. C. Y. WereKo-Brobby and E. B. Hagan. 1996. Biomass Conversion and Technology, John Wiley & Sons.
- 3. Challal, D. S. 1991. Food, Feed and Fuel from Biomass,., IBH Publishing Co. Pvt. Ltd.,
- 4. Kalogirou, E. N. (2017). *Waste-to-Energy technologies and global applications*. CRC Press.
- 5. Klinghoffer, N. B., & Castaldi, M. J. (Eds.). (2013). Waste to energy conversion technology. Elsevier.
- 6. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990
- 7. Rogoff, M. J., & Screve, F. (2019). Waste-to-energy: technologies and project implementation. Academic Press.
- 8. Stehlík, P. (2009). Contribution to advances in waste-to-energy technologies. *Journal* of Cleaner Production, 17(10), 919-931.
- 9. Tabasová, A., Kropáč, J., Kermes, V., Nemet, A., & Stehlík, P. (2012). Waste-toenergy technologies: Impact on environment. *Energy*, 44(1), 146-155.
- 10. Tozlu, A., Özahi, E., & Abuşoğlu, A. (2016). Waste to energy technologies for municipal solid waste management in Gaziantep. *Renewable and Sustainable Energy Reviews*, 54, 809-815.

- 11. Trabold, T., & Babbitt, C. W. (Eds.). (2018). Sustainable food waste-to-energy systems. Academic Press.
- 12. Young, G. C. (2010). *Municipal solid waste to energy conversion processes: economic, technical, and renewable comparisons.* John Wiley & Sons.

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Analyze the various aspects of waste-to-energy systems	R, U	PSO- 1,2,3 PO- 1,2
CO-2	Illustrate the classification of waste and its conversions to different types of fuels	R, U	PSO- 1,2,3 PO- 3,4
CO-3	Explain the concept of waste to energy	U	PSO-1,2,3 PO-1.2
CO-4	Explain different types of biomass combustion techniques	An	PSO-3,4 PO-2,7
CO-5	Link legal, technical and management principles for the production of energy from waste	An, Ap	PSO- 3,4,5 PO- 1,2,6,8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Analyze the various aspects of waste-to- energy systems	PSO- 1,2,3 PO- 1,2	R, U	F, C	2	-
CO-2	Illustrate the classification of waste and its conversions to different types of fuels	PSO- 1,2,3 PO- 3,4	R, U	F, C	4	-
CO-3	Explain the concept of waste to energy	PSO- 1,2,3 PO-1.2	U	F, C	12	-

CO-4	Explain different types of biomass combustion techniques	PSO-3,4 PO-2,7	An	F, C, M	26	
CO-5	Link legal, technical and management principles for the production of energy from waste	PSO- 3,4,5 PO- 1,2,6,8	An, Ap	F, C	4	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	3	3	-	-	-	3	3	-	-	-	-
CO 2	3	3	3	-	-	-	-	_	3	3	-	-
CO 3	_	_	3	3	-	-	3	3	2	-	-	-
CO 4	3	3	3	-	-	-	2	2	-	-	-	-
CO 5	-	-	3	-	-	2	-	-	3	2	-	3

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Analytical skills
- Final Exam

Mapping of COs to Assessment Rubrics :

Internal Exam	Assignment	Project Evaluation	End Semester Examinations

CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	AL SCIENC	ES	ENVIRONMENTAL SCIENCES					
Course Code	UK6SECENS301								
Course Title	REMOTE SENSIN	G AND DI	GITAL IMA	GE PROCE	SSING				
Type of Course	SEC								
Semester	VI								
Academic	300 - 399								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	1. Basic map reading	g and interpre	etation skills						
	2. Basic understandi	ng of physic	al and geogra	aphical conce	pts involved				
	in geospatial technol	logy							
Course	This course covers the	he interdiscip	linary field o	of geoinforma	tics, exploring				
Summary	its definition, comp								
	The students will a	equire pract	ical skills ir	n remote sen	sing and GIS,				
	familiarity with Ar								
	assessment, urban	planning, b	oiodiversity	conservation,	and climate				
	change analysis.								

Module	Unit	Content	Hrs
Ι		Introduction to Remote Sensing	10
	1	Basic Principles of Remote Sensing (Physics of remote sensing,	2
		Characteristics of electro-magnetic radiation; Interactions between matter	
		and electro-magnetic radiation; energy interaction in the atmosphere;	
		energy interactions with the earth's surface, spectral reflectance curves)	
	2	Types of remote sensing (Ground-based, airborne, and spaceborne,	2
		Orbits-polar, geostationary, Sensors-active, passive, MSS, Radar, Lidar,	
		Resolution - Spatial, spectral, temporal, and radiometric).	
	3	Scanners and sensors(imaging sensors, Thermal sensors; Atmospheric	2
		sensors; Sonar; Laser, radar, hyperspectral sensors, Panchromatic,	
		Multispectral-whisk broom & push broom, stereo images, Products from	
		scanner data, Image data characteristics	
	4	Data products and softwares (Digital data products and their	2
		characteristics. Digital Image Formats-BSQ, BIL, BIP, licensed and	

		opensource softwares for geodata processing)	
	5	Data visualisation (Image layer stacking, Colour image generation, Initial	2
		data statistics, Histogram and Scatter plot, Mosacing)	
II		Digital image processing I – Pre processing	10
	6	Image Rectification (Atmospheric, Geometric corrections, radiometric	2
		correction, noise removal)	
	7	Image registration (image to map, image to image)	2
	8	Spatial Filtering- Low Frequency, High Frequency,	2
	9	Band ratioing and Band Combination	2
	10	Image Enhancement (Contrast manipulation, Spatial feature	2
		manipulation, Multi-image manipulation)	
III		Digital image processing II – Image classification	10
	11	Unsupervised classification techniques (generating clusters, assigning	2
		classes)	
	12	Supervised classification techniques	2
	13	Training site creation and signature editing	2
	14	Classifiers: Maximum Likelihood, Euclidian Distance, Mahalanobis	2
		Distance, Paralellopiped.	
	15	Classification. Accuracy Assessment and Error Matrix (Kappa statistics)	2
IV		Recent trends and applications in digital image processing	10
	16	High-Resolution Sensors (optical and radar)	2
	17	Real-Time Data Acquisition	2
	18	Digital Elevation Models (DEMs)	2
	19	Artificial Intelligence and Machine Learning Techniques	2
	20	Geo-spatial Modelling and TimeSeries Analysis	2
V		Project and Practical Applications	8
	21	Hands-on experience with Google Earth Engine and open source	2
		softwares	
	22	Mapping land use and land cover changes.	2
	23	Project-based Field visits	2
	24	Guest lectures by industry professionals	2
	25	Open Ended	12

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed
CO-1	Explore the characteristics of electromagnetic radiation, Learn about products derived from scanner data and image data charact	U, R	PO-2 PSO-1,2
CO-2	Understand the impact of atmospheric effects on remotely sensed imagery and Learn techniques to correct for atmospheric distortions. Understand	U, R	PO-1 PSO-1,2

	contrast stretching techniques		
CO 3	Understand the concept of unsupervised and supervised classification, Learn about the confusion matrix and its components, Calculate Kappa statistics to assess overall classification accuracy	U, Ap, An	PO-3,7 PSO-1,2
CO 4	Understand relevant aspects of digital image representation and their practical implications, Apply artificial intelligence and machine learning techniques to geospatial data	U, Ap	PO-3,7 PSO-1,3
CO 5	Explore open-source software platforms (such as QGIS, GRASS GIS, or R) for spatial data processing and analysis, Apply theoretical knowledge to practical scenarios and gain insights into the challenges faced in the field.	An, Ap	PO-5,7 PSO-3,4,6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

References

- 1. Understanding Earth Observation, The Electromagnetic Foundation of Remote Sensing, Domenico Solimini. Springerlink, 2016.
- 2. Digital Image Processing, Rafael C. Gonzalez, Richard Eugene Woods. Prentice Hall, 2008.
- 3. Digital Image Processing, Rafael C. Gonzalez. Pearson Education India, 2009.
- 4. Remote Sensing and Image Interpretation by Thomas Lillesand, Ralph W. Kiefer, and Jonathan Chipman. John Wiley & Sons.
- 5. Remote Sensing and Digital Image Processing with R, Marcelo de Carvalho Alves, Luciana Sanches. 2023 (1st Edition).
- 6. Math Physics Foundation of Advanced Remote Sensing Digital Image Processing, Lei Yan , Hongying Zhao , Yi Lin , Yanbiao Sun. Springerlink, 2023.
- Image Processing and GIS for Remote Sensing Techniques and applications, Jian Guo Liu and Philippa J. Mason. Wiley Blackwell, 2016 (2nd edition).
- 8. Introductory Digital Image Processing A Remote Sensing Perspective, John R Jensen. Pearson, 2017(Fourth Edition).

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	CO	PO/PSO	8	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)	Open Ended (OE)
-----------	----	--------	---	-----------------------	--------------------------------	------------------	-----------------------

CO 1	1	PO-2 PSO-1,2	U, R	F, C	10		2
CO 2	2	PO-1 PSO-1,2	U, R	F, C	10		2
CO 3	3	PO-3,7 PSO-1,2	U, Ap, An	С, Р	10		2
CO 4	4	PO-3,7 PSO-1,3	U, Ap	С, Р	10		2
CO 5	5	PO-5,7 PSO-3,4,6	An, Ap	Р, М		8	4

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	1	-	-	-	-	-	2	-	-	-	-
CO 2	1	3	-	-	-	-	2	-	-	-	-	-
CO 3	2	1	_	_	_	_	_	-	3	-	_	_
CO 4	2	-	1	_	_	_	_	-	1	_	-	_
CO 5	-	-	2	2	-	1	-	-	-	-	1	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Internal Exam
- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Project evaluation
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5			\checkmark	

Discipline	ENVIRONMENTA	L SCIENC	ES				
Course Code	UK6SECENS302						
Course Title	APPLICATIONS (OF ENVIRC	NMENTAI	L IMPACT			
	ASSESSMENT						
Type of Course	SEC						
Semester	VI						
Academic	300 - 399						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	4 hours	-		4		
Pre-requisites	The learner should h	ave a basic u	Inderstanding	g of the enviro	onmental		
	issues caused by dev	elopmental a	activities				
Course	The course is intend	0	,	U	1		
Summary	of activities on the	environmen	t and the m	echanisms to	measure the		
	significance of those	0		-			
	various stages of this	-					
	a developmental acti		-				
		The course is structured in a way to makes the learner competent to get a					
	job in the State Env		1		•		
	projects. Finally, the	e learner is	expected to	execute an E	IA study of a		
	selected project						

Module	Unit	Content	Hrs					
Ι		Introduction to Environmental Impact Assessment (EIA) 1						
	1	Stages of EIA (Pre-study period: Screening, scoping, assessment, Study period: preparation of EIA. Post-study period: review, decision making, and monitoring), Types of EIA (preliminary, rapid, comprehensive)						
	2	EIA as an integral part of planning	1					
	3	Description of project and project alternatives by the project proponent	1					

	T .		-
	4	Environment Attributes: air, water, noise, land and soil	2
	5	Baseline Data collection	1
	6	Screening, initial environmental examination, scoping	2
	7	Scoping	1
	8	Draft Environmental Impact Statement, public participation, Final EIS	2
	9	Reviewing and decision-making	1
	10	Monitoring, impact management, EIA audit, and evaluation	2
II		EIA of Highrise Buildings and Construction Projects	6
	11	Introduction	1
	12	Categorization of Building Projects	1
	13	Guidelines for EIA study	1
	14	Standard TOR	2
	15	Case Study (Practicum)	1
III		EIA of Highway Projects	6
	16	Introduction, Guidelines for EIA Study	1
	17	Generic Structure of Highway Projects	1
	18	Validity and Transferability of Environmental Clearance	1
	19	Post-environmental Clearance Monitoring	1
	20	Case Study (Practicum)	2
IV		EIA of Rock Quarrying	4
	21	Introduction, Generic Structure of EIA document	1
	22	Validity and Transferability of Environmental Clearance	1
	23	Case Study (Practicum)	2
V		EIA of Mining	12
	24	Introduction, Categorisation of Mining Projects, Generic Structure of EIA	3
		with Case Study (Practicum)	
	25	Open-ended	9
			<u> </u>

References

- 1. Anji Reddy Mareddy, Butterworth-Heinemann, 2017. Environmental Impact Assessment.
- 2. Assessment. IK International publishing house Pvt. Ltd.
- 3. Bregman, J.I. and Mackenthum, K.M. 1992. Environmental impact statements. Chelsia Michigan: Lewis.
- 4. Canter, W. Larry. 1996. Environmental impact assessment. McGraw-Hill International editions. 660p.
- 5. Fortlage, C. 1990. Environmental assessment: a practical guide. Aldershot: Gower
- 6. Glasson J, Taylor and Francis, 2019. Introduction To Environmental Impact Assessment 5Ed.
- 7. Glasson, J; Therivel, R and Chadwick, Al. 1999. Introduction to environmental impact assessment. UCL Press. 496p.
- 8. Glasson, J., & Therivel, R. (2013). Introduction to environmental impact assessment. Routledge.
- 9. Khandeshwar, S.R., Raman, N.s., Gajbhiye, A.R (2019). Environmental Impact

- 10. Morris, P and Therivel, R. 1995. Methods of environmental impact assessment. London. UCL press.
- 11. Munn, R.E.1979. Environmental impact assessment: principles and procedures, 2nd Edn. New York: Wiley.
- 12. Sabu Joseph and Arunkumar K S. 2022. Environmental Impact Assessment of Developmental Projects

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe the history of EIA, explain the various types, stages, and characteristics of EIA	R, U	PSO-1,2,6 PO- 1,2
CO-2	Explain the concept of project and project alternatives, and environmental attributes, and will be able to describe the process of Environmental Impact Assessment.	R, U	PSO-1,2,6 PO- 1,6,7
CO-3	Identify, predict, and evaluate impacts	Ар	PSO- 2,3,4,6 PO- 1,2,5
CO-4	List various categories of projects and identify which of those need an EIA	Ар	PSO-6 PO- 2
CO-5	Describe the functions of the State Environment Impact Assessment Committee, Environmental Clearance in India, and the functions of the Environmental Appraisal Committee	R, Un	PSO-1,2,6 PO- 1,2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Describe the history of EIA, explain the various types, stages, and characteristics of EIA	PSO- 1,2,6	1	F, C	7	0
CO-2	Explain the	PSO-	R, U	F, C	5	1

	concept of project and project alternatives, and environmental attributes, and will be able to describe the process of Environmental Impact Assessment.	1,2,6				
CO-3	Identify, predict, and evaluate impacts	PSO- 2,3,4,6	Ар	F, C, P	4	2
CO-4	List various categories of projects and identify which of those need an EIA	PSO-6,9	Ар	С, Р, М	2	2
CO-5	Describe the functions of the State Environment Impact Assessment Committee, Environmental Clearance in India, and the functions of the Environmental Appraisal Committee	PSO- 1,2,6,9	R, Un	C. P	1	2

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	2	-	-	-	3	3	3	-	-	-	-

CO 2	2	2	_	_	-	3	3	_	_	_	_	3
CO 3	-	3	3	-	-	3	3	3	-	-	2	-
CO 4	-	-	-	-	-	3	-	3	-	-	-	-
CO 5	3	3	-	-	-	3	3	3	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Case Studies
- Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTAL SCIENCES
Course Code	UK6SECENS303
Course Title	ECOTOURISM
Type of Course	SEC
Semester	VI
Academic	300 - 399
Level	

Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	3	2 hours	-	1 hours	3
Pre-requisites	1. A basic understan	ding on the e	cological and	d social conce	epts
	2. A genuine interest	t in ecotouris	m and sustai	nability	
Course	This course delves in	to the princi	ples of sustai	nable tourism	, emphasizing
Summary	the engagement of lo	cal communi	ities and asse	ssing the ecolo	ogical impacts
	of tourism, including	g carrying cap	pacity and ec	ological limit	s. Community
	engagement and emp	powerment a	re central to	the course, hi	ghlighting the
	role of local comm	nunities in	ecotourism,	community-b	ased tourism
	initiatives, and the se	ocioeconomi	c benefits an	d challenges t	they face. The
	course is enriched w	ith field visi	ts to ecotour	ism sites and	guest lectures
	from industry expe	erts, providi	ing practical	l insights ar	nd real-world
	applications.				

Module	Unit		Hrs
I	Ome	Ecotourism-Introduction & Ecological Foundations	10
-	1	Definition, historical context, and evolution of ecotourism	2
	2	Principles of sustainable tourism & engagement of local communities	2
	3	Concepts, characteristics and attributes of ecotourism (the six characters	2
		(Chesworth, 1995), species and ecosystem conservation, livelihood for	
	4	local communities) Ecological impacts of tourism (positive and negative, balancing economic	2
		benefits with ecological consequences)	
	5	Types of eco-tourists (hardcore, dedicated, mainstream, casual)	2
Π		Natural Resource Management	10
	6	Aims in accordance with sustainable use of natural resources	2
	7	Forests, wetlands, marine environments (potentials and challenges of each with examples)	2
	8	Ecological restoration and habitat enhancement (methods and benefits)	2
	9	Ecotourism standards (protection of the cosystem, maintenance of	2
		physico-chemical conditions, conservation of local culture, sustainability)	
	10	Case studies of successful wildlife tourism projects	2
III		Economic Aspects and Tourism Marketing	10
	11	Economic impact assessments (CBA, Economic IO, revenue generation assessment in the context of ecotourism projects)	2
	12	Pricing strategies for ecotourism products (product quality, distribution and accessibility, cost structure and profit marginality)	2
	13	Marketing strategies and campaigns (Partenship creation, awareness campaigns, highlighting sustainability patterns, educational contents, leveraging digital platforms etc)	2
	14	Target audiences and Responsible advertising (targeting adventure	2
		seekers, nature lovers, and conservationists through showcasing	
		sustainability, educating tourists, digital marketing and collaborating with stakeholders)	
	15	Carrying capacity and ecological limits (methods of assessment and	2
			247

		factors under consideration)					
IV		Tourism Policies and Regulations	10				
	16	National and international policies (Wildlife (Protection) Act, 1972, State	2				
		Policies, UN-declared International Year of Ecotourism (IYE) 2002,					
		UNWTO (United Nations World Tourism Organization)					
	17	Certification programs (e.g., Green Globe, Rainforest Alliance)	2				
	18	Legal frameworks for ecotourism development	2				
	19	Ecotourism performance indicators (Key Performance Indicators (KPIs)-	2				
		carbon footprint reductio, community engagement, waste management					
		and recycling, education and awareness, sustainable resource					
		management, local economic development)					
	20	Benefits/advantages of ecotourism	2				
V	Community Engagement and Empowerment (Practicum)						
	21	Role of local communities in ecotourism- field-based experience	2				
		generation					
	22	Ecological Surveys: Students learn to assess biodiversity, habitat quality,	2				
		and ecosystem health.					
	23	Field visits to ecotourism sites and Guest lectures from industry experts	2				
	24	Development of basic planning strategies for ecotourism development	2				
	25	Open Ended	12				

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed
CO-1	Understand the historical development and evolution of ecotourism as a concept. recognize the critical role of local communities in ecotourism development and management, evaluate the ecological limits of specific ecosystems and their implications for sustainable tourism practices	U, R	PO-1 PSO-1,2
CO-2	Understand the principles of sustainable resource utilization in ecotourism, explore techniques for enhancing habitats to support biodiversity and ecotourism activities, and examine real-world examples of wildlife tourism initiatives that have achieved a balance between conservation and visitor experience	U, An, Ap	PO-2,3 PSO-1,2,4
CO 3	Understand how tourism activities influence local economies, employment, and revenue generation, determine appropriate pricing for ecotourism experiences while considering sustainability and	U, Ap	PO-3, 6 PSO-1,2,7

	affordability, explore digital marketing, content creation, and promotional techniques tailored to ecotourism.		
CO 4	Explore legal frameworks related to tourism at both global and national levels, understand the role of certification in promoting sustainable practices within the tourism industry, and evaluate the success and effectiveness of ecotourism initiatives.	U, An	PO-3.7 PSO-1,2,5
CO 5	Recognize the pivotal role local communities play in ecotourism development, critically examine community challenges, such as capacity building, resource management, and balancing economic gains with cultural preservation, and gain practical insights through field visits to ecotourism destinations, observing community involvement and sustainable practices.	U, Ap, An	PO-2,3 PSO-4, 5,6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-CreatePO-*Note: 1 or 2 COs/module*

References

- 1. Ecotourism, David A. Fennell. Routledge, 2020 (5th edition).
- 2. The Encyclopedia of Ecotourism, David Weaver. CABI, 2001.
- 3. Ecotourism Policy and Planning, David A. Fennell CABI, 2003.
- 4. Culture, Ecology, and Sustainable Development, Sukanta K. Chaudhury. Mittal Publications, 2006 (1st edition).
- 5. Environment Impacts of Ecotourism, Ralf Buckley. CABI, 2004.
- 6. Ecotourism: Environment, Health, and Education, Wei-Ta Fang, Arba'at Hassan, Max Horng. Springer, 2024.

CO No.	СО	PO/PSO addresse d	Cogniti ve Level	Knowledg e Category	Lecture (L)/Tutorial (T)	Practic al (P)	OE
CO-1	Understand the historical development and evolution of ecotourism as a concept. recognize the critical role of local communities in ecotourism development and management, evaluate the ecological limits of	PO-1 PSO-1,2	U, R	F, C	12		2

Name of the Course: Credits: 2:0:1 (Lecture: Tutorial: Practical)

				1		1	
	specific ecosystems and their implications for sustainable tourism practices						
CO-2	Understand the principles of sustainable resource utilization in ecotourism, explore techniques for enhancing habitats to support biodiversity and ecotourism activities, and examine real-world examples of wildlife tourism initiatives that have achieved a balance between conservation and visitor experience	PO-2,3 PSO- 1,2,4	U, An, Ap	С, Р	12	3	2
CO 3	Understand how tourism activities influence local economies, employment, and revenue generation, determine appropriate pricing for ecotourism experiences while considering sustainability and affordability, explore digital marketing, content creation, and promotional techniques tailored to ecotourism.	PO-3, 6 PSO- 1,2,6	U, Ap	Р, М	12	3	3
CO 4	Explore legal frameworks related to tourism at both global and national levels, understand the role of certification in promoting sustainable practices within the	PO-3.7 PSO- 1,2,5	U, An	Р, М	12	3	3

	tourism industry, and evaluate the success and effectiveness of ecotourism initiatives.					
CO 5	Recognize the pivotal role local communities play in ecotourism development, critically examine community challenges, such as capacity building, resource management, and balancing economic gains with cultural preservation, and gain practical insights through field visits to ecotourism destinations, observing community involvement and sustainable practices.	PO-2,3 PSO-4, 5,6	U, Ap, An	Р, М	3	5

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	1	-	-	-	-	1	-	-	-	-	-
CO 2	1	3	-	2	-	_	-	1	2	-	_	-
CO 3	2	1	_	-	-	1	-	_	3	-	_	2
CO 4	2	3	-	_	1	-	-	-	2	-	-	-
CO 5	-	-	-	2	1	1	-	2	2	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Internal Exam
- Quiz / Assignment/ Quiz/ Discussion / Seminar
 Project evaluation
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5			\checkmark	

Dissipling	ENVIDONMENTA	I SCIENC	FS				
Discipline		ENVIRONMENTAL SCIENCES					
Course Code	UK6VACENS300						
Course Title	ENVIRONMENTA	L MANAG	EMENT SY	STEMS AN	D ISO 14001		
Type of Course	VAC						
Semester	VI						
Academic	300 - 399						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	3	2 hours	-	1 hours	3		
Pre-requisites	1. Basic understandi	ng of enviroi	nmental issue	es, sustainabil	ity, and the		
	importance of minim	nizing enviro	nmental imp	act.			
	2. Basic knowledge	of environme	ental laws, re	gulations, and	l compliance		
	requirements.			-	-		
Course	This course provide	es a compre	hensive intro	oduction to e	environmental		
Summary	management system	s (EMS) and	a ISO 14001	. Students wi	ll explore the		
	evolution of EMS, u				1		
				-			
	•	about key elements such as legal compliance, risk assessment, and environmental impact assessment. The course emphasizes stakeholder					
	engagement, document control, and performance evaluation. By the end						
	of the course, students will be equipped with the knowledge and tools to						
	promote sustainable	-			,		
	promote sustainable	environmen	lai practices v	within organiz	Lations.		

Module	Unit	Content	Hrs
Ι	Intro	duction to Environmental Management Systems (EMS) and ISO 14001	10
	1	Environmental Quality:	2
		Understanding environmental quality parameters (air, water, soil, noise).	

		Measurement techniques and standards for environmental quality.	
	2	History of EMS: Evolution of environmental management systems.	2
	2	Milestones and key developments in EMS implementation.	
		Definition, aims and key principles	
	3	2015 Standards (ISO 14001:2015):	2
	5	Overview of ISO 14001:2015 requirements.	2
		High-level structure and core elements.	
		•	
	4	Transition from ISO 14001:2004 to ISO 14001:2015.	
	4	Intended Parties and Stakeholders:	2
		Identifying interested parties (internal and external).	
		Understanding their roles and expectations in EMS implementation.	
	5	Legal and regulatory framework: Environmental compliance	2
II		Environmental issues, risks and opportunities	10
	6	Internal Issues:	2
		Organizational context and culture.	
		Internal factors influencing EMS effectiveness.	
	7	External Issues:	2
		Legal, regulatory, and industry-specific requirements.	
		Social, economic, and technological trends affecting environmental	
		management.	
	8	Environmental Risks and Opportunities:	2
	_	Risk assessment methodologies.	
		Identifying environmental risks and opportunities.	
		Mitigation strategies and preventive measures.	
	9	Environmental Impact Assessment (EIA):	2
		EIA process and its role in EMS.	2
		Conducting environmental impact assessments for projects.	
	10	Emergency Preparedness and Response:	2
	10	Developing emergency plans and procedures.	2
ш		Training personnel for effective emergency response.	10
III	11	Document Control and Environmental Performance Evaluation	10
	11	Document Control:	2
		Establishing document control procedures.	
		Managing EMS documentation (policies, procedures, records).	
	12	Environmental Performance Evaluation:	2
		Monitoring environmental indicators.	
		Assessing performance against objectives and targets.	
		Reporting on environmental performance.	
	13	Internal Audit:	2
		Planning and conducting EMS audits.	
		Evaluating compliance and effectiveness.	
		Corrective actions based on audit findings.	
	14	Management Review:	2
		Reviewing EMS performance with top management.	
		Decision-making for continual improvement.	
		Ensuring alignment with organizational goals.	
	15	Environmental operational control procedures	2
	13	Environmental operational control procedures	<u>ک</u>

IV		Current and Innovative Approaches in EMS	10
	16	Technology integration, eco-design, and circular economy in the context	2
		of EMS	
	17	Mutual exchange programs and water budgeting	2
	18	Life cycle approaches and extended producer's responsibility (EPR)	2
	19	Online monitoring system for quality parameters	2
		Continual improvement for meeting quality standards	
	20	Environmental Sustainability in EMS:	2
		Waste reduction strategies.	
		Carbon footprint reduction initiatives.	
V		Case Studies and Practical Applications (Practicum)	8
	21	Real-world Case Studies:	2
		Analyzing successful EMS implementations.	
	22	Practical Applications:	2
		Developing an EMS implementation plan.	
		Applying ISO 14001 principles to specific industries (manufacturing,	
		services, construction)	
	23	Learning from challenges and best practices.	2
	24	Sessions from industrial experts	2
	25	Open Ended	12

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed
CO-1	Understand parameters related to environmental quality and address environmental issues, risks, and opportunities.	U, An	PO-2 PSO-1,2
CO-2	Understand internal factors and external issues that influence the effectiveness of environmental management systems (EMS), Learn risk assessment methodologies and develop skills in identifying environmental risks and opportunities.	U, An, Ap	PO-2,6 PSO-1,3,4
CO 3	Develop skills in assessing performance against objectives and targets, Explore management review processes, including decision-making for continual improvement and alignment with organizational goals.	U,E,C	PO-2,5- PSO-4,5
CO 4	Understanding mutual exchange programs, water budgeting, and extended producer's responsibility (EPR) and Addressing environmental sustainability	An, Ap, C	PO-1,8 PSO-5,6

	through waste reduction strategies and carbon footprint reduction initiatives.		
CO 5	Demonstrate a comprehensive understanding of ISO 14001 principles and requirements. Apply knowledge to practical scenarios and case studies.	U, Ap	PO-2,3 PSO-1,3,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

References

- 1. Environmental Science: Toward A Sustainable Future, Dorothy F. Bourse and Richard T. Wright
- 2. Social Learning in Environmental Management: Towards a Sustainable Future, Meg Keen, Valerie A. Brown, and Rob Dyball
- 3. Principles of Environmental Science, William P. Cunningham and Mary Ann Cunningham
- 4. Visualizing Environmental Science, Linda R. Berg, Mary Catherine Hager, and David M. Hassenzahl.
- 5. Textbook of Environment and Ecology, Springer Singapore, 2024.
- 6. Environmental Management Handbook, Second Edition Six Volume Set, Sven Erik Jorgensen and Brian D. Fath. CRC Press, 2022.
- 7. ISO 14001:2015 (en), Environmental Management Systems Requirements with Guidance for Use. International Organization for Standardization (ISO), 2015.

CO No.	СО	PO/PSO	Cognitiv e Level	Knowledg e Category	Lecture (L)/Tutori al (T)	Practic al (P)	Open Ende d (OE)
CO-1	Understand parameters related to environmental quality and address environmental issues, risks, and opportunities.	PO-2 PSO-1,2	U, An	F, C	12		2
CO-2	Understand internal factors and external issues that influence the effectiveness of environmental management systems (EMS), Learn risk assessment methodologies and develop skills in identifying environmental risks and opportunities.	PO-2,6 PSO- 1,3,4	U, An, Ap	С, Р	12		2

Name of the Course: Credits: 2:0:1 (Lecture:Tutorial:Practical)

CO 3	Develop skills in assessing performance against objectives and targets, Explore management review processes, including decision-making for continual improvement and alignment with organizational goals.	PO-2,5- PSO-4,5	U,E,C	С, Р, М	12		3
CO 4	Understanding mutual exchange programs, water budgeting, and extended producer's responsibility (EPR) and Addressing environmental sustainability through waste reduction strategies and carbon footprint reduction initiatives.	PO-1,8 PSO-5,6	An, Ap, C	Р, М	12		3
CO 5	Demonstrate a comprehensive understanding of ISO 14001 principles and requirements. Apply knowledge to practical scenarios and case studies.	PO-2,3 PSO- 1,3,5	U, Ap	F, P		12	5

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	1	-	-	-	-	-	2	-	-	-	-
CO 2	2	-	2	1	-	-	-	1	-	-	-	1
CO 3	-	-	_	1	1	-	-	2	-	-	2	-
CO 4	-	-	-	-	2	1	2	-	-	-	-	-
CO 5	3	-	2	-	2	_	_	1	2	-	-	-

Correlation Levels:

Level Correlation

-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Internal Exam
- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Project evaluation
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark	\checkmark	

Semester VII

Discipline	ENVIRONMENTA	ENVIRONMENTAL SCIENCES						
Course Code	UK7DSCENS400							
Course Title	ECOLOGICAL M	ODELLING	r T					
Type of Course	DSC							
Semester	VII							
Academic	400 - 499							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	4 hours	-		4			
Pre-requisites	Students should be fa	amiliar with	basic statistic	cal tools; mat	rix notation			
	and basic vector/mat	rix operation	ns (i.e., linear	· algebra).				
Course	Process based mode							
Summary	management tool to	11		01				
	comprise of fundame							
	that will provide a comprehensive overview of various model types and							
	their applications. S							
	equations used to rep	present ecolo	gical process	es in the phys	ical, chemical			
	and biological proce	sses of ecosy	vstems.					

Module	Unit	Content	Hrs
Ι		Ecosystem Modelling	15
	1	Concept and need for Ecosystem Modelling	
	2	Classification of models; Deterministic models, Stochastic models,	
		steady state and dynamic models	
	3	Ecological Models: compartment model; matrix model; statistical and mathematical models	
	4	Ecoinformatics: Definition and scope in environmental analysis	
II		Modelling Population Dynamics	15
	5	Growth models in population dynamics: Single population growth model	
	6	Interaction between populations:	
	7	Interspecific competition, Prey-Predator models: Lotka-Voltera model	
	8	Consumer-resource models; dynamics	
	9	Dynamics and spread of invasive species	
		Modelling physical, chemical and biological processes	7
	10	Physical processes: Mass transport	
III	11	Physical processes: Advection, diffusion & turbulent diffusion	
	12	Aquatic ecosystems : eutrophication modelling	
	13	Basics of Bayesian models	
	14	Models for animal movement	
	15	Determinate and Stochastic density independent models	
	16	Food-web model	
IV		Pollution Modelling	8
	17	Water quality modelling: Surface and groundwater pollution models	
	18	Air quality modelling: Box model	
	19	Gaussian plume model; Gaussian Puff model	
V		Models in Ecology	15
	20	Regression models	
	21	Generalised Linear models	
	22	Introduction to MATLAB	
	23	Nutrient uptake models	
	24	Food Web Model : Ecopath with Ecosim (EwE)	
	25	Marine Ecosystem model: Atlantis	

References

- 1. Benarie M.M. (1980) Urban Air Pollution Modelling, Cambridge, MA: The MIT Press. 2. Dunnivant F.M. and Anders E. (2006) A Basic Introduction to Pollutant Fate and Transport, John Wiley & Sons, Inc., New Jersey.
- 2. Ellner, S.P. and Guckenheimer J. 2006. Dynamic Models in Biology. Princeton University Press, NJ. [DMB]

- 3. Ford, E.D., 2000. Scientific Method for Ecological Research. Cambridge University Press, Cambridge; New York. (see especially chapter 12)
- Fulton, E.A., Link, J.S., Kaplan, I., Savina-Rolland, M., Johnson, P., Ainsworth, C.H., Horne, P., Gorton, R., Gamble, R.J., Smith, A.D.M. and Smith, D.C. (2011). Lessons in Modelling and Management of Marine Ecosystems: The Atlantis Experience. Fish and Fisheries, 12(2): 171-188.
- 5. Gurney, W.S.C. and Nisbet, R.M., 1998. Ecological Dynamics. Oxford University Press, NY.
- 6. Haefner, J.W., 2005. Modelling Biological Systems: Principles and Applications. (2nd ed.). Springer. [MBS]
- Hooten, M.B. and T.J. Hefley. 2019. Bringing Bayesian Models to Life. Chapman and Hall/CRC. • Hobbs, N.T. and M.B. Hooten. 2015. Bayesian Models: A Statistical Primer for Ecologists. Princeton University Press.
- 8. Jørgensen, S.E. and Bendoricchio, G., 2001. Fundamentals of Ecological Modelling. (3rd ed.). Elsevier, Amsterdam. [FEM]
- 9. Kingsland, S.E., 1995. Modeling Nature: Episodes in the History of Population Ecology. The University of Chicago Press, Chicago, Il.
- Kot, M., 2001. Elements of Mathematical Ecology. Cambridge University Press, Cambridge, U.K.. Hilborn, R. and Mangel, M., 1997. The Ecological Detective: Confronting Models with Data. Princeton University Press, Princeton, N.J.
- 11. Otto, S.P. and Day, T. 2007. A Biologist's Guide to Mathematical Modeling in Ecology and Evolution. Princeton University Press, Oxford. [BGM]
- 12. Zannetti P. (1990) Air Pollution Modelling, Theories, Computational Methods and available Software, Van Nostrand Reinhold, New York.

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Define and explain the need for Environmental Modelling	Un,Re	PSO1,2
CO-2	Describe the interaction between populations and create models of population interactions	An	PSO2
CO-3	Develop models for physical, chemical and biological processes in the ecosystem	An,Cr	PSO3,4
CO-4	Create models for air and water quality	An,Cr	PSO3,4
CO-5	Apply the models for ecosystem processes	Ар	PSO3,4

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	0	Knowledge Category	Lecture (L)/Tutorial	Practical (P)
-----------	----	--------	---	-----------------------	-------------------------	------------------

					(T)	
CO-1	Define and explain the need for Environmental Modelling	PSO1,2	R, U	F, C, P	11	
CO-2	Describe the interaction between populations and create models of population interactions	PSO2	U, Ap, E	F, C, P	7	
CO-3	Develop models for physical, chemical and biological processes in the ecosystem	PSO3,4	U, Ap, An	С, Р, М	8	
CO-4	Create models for air and water quality	PSO3,4				
CO-5	Apply the models for ecosystem processes	PSO3,4				

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-			-	-	3	3	-	-	3	-
CO 2	3	-			-	-	3	3	-	-	3	-
CO 3	3	3	3	3	-	-	3	-				-
CO 4	3	3	3	3	-	-	3	_				-
CO 5	3	3	3	3	-	-	3	-				-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
 Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENT A	ENVIRONMENTAL SCIENCES							
env	UK7DSCENS401	UK7DSCENS401							
Course Title	POLLUTION MA	NAGEMEN	T AND CO	NTROL					
Type of Course	DSC								
Semester	VII								
Academic	300 - 399								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	_	2 hours	5				

Pre-requisites	 Fundamental knowledge regarding causes and consequences of environmental issues Environmental pollution
Course Summary	Pollution Management and Control is an interdisciplinary course designed to provide students with a comprehensive understanding of the causes, effects, and mitigation strategies related to environmental pollution. The course covers various types of pollution, including air, water, soil, and noise pollution, along with their impacts on human health and ecosystems. Additionally, students explore regulatory frameworks, technological solutions, and policy measures aimed at preventing and controlling pollution.

Module	Unit	Content	Hrs
Ι		Introduction to Pollution	10
	1	Overview of pollution	2
	2	Types of pollution (air, water, soil, noise, etc.)	2
	3	Sources of pollution	3
	4	Impacts of pollution on the environment and human health	3
II		Air Pollution Control Measures	15
	5	Air pollutants-Gaseous and particulate	4
	6	Air quality monitoring and assessment	5
	7	Air quality standards	4
	8	Control technologies and strategies for reducing air pollution	2
III		Water Pollution Control Measures	15
	9	Sources and Types of water pollution	5
	10	Water quality standards	4
	11	Water quality assessment and monitoring	4
	12	Treatment technologies and management practices for water pollution	2
		control	
IV		Soil Pollution Management	15
	13	Sources and types of soil pollution	2
	14	Different types of soil pollutants-organic and ionrganic	3
	15	Effects of soil pollution on agriculture and ecosystems	3
	16	Soil contamination assessment and remediation techniques	4
	17	Soil conservation and pollution prevention measures	3
V		Waste Management	20
	18	Types and sources of waste	2
	19	Waste generation, collection, and disposal practices	2
	20	Recycling and waste minimization strategies	3
	21	Waste hierarchy and Pay Polluter Principle	5
	22	Hazardous waste management and regulations	3
	23	International treaties and agreements related to pollution control,	2
	24	Innovative technologies for pollution control	2

25	Case studies and examples of successful pollution management	1
	initiatives	

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Identify different types of pollution and their sources.	U	PSO-1,2
CO-2	Recognize the environmental and human health impacts of pollution.	R, U	PSO-1,2,3
CO-3	Apply various pollution management and control strategies to real-world scenarios.	Ар	PSO-2,3,4
CO-4	Analyse legal and regulatory frameworks related to pollution control.	An	PSO-4,5,6
CO-5	Recommend appropriate technologies and best practices for mitigating pollution.	Ар	PSO-7,8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

References

- Baxter, M. (2013). Social and Ethical Aspects of Radiation Risk Management, Vol.19, Editors: Deborah Oughton Sven Hansson. Elsevier (Pub.). Series: Radioactivity in the Environment.
- Brady, N.C. (1996). The Nature and Properties of Soil, 10th Ed., Prentice Hall of India Pvt. Ltd.
- Cherimisinoff, N.P. (2001). Biotechnology for Waste and wastewater treatment, Prentice Hall of India Pvt. Ltd.
- Luyben, W. L. Process Modeling Simulation and Controls for Chemical Engineers, Mc. Graw Hill Book Co.
- Mahajan, S.P. (1998). Pollution control in process industries, Tata McGraw Hill, New Delhi.
- Masters, G.M. (1998). Introduction to Environmental Engineering and Science 3rd ed. Prentice Hall of India Pvt. Ltd.
- Metcalf and Eddy (2003).Wastewater engineering: Treatment, Disposal, Reuse, 4th edition. Tata McGraw Hill, New Delhi.
- Miller R.W. and Donalvee, R.L. (1997). Soils in Our Environment, 7th Ed, Prentice Hall of India Pvt. Ltd.
- Nathanson, J.A. (2003). Basic Environmental Technology, 4th Ed., Prentice Hall of India Pvt. Ltd.
- Parsons, S.A. and Jefferson, B. (2006). Introduction to potable water treatment processes, Blackwell Publishing.
- Rao, C.S. (1995). Environmental Pollution Control Engineering, 3rd Ed., Wiley Eastern

Ltd. New Age International Pvt. Ltd.

- Sharma, B.K. (2001). Water Pollution. Goel Pub. House. Meerut. Wadhwa, Y. (2009). Air Pollution: Causes and Control. Cyber Tech Publications, New Delhi
- Poonia and Sharma (2018)., Environmental Engineering, Khanna Books, ISBN: 9789386173577, 9386173573.
- Helmut Meuser (2010).,Contaminated Urban Soils, Springer.

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Identify different types of pollution and their sources.	PSO-1,2	U	F, C		
CO-2	Recognize the environmental and human health impacts of pollution.	PSO- 1,2,3	R, U	C,P		
CO-3	Apply various pollution management and control strategies to real-world scenarios.	PSO- 2,3,4	Ар	P,M		
CO-4	Analyse legal and regulatory frameworks related to pollution control.	PSO- 4,5,6	An	C,P,M		
CO-5	Recommend appropriate technologies and best practices for mitigating pollution.	PSO-7,8	Ар	М		

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	2	-	-	-	-	1	2	-	-	-	-
CO 2	3	2	1	-	-	-	-	2	-	-	-	-
CO 3	-	3	2	-	-	-	-	-	2	-	-	-
CO 4	-	-	-	2	1	3	-	-	-	-	-	-
CO 5	-	-	-	-	-	2	-	-	-	-	-	1
CO 6	3	2	-	-	-	-						

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignmen t	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRON	ENVIRONMENTAL SCIENCES						
Course Code	UK7DSCE	UK7DSCENS402						
Course Title	ARTIFICL	ARTIFICIAL INTELLIGENCE IN ENVIRONMENTAL						
	MANAGE	MANAGEMENT						
Type of Course	DSC							
Semester	VII							
Academic Level	400 - 499							
Course Details	Credit	Credit Lecture Tutorial Practical Total						

		per week	per week	per week	Hours/Week			
	4	4 hours	-		4			
Pre-requisites	Prior knowledge of AI							
Course Summary	resource eff and pesticid introduces sustainabilit	iciency by re les while als the use and ty, energy effective	ducing the u o enhancing applications fficiency, su	se of land, wa output qualit s of AI for	e the sector's ater, fertilizers, y. This course environmental culture, waste agement.			

Module	Unit	Content	Hrs
Ι		AI for Environmental Sustainability	11
	1	Artificial Intelligence: Definition and Concept, Evolution of AI in	2
		Environmental Management	
	2	Digital Transformation and Sustainability Transformation	2
	3	The role of AI in attaining SDGs	1
	4	Data Mining	2
	5	Wildlife poaching	1
	6	Deep Learning, Land Cover, and Poverty	2
	7	Social Networks to Aid Shelters	1
II		AI for Energy Efficiency	7
	8	Predicting and Contextualizing Building Energy	2
	9	Improving Power Storage	1
	10	Prediction of supply and demand	1
	11	Optimization of yield	1
	12	Smart grid management	2
	13	Increased and improved use of renewable Energy	1
III		AI for Sustainable Agriculture	8
	14	Mathematical Programming for Biodiversity Conservation	2
	15	AI-powered precision agriculture	2
	16	Optimal irrigation, and fertilization application based on real-time data	2
	17	Crop harvesting robots, AI-enhanced drones, Robotic weed control,	2
		Robotic application of herbicides	
IV		AI for Waste Management	12
	18	Real-time waste monitoring	2
	19	Waste sorting and processing	2
	20	Smart Sensors	2
	21	Route Optimization	2
	22	Data-driven decision making	2
	23	Recycling of mixed wastes	2
V		Climate Change, Disaster Management and AI	22
	24	Disaster Prediction, Disaster Resilience, directing relief operations,	10
		optimal evacuations, delivery of supplies, damage analysis, Use of AI in	
		Weather prediction, Pollution identification, iceberg tracking, and	
		Deforestation Mapping. Ocean clean-ups	

25 Open Ended	12
---------------	----

References

https://www.unep.org/news-and-stories/story/how-artificial-intelligence-helping-tackleenvironmental-challenges

https://2030.builders/8-ways-ai-can-contribute-to-environmental-conservation/

https://news.climate.columbia.edu/2018/06/05/artificial-intelligence-climateenvironment/

- 1. Aniko Konya, Peyman Nematzadeh. 2024. Recent applications of AI to environmental disciplines: A review, Science of The Total Environment, Volume 906, 167705, ISSN 0048-9697,https://doi.org/10.1016/j.scitotenv.2023.167705.
- Emmanuel Kwame Nti, Samuel Jerry Cobbina, Eunice Efua Attafuah, Evelyn Opoku, Michael Amoah Gyan, 2022. Environmental sustainability technologies in biodiversity, energy, transportation and water management using artificial intelligence: A systematic review, Sustainable Futures, Volume 4, 100068, ISSN 2666-1888, https://doi.org/10.1016/j.sftr.2022.100068.
- 3. Vinuesa, R., Azizpour, H., Leite, I. *et al.* The role of artificial intelligence in achieving the Sustainable Development Goals. *Nat Commun* **11**, 233 (2020). https://doi.org/10.1038/s41467-019-14108-y

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Explain the role of AI in developing sustainability	R, U	PO-1,2,5,7 PSO- 1,3,4,5
CO-2	Describe the role of AI in attaining energy efficiency and practicing it	U, Ap, E	PO-1,2,5 PSO-1,3,4
CO-3	Explain the use of AI in sustainable agriculture and identify the situations of application of AI	U, Ap, An	PO-1,3,4,5 PSO- 1,2,3,4
CO-4	Explain the applications of AI in waste management and undertake the applications in real-life situations	U, Ap, An	PO-1,3,4,5 PSO- 1,2,3,4
CO-5	Describe the use of AI in disaster relief, weather prediction, and pollution	U, Ap, An	PO-1,3,4,5 PSO-

Course Outcomes

				1,2,5,1
				1,2,3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Explain the role of AI in developing sustainability	PO- 1,2,5,7 PSO- 1,3,4,5	R, U	F, C, P	11	-
CO-2	Describe the role of AI in attaining energy efficiency and practicing it	PO-1,2,5 PSO- 1,3,4	U, Ap, E	F, C, P	7	-
CO-3	Explain the use of AI in sustainable agriculture and identify the situations of application of AI	PO- 1,3,4,5 PSO- 1,2,3,4	U, Ap, An	C, P, M	8	-
CO-4	Explain the applications of AI in waste management and undertake the applications in real-life situations	PO- 1,3,4,5 PSO- 1,2,3,4	U, Ap, An	C, P, M	12	-
CO-5	Describe the use of AI in disaster relief, weather prediction, and pollution	PO- 1,3,4,5 PSO- 1,2,3,4	U, Ap, An	С, Р, М	10	

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	3	3	-	-	3	3	-	-	3	-
CO 2	3	-	3	3	-	-	3	3	-	-	3	-
CO 3	3	3	3	3	_	_	3	_	3	3	3	-
CO 4	3	3	3	3	_	_	3	-	3	3	3	_
CO 5	3	3	3	3	-	-	3	-	3	3	3	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Field observations and experiments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	L SCIENCI	E		
Course Code	UK7DSCENS403				
Course Title	WASTE MANAGE	MENT TEC	CHNIQUES		
Type of Course	DSC				
Semester	VII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	1. Basic knowledge	on type and r	nature of was	tes	
Course	The course provides		0 0 1		•
Summary	employed in various		•		
	waste treatment in c		-	•	
	engineering principl		•		
	advanced techniques available in the treatment of potable water and also				
	incorporates a general learning on hazardous waste management				
	strategies. Policies and laws pertaining to the management of aforesaid				
	areas are also dealt v		1 0		
	get a clear idea re				
	pollution and they sh	ould be able	to practise it	in real life si	tuations.

Module	Unit	Content	Hrs
Ι		Wastes and Management	10
	1	Wastes and Management: Definition, concept.	4
	2	The changing nature, quantity, composition in urban and rural areas of	6
		India and World	
II		Waste water and its treatment methods	15
	3	Waste water: Nature and types; sources and characteristics	3
	4	Waste water generation in India	3
	5	Treatment methods – physical, chemical, biological and advanced	3
		treatment methods	
	6 Natural treatment systems-constructed wetlands, wastewater reclamation		3
		and reuse	
	7	Selection of suitable treatment methods for municipal and industrial	3
		waste water	
III		Solid wastes and management (practicum)	20
	8	Solid wastes: types of wastes; Residential and Commercial, Municipal	3
		wastes	
	9 Solid waste Management: Source and types of municipal solid wastes		3
		factors affecting generation, characteristics	
	10	Methods of sampling. Storage methods, Collection and transfer	3
	11	MSW management – processing: mechanical volume reduction –	3
		necessary equipments	

	12	MSW treatment methods: composting, vermi- composting,	3
		biomethanation,	
	13	Landfilling : sanitary landfill- methods of operation –	3
	14	Advantages and disadvantages of sanitary land fill - site selection - gas	2
		and leachate movement and control	
IV		Hazardous wastes and management	10
	15	Hazardous wastes: Definition, source and characteristics	2
	16	Management of medical and hospital wastes	2
	17	Nuclear and radioactive wastes – classification, sources and disposal	2
	18	Industrial wastes- sources and impacts	1
	19	Industrial waste management practices	1
	20	E-waste- types and sources	1
	21	Management of e- waste	1
V		Waste management policies	20
	22	Waste management policies, polluter pays principle;	2
	23	Wealth from waste -compost, single cell protein; waste to energy –	2
		ethanol, biogas, hydrogen	
	24	Waste audit; waste management economics	1
	25	Open ended	15

REFERENCES

- 1. Freeman, H. M. (1998), Standard Book of Hazardous Waste Treatment and Disposal, McGraw Hill, New York.
- 2. Robert, U., Ayres, Leslie, A. (2002), A Handbook of Industrial Ecology, Edward Elgar Publishing Limited, Cheltenham, UK
- Lawrence, K. W., Yung-Tse, H., Howard, H. L., Constantine, Y., Kathleen, H. L. (2005), Handbook of Industrial and Hazardous Wastes Treatment (Second Edition), Marcal Dekker Inc., New York
- 4. Crittenden, J. C. et al (2005), Water Treatment Principles and Design (Second Edition), John Wiley & Sons, New York
- 5. Bailey, R. A. et al (2005), Chemistry of the Environment, Academic Press, Cambridge, UK
- 6. Arceivala S.J. & S.R. Asolekar (2007). Waste Water treatment for Pollution Control and Reuse. Tata McGraw Hill (Pub.).
- 7. Bhatia S. C. (2007). Solid and Hazardous Waste Management. Atlantic Publishers
- 8. Reddy Jayarama P. (2011). Municipal Solid Waste Management: Processing, energy recovery global examples. BSP Books Pvt Ltd. Hyderabad.
- 9. Santra S.C. (2001). Environmental Science. New Central Book Agencies Pvt. Ltd. Kolkata
- 10. Waste Water Treatment Plant design. (1997), A Manual of Practice. Water Pollution Control Federation.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed
CO-1	Identify the different types of solid wastes	R	PO6, PSO 1
CO-2	To make physical and chemical analysis of municipal solid wastes and apply them for a management system that will be set up.	R	PO1, PSO 1, PSO 2
CO- 3	Compare the various waste water treatment methods	An	PO8, PSO 3, PSO 4
CO- 4	Explain the source, characteristics and management of hospital wastes	U	PO2, 7, PSO 3, PSO 6
CO-5	Explain the methods of converting wastes to useful products	U	PO4, PSO 3, PSO 6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

C O No	CO	PO/PS O	Cognitiv e Level	Knowledg e Category	Lecture (L)/Tutoria l (T)	Practica l (P)	Open Ende d
1	Identify the different types of solid wastes	PO6, PSO 1	R	F	10	2	3
2	To make physical and chemical analysis of municipal solid wastes and apply them for a management system that will be set up.	PO1, PSO 1, PSO 2	R	р	10	4	3

3	Compare the various waste water treatment methods	PO8, PSO 3, PSO 4	An	F	10	2	3
4	Explain the source, characteristic s and management of hospital wastes	PO2, 7, PSO 3, PSO 6	U	F, C	10		3
5	Explain the methods of converting wastes to useful products	PO4, PSO 3, PSO 6	U	М	12		3

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark	\checkmark	\checkmark

Discipline	ENVIRONM	ENTAL SCIEN	NCE		
Course Code	UK7DSCEN	S404			
Course Title	ENVIRONM	ENTAL ECON	OMICS		
Type of Course	DSC				
Semester	VII				
Academic Level	400 - 499				
Course Details	Credit	Lecture per	Tutorial	Practical	Total
		week	per	per	Hours/Week
			week	week	
	4	3 hours	-	2 hours	5
Pre-requisites	 Basics of Environment and Economics Fundamental concepts of Environment and Economics, definition and scope of Environmental Economics. 				
Course Summary	This course provides students with a comprehensive understanding of the complex interactions between the environment, economics, and development, equipping them with the knowledge and tools necessary to address contemporary environmental challenges in a sustainable manner.				

Module	Unit	Content	Hrs	
Ι		Overview of Environmental Economics	10	
	1	The evolution and growth of Environmental Economics.	2	
	2	Environmental economics vs. traditional economics, Tracing Environmental inputs into the Economy.	3	
	3	Environment and Economic Growth	2	
	4	Environment and Development	3	
II		Basic Concepts and theories 1		
	5	haracters of environmental goods		
	6	Consumption and Demand		
	7	Production and supply	2	
	8	Markets and Market Failures	4	
	9	Government intervention and public policy Failure	4	

III	Env	ironmental Valuation, Accounting and Management (practicum)	20
	10	Meaning and types of environmental values	2
	11	Valuation of intangible benefits of the environment	4
	12	Historical development of National accounts on India	3
	13	Genesis of environmental accounting	3
	14	Forest resource accounting: A case study	4
	15	Concept of environmental management	2
	16	An action system for environmental management	2
IV		Human Environment and Economy	10
	17	Land and environment: land degradation and restoration	2
	18	Water and environment: Water related problems and mitigation	2
	19	Forest and environment: Deforestation and Reforestation	2
	20	Biodiversity and conservation	2
	21	Climate change and environment	2
V		Environment Impact Assessment (practicum)	5
	22	EIA: Concept and History	2
	23	Basic Principles of EIA	2
	24	EIA: A Case Study	1
	25	Open ended	15

Books and References:

- 1. Bharucha, E. 2021. Text Book of Environmental Studies. University Press (India) Pvt. Ltd.,
- 2. Chiras, D.D. (2009). Environmental science. Jones & Bartlett Publishers.
- 3. Etherington, J.R. (1975). Environment and plant ecology. John Wiley & Sons Ltd.
- 4. Mishra D.D, 2010, Fundamental Concepts in Environmental Studies; S Chand & Company
- 5. 5.Rajagopalan, 2015, Environmental studies, Oxford University Press
- 6. Mahua Basu and Xavier Savarimuthu SJ, 2017, Cambridge University Press
- 7. Purnima Das and Chubanaro Aier, 2023, Environmental Studies: for BA, B. Com and BSc. 1st semester of Nagaland university, Global net Publications
- 8. Katar Singh and Anil Shishodia 2007, Environmental Economics; Theory and Application, Sage Publication.
- 9. Arvindari Upadhyay, 2021, Environmental Impact and Risk Assessment, Academic Aspirationns, New Delhi

Course Outcomes

No.	Upon completion of the course the graduate will be able	Cognitive	PSO
	to	Level	addressed

CO-1	Develop awareness of the sub-discipline of environmental economics dealing with interrelationship and interaction between environment and economic activities	U	PSO-1,2
CO-2	Gain a solid understanding of basic economic concepts and principles, such as supply and demand, market equilibrium, externalities, market failure, cost-benefit analysis, discounting, and welfare economics, as they relate to environmental issues. Students should become familiar with various methods used to value environmental goods and services, including contingent valuation, hedonic pricing, travel cost method, production function approach, and stated preference methods, and understand their strengths, limitations, and applications.	R, U, An	PSO- 1,2,7
CO-3	It enhances the knowledge and skills of the students enable them to comprehend and apply the tools and techniques of environmental valuation, environmental auditing and environmental management.	R, U	PSO- 4,6,7
CO-4	Students should understand the economic principles governing the management of renewable and non- renewable natural resources, such as fisheries, forests, water resources, minerals, and energy, including concepts of resource depletion, rent extraction, optimal extraction paths, and sustainable resource management. Topic enhances the knowledge and skill of students to identify and analyse the economic problems related to land, water, forest and other resources and suggest how the problems could be addressed using tool and techniques of Environmental economics	R, U, Ap	PSO- 6,7,8

CO-5 It enhances the students to evaluate EI the framework of environmental sustainability, it also enhances students science to study action plan in terms impacts, it makes major and mino ecofriendly.	and economic of environmental of mitigation of	E, C	, PSO-8,10
--	--	------	------------

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Note: 1 or 2 COs/module

Name of the Course: Credits: 3:0:1 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Understand the history and evolution of Environmental Economics	PSO- 1,2	U	F, C	10	
2	Understand the basic concept of Fundamentals of Environmental Economics	PSO- 1,2,7	R, U, An	Р	15	
3	Understanding about tools and techniques of Environmental valuation, Accounting and management	PSO- 4,6,7	R, U		15	
4	Learning about environmental management in terms of water, air, land and forest environment	PSO- 6,7,8	R, U, Ap		15	
5	Analyse and understand the challenges in Environmental Impact Assessment and its cost benefit analysis.	PSO- 8,10	Ap, An, E, C		10	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	2	-	1	3	-	1	-	-	-
CO 2	2	3	-	-	1	-	1	-	-	2	-	3
CO 3	-	2	1	-	-	-	-	1	-	-	-	3
CO 4	-	-	2	3	-	-	1	3	-	2	-	-
CO 5	-	1	-	1	3	-	1	1	-	-	-	3
CO 6	1	-	-	2	-	1	3	-	1	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- $\$ Quiz / Assignment/ Quiz/ Discussion / Seminar
- § Midterm Exam
 § Programming Assignments
 § Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	\checkmark

Discipline	ENVIRONMENTA	ENVIRONMENTAL SCIENCE					
Course Code	UK7DSCENS405						
Course Title	CLIMATE CHANGE: MITIGATION AND ADAPTATION						
Type of Course	DSC						
Semester	VIII	VIII					
Academic	400 - 499	400 - 499					
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	1. The concept of di	fferent clima	te related env	vironmental p	roblems		
	2. The preliminary c	oncept of rec	ent environr	nental issues			
Course	This course details t	he various as	pects of Clin	nate Change			
Summary							

Module	Unit	Content	Hrs
Ι		Introduction to Global Climate	10
	1	Global air circulation and climate, ocean current and climate	2
	2	Seasonal winds and monsoon	2
	3	Climate of India; Indian monsoon, EL Nino	3
	4	Tropical cyclones, Western disturbance, Weather modification anthropogenic climate change and its causes	3
II		Climate change Mitigation	15
	5	Introduction to mitigation of GHGs and stabilization scenario; characteristics of mitigation in regional and national context; long term and short-term mitigation options of climate change.	4
	6	Methodologies for regional GHG inventories	3
	7	IPCC good practice guidelines for National greenhouse gas inventories.	4
	8	Mitigation from a cross-sector perspective such as transport, power, agriculture, municipal waste, specific industries, and buildings.	4
III		Climate policy instruments and framework	20
	9	The causes of global warming, emission trends, fossil fuel emissions and deforestation.	3
	10	The technological options to reduce emissions, climate policy tools, their theoretical merits and practical experiences climate mitigation	4
	11	The cost and benefits of mitigation	2
	12	Trade offs, potentials, and limitations of climate change mitigation	2
	13	Quantification of climate change impacts and mitigation benefits	2

	14	Ethics and politics of Climate change	1			
	15	Agriculture and Land Use Mitigation Strategies	2			
	16	Policy and Governance Frameworks for Climate Change Mitigation	2			
	17	Technological Innovations for Carbon Capture and Removal	2			
IV	Natio	onal Action Plan on Climate Change	15			
	18	Missions of NAPCC - National Solar Mission, National Mission for Enhanced Energy Efficiency, National Action Plan on Climate Change (mitigation specific missions); alternate energy programmes	4			
	19	National Mission on Sustainable Habitat	1			
	20	National Water Mission, National Mission for Sustaining the Himalayan Ecosystem	4			
	21	National Mission for a Green India, National Mission for Sustainable Agriculture, National Mission on Strategic Knowledge for Climate Change.	3			
	22	Alternate energy crops programmes and afforestation; other flexible mechanism and voluntary mechanisms such as REC and PAT program, Micro level policy initiatives	3			
V	International organisations for climate justice					
	23	2001-Bonn Agreement, Doha Declaration,				
		2002- World summit on Sustainable development- Johannesburg. 2003 – United nations decade of Education for sustainable development.	12			
		2005 -Millennium ecosystem Assessment.				
		 2005 -Millennium ecosystem Assessment. Montreal Protocol.; 2007 – United Nations Climate change conference Bali; 2009 -G20 Fossil fuel subsidies, Pittsburgh Summit, 2009- CoP 15 Copenhagen. 2016 – CoP16 Cancun, Mexico, 2010 – Nagoya Protocol, Japan. 2011 – Durban Climate conference S. Africa. 2012 – UN Conference on sustainable development Rio de Janeiro, 2012- Dhoha Climate Conference. 2013 CoP 19 Warsaw Poland.2015 – Paris Agreement. Kigali Amendment. 2018 – CoP 24. 2019-UN Chief plans climate action summit. 2019 – CoP25 Madrid, Spain. 2021 – CoP 26 Glasgow. 2022 – The UN Climate change conference in Sharm el-Sheikh, Egypt, COP 27.2023- COP 28 UNFCCC, Dubai. Intergovernmental Panel on Climate Change (IPCC) 				
	24	 2005 -Millennium ecosystem Assessment. Montreal Protocol.; 2007 – United Nations Climate change conference Bali; 2009 -G20 Fossil fuel subsidies, Pittsburgh Summit, 2009- CoP 15 Copenhagen. 2016 – CoP16 Cancun, Mexico, 2010 – Nagoya Protocol, Japan. 2011 – Durban Climate conference S. Africa. 2012 – UN Conference on sustainable development Rio de Janeiro, 2012- Dhoha Climate Conference. 2013 CoP 19 Warsaw Poland.2015 – Paris Agreement. Kigali Amendment. 2018 – CoP 24. 2019-UN Chief plans climate action summit. 2019 – CoP25 Madrid, Spain. 2021 – CoP 26 Glasgow. 2022 – The UN Climate change conference in Sharm el-Sheikh, Egypt, COP 27.2023- COP 28 UNFCCC, Dubai. Intergovernmental Panel 	3			

References

- 1. Banerjee K.K. (1995) Global Warming Database Technology Options in Power and End-use Sectors Using Fossil Fuels, New Delhi.
- 2. Bui, M.; <u>Adjiman, C.</u>; Bardow, A.; Anthony, Edward J.; et al. (2018). <u>"Carbon capture and storage (CCS): the way forward"</u>. <u>Energy & Environmental Science</u>.

- 3. <u>China Greentech Initiative</u>". Beijing Foreign Enterprise Human Resources Service Co, Ltd. Retrieved 9 May 2013.
- Dean, Joshua F.; Middelburg, Jack J.; Röckmann, Thomas; Aerts, Rien; et al. (2018). <u>"Methane Feedbacks to the Global Climate System in a Warmer World"</u>. <u>Reviews of Geophysics</u>.
- 5. EIA Directive (85/337/EEC):https://ec.europa.eu/environment/eia-legalcontext.html
- 6. EIA Training resource manual, UNEP 2002, https://wedocs.unep.org/bitstream/handle/20.500.11822/26503/EIA Training resource manual.pdf.
- Fahey, D. W.; Doherty, S. J.; Hibbard, K. A.; Romanou, A.; Taylor, P. C. (2017). <u>"Chapter 2: Physical Drivers of Climate Change"</u>
- 8. Gilbert M. Masters and Wendell P. Ela (Author) (2007) Introduction to Environmental Engineering and Science. 3rd edition. PHI learnings New Delhi Suggested readings
- 9. Gupta M. (2006) Restricting Greenhouse Gas Emissions: Economic Implications for India, New Delhi.
- 10. Hardy J. (2003) Climate Change: Causes, Effects and Solutions, John Wily & Sons.
- 11. https://www.un.org/en/climatechange/science/causes-effects-climate-change
- 12. https://www.un.org/en/development/desa/population/migration/generalassembly/glob alcompact/A CONE,151 26 Vol.I Declaration.pdf
- Johnson, Erik W.; Scott Frickel (2011). "Ecological Threat and the Founding of U.S. National Environmental Movement Organizations, 1962–1998". Social Problems. 58 (Aug. 2011) (3): 305–29. doi:10.1525/sp.2011.58.3.305.
- 14. Matthews, Tom (2018). <u>"Humid heat and climate change"</u>. Progress in Physical Geography: Earth and Environment. **42** (3): 391–405.
- 15. Nakicenovic N. (Eds) (1993) Integrative Assessment of Mitigation, Impacts and Adaptation to Climate Change, Austria.
- 16. Rio Declaration on Environment and Development: June, 1992.
- 17. Sathaye J. and Meyers S.D. (1995) Greenhouse Gas Mitigation Assessment: A Guidebook, Kluwer.
- 18. Thomas S. (2003) Policy Instruments for Environment and Natural Resource Management, RFF Publication, Washington DC.
- 19. Tiwari G.N. (2003) Greenhouse Technology for Controlled Environment, New Delhi
- 20. UN Convention on Climate Change and Biological Diversity (1992) EIA as a implementing mechanism: <u>https://www.cbd.int/doc/legal/cbd-en.pdf</u>
- 21. <u>United Nations Environment Programme 2021</u>, "A continuation of the effort implied by the latest unconditional NDCs and announced pledges is at present estimated to result in warming of about 2.7 °C (range: 2.2–3.2 °C) with a 66 per cent chance."

	eourse outcomes								
CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO 1	Understand the Global climatic conditions	U	С	Instructor-created exams / Quiz					

Course Outcomes

CO 2	Know the different policy frame work of climate change	An	Р	Group Discussions/ Debates
CO 3	Understand the basic idea of national and International efforts to mitigate environmental issues	Ар	Р	Seminar Presentation / Group Tutorial Work
CO 4	Demonstrate the ability to integrate climate change considerations into various sectors and decision-making processes			
CO 5	Apply the knowledge to solve climate change problems	An	С	Instructor-created exams / Home Assignments
CO 6	Capable of decision-making and policy development	Ар	С	Assignments

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Lecture	1		F, C		
2	Lecture, Tutorial	2		С, Р		
3	Lecture, Tutorial	3,4		Р, М		
4	Tutorial, Practical	5		М		
5	Tutorial, Practical			Р, М		
6	Tutorial, Practical			М		

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	-	-	-	4	4	4
CO 2	2	3	-	-	-	-	2	-	-	-	-	4
CO 3	-	-	1	-	-	-	-	3	4	-	-	4
CO 4	-	-	2	3	-	-	-	-	-	4	-	-
CO 5	-	1	-	-	-	-	-	4	-	-	-	4
CO 6	-	-	-	3	-	-	-	-	4	-	4	-

Correlation Levels:

Level	Correlation		
-	Nil		
1	Slightly / Low		
2	Moderate / Medium		
3	Substantial / High		

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Interna	Assignm	Project	End Semester
	1 Exam	ent	Evaluation	Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	L SCIENC	E					
Course Code	UK7DSCENS406	UK7DSCENS406						
Course Title	ECOSYSTEM SEF	RVICES						
Type of Course	DSC							
Semester	VIII							
Academic	400 - 499							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
	per week per week per week Hours/We							
	4	3 hours	-	2 hours	5			
Pre-requisites	1.Basic understandir	ng of ecology	, environmei	ntal science, o	r related fields			
	2.Familiarity with e	cological co	ncepts such	as biodivers	ity, ecosystem			
	functioning, and eco	logical intera	actions would	d also be help	ful			
Course	Students will have	gained a de	ep understar	nding of the	importance of			
Summary	ecosystem services,	their valuation	on, and the in	nplications fo	or human well-			
	being and environmental management. They will be equipped with the							
	knowledge and tools to contribute to the sustainable use and conservation							
	of ecosystems and th	ne services th	ey provide.					
Datailad Syllahus:								

Module	Unit	Content	Hrs					
Ι		Introduction to ecosystem service	15					
	1	Ecosystem service fundamentals, the products/raw materials or energy	3					
		outputs like food, water, medicines and other resources from						
		ecosystems.,						
	2	Ecosystems the source of food, water, medicines, wood, biofuels	3					
	3	Types of ecosystem service; Provisioning services, Regulating	6					
		Services, Supporting services, Cultural services.						
	4	The Millenium Ecosystem Assessment	3					
II		Threats to ecosystem services						
	5	Direct threats - land use change, deforestation, loss of biodiversity,	4					
	6	overfishing, over hunting, invasive species	2					
	7	over exploitation, alteration of biogeochemical cycles, climate change	6					
	8	Indirect drivers- Socioeconomic, demographic, technological	3					
III		The Quantification of ecosystem services	15					
	9	Measuring Ecosystem Services, Biophysical assessments (e.g.	2					
		calculating meteorological variables and carbon sequestration etc.),						
	10	Case Studies in Ecosystem Service Valuation (Practicum)	1					
	11	Numerical Models and GIS	1					
	12	Social Scientific Assessments utilising expert interviews, focus groups, and literature reviews.	2					

			-			
	13	Valuing forest ecosystem services.	2			
	14	Quantifying ecosystem services, hedonic pricing	2			
	15	Benefits of ecosystems - clean water, air purification, climate				
		regulation, pollination, and recreational opportunities				
	16	Quantification of ecosystem services- Market-based Valuation, Cost-				
		based Valuation, Revealed Preference Methods, Stated Preference				
		Methods				
	17	Integrated Assessment Models, Composite Indices	1			
IV		Importance of ecosystem services	15			
	18	Human Survival, Economic Value, Natural Resource Management	3			
	19	Climate Regulation, Biodiversity Conservation	3			
	20	Human Health and Well-being, Cultural and Spiritual Values	3			
	21	Social Equity and Justice	3			
	22	Carbon sequestration, carbon footprint.	3			
V		Ecosystem Services and Human Well-being	15			
	23	Linkages Between Ecosystem Services and Human Well-being	4			
	24	Ecosystem Services and Livelihoods, Ecosystem Services and Cultural	11			
		Values				
	25	Open ended	15			

References

1. Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., ... & van den Belt, M. (1997). The value of the world's ecosystem services and natural capital. *Nature*, 387(6630), 253-260.

2. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: synthesis. *Island Press*.

3. Daily, G. C. (1997). Nature's services: Societal dependence on natural ecosystems. *Island Press*.

4. de Groot, R. S., Wilson, M. A., & Boumans, R. M. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. *Ecological economics*, 41(3), 393-408.

5. MA (Millennium Ecosystem Assessment). (2003). Ecosystems and human well-being: a framework for assessment. *Island Press*.

6. Costanza, R., d'Arge, R., Groot, R., Farber, S., Grasso, M., Hannon, B., ... & van den Belt, M. (1997). The value of ecosystem services: Putting the issues in perspective. *Ecological Economics*, 25(1), 67-72.

7. Daily, G. C., Söderqvist, T., Aniyar, S., Arrow, K., Dasgupta, P., Ehrlich, P. R., ... & Walker, B. (2000). The value of nature and the nature of value. *Science*, 289(5478), 395-396.

8. TEEB. (2010). The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A synthesis of the approach, conclusions and recommendations of TEEB. *Progress Press Malta*.

9. Boyd, J., & Banzhaf, S. (2007). What are ecosystem services? The need for standardized environmental accounting units. *Ecological economics*, 63(2-3), 616-626.

10. Costanza, R., Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., ... & Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? *Ecosystem Services*, 28, 1-16.

11. Daily, G. C., Alexander, S., Ehrlich, P. R., Goulder, L., Lubchenco, J., Matson, P. A., ... & Walker, B. H. (1997). Ecosystem services: benefits supplied to human societies by natural ecosystems. *Issues in Ecology*, (2), 1-18.

12. De Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., ... & Kubiszewski, I. (2012). Global estimates of the value of ecosystems and their services in monetary units. *Ecosystem Services*, 1(1), 50-61.

13. Daily, G. C., Polasky, S., Goldstein, J., Kareiva, P. M., Mooney, H. A., Pejchar, L., ... & Shallenberger, R. (2009). Ecosystem services in decision making: Time to deliver. *Frontiers in Ecology and the Environment*, 7(1), 21-28.

14. MEA (Millennium Ecosystem Assessment). (2003). Ecosystems and human well-being: A framework for assessment. *Island Press*.

15. Carpenter, S. R., Mooney, H. A., Agard, J., Capistrano, D., DeFries, R. S., Díaz, S., ... & Perrings, C. (2009). Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. *Proceedings of the National Academy of Sciences*, 106(5), 1305-1312.

Course Outcomes

At the end of the course, the student will be able to:

S	Course	Course Outcome	Taxonomic
No.	Outcome		Level
	No.		
1	CO 1	Understand the basic concepts of ecosystem service	Un
2	CO 2	Know the different types of ecosystem service	Un
3	CO 3	Apply the knowledge of ecosystem service to	Ар
		economic development	
4	CO 4	Quantification of ecosystem services	Re, Un, Ap
5	CO5	Apply principles of ecosystem-based management and conservation	Ар
6	CO6	Communicate ecosystem services concepts, values, and management strategies to stakeholders	С

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Understand the basic concepts of ecosystem service	1		F, C	L	
2	Know the different types of ecosystem service	2		С, Р	L, T	
3	Apply the knowledge of ecosystem service to economic development	3,4		Р, М		
4	Quantification of ecosystem services	5		М		
5	Application of principles of ecosystem management					Р
6	Communicate with stakeholders part of decision making					

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	-	2	-	3	4	-
CO 2	2	3	-	-	-	-	2	-	-	3	-	4
CO 3	-	-	1	-	-	-	2	3	-	3	-	4
CO 4	-	-	2	3	-	-	-	2	-	-	4	-
CO 5	-	1	-	-	-	-	-	2	2	3	3	4
CO 6	-	-	-	3	-	-	-	-	2	-	3	4

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation		
-	Nil		
1	Slightly / Low		
2	Moderate / Medium		
3	Substantial / High		

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6				

Discipline	ENVIRONMENTA	L SCIENC	£				
Course Code	UK7DSEENS400						
Course Title	CLIMATE RISK A	ND VULNI	ERABILITY	7			
Type of Course	DSE						
Semester	VIII						
Academic	400 - 499						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	1. The concept of dif						
	2. Understanding of	basic concep	ots in climato	logy, environ	mental impact		
	assessment, and risk	analysis.					
Course	The course integrate						
Summary	preparing students to			ate risk and v	ulnerability		
	issues in various sec	tors and con	texts.				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Climate Change Strategies	10
	1	Analysis of national and international policies, frameworks, and	2
		Institutions for climate risk management	
	2	Role of adaptation planning and disaster risk reduction.	2
	3	Strategies for integrating climate risk considerations into decision-making	4
		processes across sectors like land use planning, infrastructure	
		development, and emergency management	
	4	Ethical considerations and equity issues in climate risk assessment and	2
		adaptation	
II		Mitigation of Climate change	10
	5	Introduction to mitigation of GHGs and stabilization scenario;	3
		characteristics of mitigation in regional and national context; long term	
		and short-term mitigation options of climate change.	
	6	Risk Assessment Methods: Examination of quantitative and qualitative	3
		methods for assessing climate-related risks,	
	7	Probabilistic modeling, scenario analysis, and vulnerability mapping	2
	8	Mitigation from cross sector perspective such as transport, power,	2
		agriculture, municipal waste, specific industries, and buildings.	
III		Climate policy instruments and framework	15
	9	Vulnerability Assessment Frameworks: Analysis of vulnerability	3
		assessment frameworks	
	10	Metrics for evaluating societal, environmental, and economic vulnerability	3
		to climate change	
	11	The technological options to reduce emissions, climate policy tools, their	3
		theoretical merits and practical experiences climate mitigation	

	12	The cost and benefits of mitigation	1
	13	Quantify climate change impacts and mitigation benefits through	1
	15	appropriate metrics.	1
	14	climate change with respect to ethics and international politics.	1
	15	Agriculture and Land Use Mitigation Strategies	1
	15		1
		Policy and Governance Frameworks for Climate Change Mitigation	
11.7	17	Technological Innovations for Carbon Capture and Removal	1
IV	-	on Plan on Climate Change	15
	18	National Solar Mission, National Mission for Enhanced Energy Efficiency,	3
		National Action Plan on Climate Change (mitigation specific missions); alternate energy programmes; National Mission on Sustainable Habitat	
	19	National Water Mission, National Mission for Sustaining the Himalayan	2
	20	Ecosystem	2
	20	National Mission for a Green India, National Mission for Sustainable	3
		Agriculture, National Mission on Strategic Knowledge for Climate	
	21	Change.	2
	21	Alternate energy crops programmes and afforestation; other flexible	3
		mechanism and voluntary mechanisms such as REC and PAT program, Micro level policy initiatives	
	22	Case Studies in Climate Risk Management: Examination of case studies	4
		from different regions and sectors, highlighting successful and	
		unsuccessful approaches to climate risk management and adaptation	
		(practicum)	
V		Adaptation Strategies and Measures	10
	23	Exploration of adaptation strategies and measures to reduce climate risks	5
		and enhance resilience, including engineering solutions, ecosystem-based	
		approaches, and policy interventions.	
	24	Climate Risk Communication: Effective communication of climate risks	5
		and vulnerabilities to stakeholders, decision-makers, and the public,	
		including strategies for fostering awareness, understanding, and action.	
	25	Open ended	15
		· •	

References

- 1. Banerjee K.K. (1995) Global Warming Database Technology Options in Power and End-use Sectors Using Fossil Fuels, New Delhi.
- 2. Bui, M.; <u>Adjiman, C.</u>; Bardow, A.; Anthony, Edward J.; et al. (2018). <u>"Carbon</u> capture and storage (CCS): the way forward". <u>Energy & Environmental Science</u>.
- 3. <u>China Greentech Initiative</u>". Beijing Foreign Enterprise Human Resources Service Co, Ltd. Retrieved 9 May 2013.
- 4. Dean, Joshua F.; Middelburg, Jack J.; Röckmann, Thomas; Aerts, Rien; et al. (2018). "Methane Feedbacks to the Global Climate System in a Warmer World". *Reviews of Geophysics*.
- 5. EIA Directive (85/337/EEC):https://ec.europa.eu/environment/eialegalcontext.html

- 6. EIA Training resource manual, UNEP 2002, https://wedocs.unep.org/bitstream/handle/20.500.11822/26503/EIA Training resource manual.pdf.
- Fahey, D. W.; Doherty, S. J.; Hibbard, K. A.; Romanou, A.; Taylor, P. C. (2017). <u>"Chapter 2: Physical Drivers of Climate Change"</u>
- 8. Gilbert M. Masters and Wendell P. Ela (Author) (2007) Introduction to Environmental Engineering and Science. 3rd edition. PHI learnings New Delhi Suggested readings
- 9. Gupta M. (2006) Restricting Greenhouse Gas Emissions: Economic Implications for India, New Delhi.
- 10. Hardy J. (2003) Climate Change: Causes, Effects and Solutions, John Wily & Sons.
- 11. https://www.un.org/en/climatechange/science/causes-effects-climate-change
- 12. https://www.un.org/en/development/desa/population/migration/generalassembly/g lobalcompact/A CONE,151 26 Vol.I Declaration.pdf
- Johnson, Erik W.; Scott Frickel (2011). "Ecological Threat and the Founding of U.S. National Environmental Movement Organizations, 1962–1998". Social Problems. 58 (Aug. 2011) (3): 305–29. doi:10.1525/sp.2011.58.3.305.
- 14. Matthews, Tom (2018). <u>"Humid heat and climate change"</u>. Progress in Physical Geography: Earth and Environment. **42** (3): 391–405.
- 15. Nakicenovic N. (Eds) (1993) Integrative Assessment of Mitigation, Impacts and Adaptation to Climate Change, Austria.
- 16. Rio Declaration on Environment and Development: June, 1992.
- 17. Sathaye J. and Meyers S.D. (1995) Greenhouse Gas Mitigation Assessment: A Guidebook, Kluwer.
- 18. Thomas S. (2003) Policy Instruments for Environment and Natural Resource Management, RFF Publication, Washington DC.
- 19. Tiwari G.N. (2003) Greenhouse Technology for Controlled Environment, New Delhi
- 20. UN Convention on Climate Change and Biological Diversity (1992) EIA as a implementing mechanism: <u>https://www.cbd.int/doc/legal/cbd-en.pdf</u>
- 21. <u>United Nations Environment Programme 2021</u>, "A continuation of the effort implied by the latest unconditional NDCs and announced pledges is at present estimated to result in warming of about 2.7 °C (range: 2.2–3.2 °C) with a 66 per cent chance."
- 22. IPCC. (2014). *Climate Change 2014: Impacts, Adaptation, and Vulnerability.* Cambridge University Press.
- 23. Adger, W. N., et al. (2007). *Assessment of Adaptation Practices, Options, Constraints, and Capacity.* Cambridge University Press.
- 24. Smit, B., & Wandel, J. (2006). *Adaptation, Adaptive Capacity and Vulnerability.* Global Environmental Change, 16(3), 282-292.
- 25. Cutter, S. L., et al. (2003). *Social Vulnerability to Environmental Hazards.* Social Science Quarterly, 84(2), 242-261.
- 26. Eriksen, S. H., et al. (2011). *Adaptation Interventions and Their Effectiveness: A Systematic Review of the Literature.* Climatic Change, 127(1), 109-130.

Course Outcomes

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the scientific principles underlying climate change and its impacts.	U	С	Instructor-created exams / Quiz
CO2	Know the policy frame work of climate change	An	Р	Group Discussions/ Debates
CO3	Apply risk assessment methodologies to evaluate climate-related risks and vulnerabilities	Ар	Р	Seminar Presentation / Group Tutorial Work
CO4	Critically assess case studies to draw lessons for climate risk management practice.	An	С	Instructor-created exams / Home Assignments

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Lecture	1		F, C		
2	Lecture, Tutorial	2		С, Р		
3	Lecture, Tutorial	3,4		Р, М		
4	Tutorial, Practical	5		М		

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	-	-	-	4	4	4
CO 2	2	3	-	-	-	-	2	-	-	-	-	4
CO 3	-	-	1	-	-	-	-	3	4	-	-	4
CO 4	-	-	2	3	-	-	-	-	-	4	-	-

CO 5	-	1	_	-	-	_	-	4		_	_	4
CO 6	-	-	-	3	-	-	-	-	4	-	4	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming AssignmentsFinal Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	L SCIENC	ES					
Course Code	UK7DSEENS401	UK7DSEENS401						
Course Title	NANOTECHNOLO	OGY FOR E	ENVIRONM	ENTAL				
	REMEDIATION							
Type of Course	DSE							
Semester	VIII							
Academic	400 - 499							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2	5			
Pre-requisites	The learners should l and remediation	have an unde	erstanding of	environmenta	al pollution			
Course	This course provide	s the learner	r with the de	tails of nano	materials, the			
Summary	techniques of synthes	sis of nanom	aterials, and	the use of nan	omaterials for			
-	remediation of variou	us environm	ental spheres					

Detailed Syllabus:

Module	·	Content	Hrs
Ι		Introduction to Nanotechnology	7
	1	Definition of nanotechnology and nanomaterials	1
	2	Types of nanomaterials (Carbon-based materials – tubes,	6
		fullerenes, Metals, and metal oxides – TiO ₂ , Fe-oxides, magnetic	
		fluids, Q-dots, Polymeric nanowires-dendrimers and conductive	
		polymers, Surface modification)	
II		Synthesis of nanomaterials (Practicum)	9
	3	Nanomaterials synthesis – Top-down (Chemical Synthesis, Self-	3
		assembly, and positional assembly)	
	4	Nanomaterials synthesis – Bottom-up methods (Lithography,	3
		cutting, edging and grounding)	
	5	Biosynthesis of nanoparticles (plants, microorganisms, algae,	3
		enzymes and biomolecules, industrial and agricultural wastes), the	
		advantages of biosynthesized nanomaterials	
		Nano bioremediation (Practicum)	12
	6	Nanotechnology in soil remediation	3
III	7	Nanotechnology in water treatment	3
	8	Nanotechnology in pollution remediation	2
	9	Nanotechnology in air pollution remediation	2
	10	Nanomaterials infiltration	2
IV		Specific nanomaterials for bioremediation	26
	11	Nano adsorbents for environmental remediation	2
	12	Iron nanoparticles for environmental remediation	2
	13	Metal oxide nanoparticles for environmental remediation	2
	14	Biopolymeric nanoparticles for environmental remediation	2
	15	Functionalized nanoparticles for environmental remediation	2
	16	Nanocrystals for environmental remediation	2

	17	Carbon nanotubes for environmental remediation	2
	18	Enzyme nanoparticles for environmental remediation	2
	19	Nanofibers and nanocomposites for environmental remediation	2
	20	Nanocatalysts in environmental applications	2
	21	Aerogels for environmental remediation	2
	22	Nanomaterials-based environmental sensors	2
	23	Intelligent nanomaterials for environmental remediation	2
V		Nanomaterials and Environment	21
	24	Environmental Toxicology of Nanomaterials: Challenges, Societal	6
		impact of nanomaterials, LCA of nanomaterials for bioremediation	
	25	Open-ended	15

References

- 1. Poole, C. P., & Owens, F. J. (2003). Introduction to nanotechnology.
- 2. Subramani, K., Elhissi, A., Subbiah, U., & Ahmed, W. (2019). Introduction to nanotechnology. In *Nanobiomaterials in clinical dentistry* (pp. 3-18). Elsevier.
- 3. Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). An introduction to nanotechnology. In *Interface science and technology* (Vol. 28, pp. 1-27). Elsevier.
- 4. Iqbal, H. M., Bilal, M., & Nguyen, T. A. (Eds.). (2021). Nano-bioremediation: fundamentals and applications. Elsevier.
- 5. Kumar, S. R., & Gopinath, P. (2017). Nano-bioremediation applications of nanotechnology for bioremediation. *Handbook of advanced industrial and hazardous wastes management*, 27-48.
- Vázquez-Núñez, E., Molina-Guerrero, C. E., Peña-Castro, J. M., Fernández-Luqueño, F., & de la Rosa-Álvarez, M. G. (2020). Use of nanotechnology for the bioremediation of contaminants: A review. *Processes*, 8(7), 826.

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Explain the types of nanomaterials	R, U	PSO- 6 PO- 1,2
CO-2	Describe the various methods of synthesis of nanomaterials	R, U	PSO- 6 PO- 1,2
CO-3	Explain the applications of nanomaterials in environmental remediation	Ар	PSO-1,3 PO-2,3
CO-4	Describe the various types of nanomaterials used for bioremediation	An, E	PSO-3,4 PO-2,7

Course Outcomes

	CO-5	Explain the environmental and social aspects of nanotechnology	U, An	PSO- 4,5 PO- 1,2,6
--	------	--	-------	-----------------------

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

CO No.	CO PO/PSO Cognitive Knowledge Category		Lecture (L)/Tutorial (T)	Practical (P)		
CO-1	Explain the types of nanomaterials	PSO- 6 PO- 1,2	R, U	F, C	7	-
CO-2	Describe the various methods of synthesis of nanomaterials	PSO- 6 PO- 1,2	R, U	F, C	5	4
CO-3	Explain the applications of nanomaterials in environmental remediation	PSO-1,3 PO-2,3	Ар	F, C, P	8	4
CO-4	Describe the various types of nanomaterials used for bioremediation	PSO-3,4 PO-2,7	An, E	F, C	20	6
CO-5	Explain the environmental and social aspects of nanotechnology	PSO- 4,5 PO- 1,2,6	U, An	F, C, M	6	

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	-	-	-	-	3	3	3	-	-	-	-
CO 2	-	-	-	-	-	3	3	3	-	-	-	-

CO 3	3	_	3	_	-	-	-	2	2	_	_	-
CO 4	-	-	3	3	-	-	-	2	-	-	-	-
CO 5	3	3	-	-	-	2	-		-	-	-	-

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Analytical skills
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

Discipline	ENVIRONMENTA	L SCIENC	ES	ENVIRONMENTAL SCIENCES					
Course Code	UK7DSEENS402	UK7DSEENS402							
Course Title	ENVIRONMENTA	AL AND GE	OSPATIAL	DATA ANA	LYTICS				
Type of Course	DSE								
Semester	VIII								
Academic Level	400 - 499								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	 A basic understan concepts and theorie A genuine interest 	s.							
Course Summary	This course is aimed simulation, regress environmental scien communication of re	2. A genuine interest in quantitative methods in the subject This course is aimed at the application of analytics including optimization, simulation, regression, and time series analysis, to problems in environmental sciences to support environmental decision-making and communication of results with emphasis placed on learning skills directly applicable to conducting environmental research and problem-solving in							

Detailed Syllabus:

Module	Unit		Hrs		
Ι		Introduction to Environmental Data Analytics	9		
	1	Overview of environmental data analysis			
	2	Probabilistic and statistical methods – introduction (Descriptive and			
		inferential statistics, ecological modelling, data plots and sampling			
		techniques, spatial statistics)			
	3	Data management and reproducibility (quality control, metadata creation,			
		standard data formats and data transformation in data management and			
	version control, structured documentation, licensing and archiving in				
	reproducibility)		_		
	4 Contemporary software tools (R, R Studio, Python, GitHub				
	introduction, data manipulation and general workflow				
	5	Hands-On Lab: Setting Up R or Python Environment (Practicum)	4		
		Installing R and R Studio			
		Basic R syntax			
		Loading data into R			
		Creating your first R script	_		
II		Exploratory Data Analysis	9		
	6	Data visualization techniques (univariate, bivariate, multivariate and			
		time-series visualizations)	_		
	7	Descriptive statistics (frequency distribution, measures of central			
		tendency, measures of dispersion, percentiles and quartiles)			
	8 Distribution analysis (missing values, removing data duplication,				
		normalizing and scaling)	4		
	9	Outlier detection (understanding and detecting outliers using visual,			
		statistical and ML techniques)			

	10	Hands-On Lab: Exploring Environmental Data (Practicum)	4
		Visualizing environmental variables	
		Detecting outliers	
		Summary statistics in R	
III		Regression Analysis	9
	11	Linear regression (fundamental concepts of linear	
		regression, relationship between independent variable (predictor) and	
		dependent variable (response), estimating the regression coefficients	
		(slope and intercept) using least squares, model fitting.	
	12	Multiple regression (multiple independent variables, collinearity, model	
		significance and variable contributions)	
	13	Model selection (assess model performance using metrics like R-squared,	
		adjusted R-squared, and root mean squared error (RMSE).	
	14	Assumptions and diagnostics (Diagnose potential issues (e.g., outliers,	
		influential points) using residual plots)	
	15	Hands-On Lab: Building Regression Models in R (Practicum)	4
		Fitting linear regression models	
		Assessing model assumptions	
		Interpreting regression output	
IV	1.6	Spatial and Temporal Data Analysis	9
	16	Geospatial data handling (data models and types, data acquisition and	
	17	pre-processing, basic data queries, analysis and data visualization/layout)	_
	17	Spatial interpolation (introduction and different techniques- IDW, NN)	_
	18	Time series analysis (importance of time series analysis in geospatial	
	10	research, Components: trend, seasonality, cyclic behaviour, noise)	_
	19	Accuracy assessment (Kappa Statistics-Accuracy Metrics and Measures)	
	20	Hands-On Lab: Mapping Environmental Variables using any open-	4
		source GIS softwares like QGIS, GRASS GIS, Maptitude etc.	
		(Practicum)	
		Creating spatial maps	
		Interpolating data points Forecasting future values/ change detection	
V		Introduction to advanced topics in Environmental Data Analytics	8
v	21	Machine learning for environmental data	0
	21	Big data analytics	
	22	AI and IoT	
	23	Case studies and applications	
	24	Open Ended	15
	23		13

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PO/PSO addressed
CO-1	Understand: Gain insights into the significance of data analysis in environmental sciences.	U, R	PO-1,7 PSO-1,2,3

299

	Learn: Acquire knowledge of probabilistic and statistical methods. Explore: Dive into data management practices and reproducibility. Familiarize: Get acquainted with contemporary software tools like R, R Studio, Python, Shiny, and GitHub. Practice: Set up the R environment and create basic scripts.		
CO-2	Visualize: Create scatter plots, histograms, and other visualizations. Calculate: Compute descriptive statistics (mean, median, variance). Analyze: Investigate distribution patterns. Detect: Identify outliers. Apply: Explore environmental data using R.	U, An, Ap	PO-2,7 PSO-1,2,4
CO 3	Model: Build linear regression models. Extend: Progress to multiple regression. Select: Choose appropriate models. Assess: Validate assumptions and diagnose model performance. Implement: Construct regression models in R.	U, Ap	PO-3,7 PSO-2,3,4
CO 4	Handle: Work with geospatial data. Interpolate: Estimate values spatially. Analyze: Explore time series data. Evaluate: Assess uncertainty. Map: Create spatial visualizations using R.	U, An	PO-3,7 PSO-2,3,4
CO 5	Explore: Delve into machine learning for environmental data. Tackle: Address big data challenges. Consider: Reflect on ethical implications. Apply: Investigate case studies and real-world applications. Customize: Explore specialized topics based on interest	U, Ap, An	PO-2,7 PSO-1,2,6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

References

- 1. Environmental Data Analysis: An Introduction with Examples in R, Carsten Dormann. Springerlink, 2020.
- 2. Environmental Data Analysis: Methods and Applications, Zhihua Zhang. Walter de Gruyter GmbH & Co KG, 2016 (1st edition).

- Basic Environmental Data Analysis for Scientists and Engineers, Ralph R.B. Von Frese. CRC Press, 2019 (1st edition).
- 4. Introduction to Environmental Data Science, Jerry Davis. Chapman and Hall/CRC Press, 2023 (1st edition).
- 5. Environmental Data Analysis with MatLab or Python Principles, Applications, and Prospects, William Menke. Elsevier, 2022 (3rd Edition).

CO No.	СО	PO/PS O	Cognitiv e Level	Knowledg e Category	Lecture (L)/Tutorial (T)	Practic al (P)	OE
CO-1	Understand: Gain insights into the significance of data analysis in environmental sciences. Learn: Acquire knowledge of probabilistic and statistical methods. Explore: Dive into data management practices and reproducibility. Familiarize: Get acquainted with contemporary software tools like R, R Studio, Python, Shiny, and GitHub. Practice: Set up the R environment and create basic scripts.	PO-1,7 PSO- 1,2,3	U, R	F, C	12	3	2
CO-2	Visualize: Create scatter plots, histograms, and other visualizations. Calculate: Compute descriptive statistics (mean, median, variance). Analyze: Investigate distribution patterns. Detect: Identify	PO-2,7 PSO- 1,2,4	U, An, Ap	С, Р	12	3	2

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

	outliers. Apply: Explore environmental data using R.						
CO 3	Model: Build linear regression models. Extend: Progress to multiple regression. Select: Choose appropriate models. Assess: Validate assumptions and diagnose model performance. Implement: Construct regression models in R.	PO-3,7 PSO- 2,3,4	U, Ap	Р, М	12	3	3
CO 4	Handle: Work with geospatial data. Interpolate: Estimate values spatially. Analyze: Explore time series data. Evaluate: Assess uncertainty. Map: Create spatial visualizations using R.	PO-3,7 PSO- 2,3,4	U, An	P, M	12	3	3
CO 5	Explore: Delve into machine learning for environmental data. Tackle: Address big data challenges. Consider: Reflect on ethical implications. Apply: Investigate case studies and real-world applications. Customize: Explore specialized topics based on interest	PO-2,7 PSO- 1,2,6	U, Ap, An	Р, М			5

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6

CO 1	1	2	2	_	-	-	1	-	_	-	-	-
CO 2	1	3	-	2	-	-	-	1	-	-	-	-
CO 3	-	1	2	1	-	-	-	-	3	-	-	-
CO 4	-	3	2	1	-	-	-	-	2	-	-	-
CO 5	2	1	-	-	-	1	-	-	2	-	-	-

Correlation Levels:

Level	Correlation			
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Internal Exam
- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Project evaluation
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark	\checkmark	