

Four Year Under Graduate Programme (UoK FYUGP)

Syllabus

Major Discipline Mathematics

May 2024

About the Discipline

The mathematics discipline encompasses a vast array of topics, theories, and applications that explore the nature of numbers, shapes, patterns, and relationships. It's a fundamental science that serves as a cornerstone for many other disciplines, including physics, engineering, economics, computer science, and more. Mathematics is a dynamic field with ongoing research and innovation. Mathematicians explore new theories, develop novel techniques, and apply mathematical principles to address emerging challenges and questions across diverse domains. Overall, the mathematics discipline is a rich and multifaceted field that continues to evolve, with applications ranging from the abstract realms of pure mathematics to the practical domains of applied sciences and engineering.

Graduate Attributes

Graduate attributes bridge the gap between academia and the real world, fostering lifelong learning and meaningful contributions. They denote the skills, competencies and high-level qualities that a student should acquire during their university education. Apart from gathering content knowledge, these attributes go beyond the assimilation of information to its application in various contexts throughout a graduate's life. It aims in inculcating the art of critical thinking, problem solving, professionalism, leadership readiness, teamwork, communication skills and intellectual breadth of knowledge. The University of Kerala envisages to pave the path in guiding the student's journey to shape these attributes uniquely, making them integral to personal growth and success in various spheres of life. The University strives to ensure that these graduate attributes are not just checkboxes, but they play a pivotal role in shaping the students into capable, compassionate and responsible individuals with a high degree of social responsibility.

Programme Outcomes (PO)

PO-1: Critical thinking.

- Analyse information, objectively, and make a reasoned judgement.
- Draw reasonable conclusions from a set of information, and discriminate between useful and less useful details to solve problems or make decisions.
- Identify logical floss in the arguments of others.
- Evaluate data, fax, observable phenomena and research findings to draw valet and relevant results that are domain specific.

PO-2: Complex problem-solving.

- Solve different kinds of problems in familiar and non-familiar contexts and apply the learning to real life situations.
- Analyse a problem, generate and implement a solution and assess the success of the plan.
- Understand how the solution will affect both the people in world and the surrounding environment.

PO-3: Creativity.

- Produce or develop original work, theories and techniques.
- Think in multiple ways for making connections between seemingly unrelated concepts or phenomena.
- Add a unique perspective or improve existing ideas or solutions.
- Generate, develop and express origin ideas that are useful or have values.
- **PO-4:** Communication skills
 - Convey or share ideas or feelings effectively. Use words in delivering the intended message with utmost clarity.
 - Engage the audience effectively.
 - Be a good listener who are able to understand, respond and empathise with the speaker.
 - Confidently share views and express himself or herself.

PO-5: Leadership qualities

- Work effectively and lead respectfully with diverse teams.
- Build a team working towards a common goal.
- Motivate a group of people and make them achieve the best possible solution.
- Help and support others in their difficult times to tide over the adverse situation with courage.
- **PO-6:** Learning 'how to learn' skills
 - Acquire new knowledge and skills, including learning how to learn skills, that are necessary for pursuing learning activities throughout life, through self past and self directed learning.
 - Work independently, identify appropriate resources required for further learning.
 - Acquire organisational skills and time management to set self defined goals and targets with timelines.
 - Inculcate a healthy attitude to be a lifelong learner.
- **PO-7:** Digital and technological skills
 - Use ICT in a variety of learning and work situations, access, evaluate, and use a variety of relevant information sources.
 - Use appropriate software for analysis of data.
 - Understand the pit falls in the digital world and keep safe from them.
- **PO-8:** Value inculcation
 - Embrace and practice constitutional, humanistic, ethical, and moral values in life, including universal human values of truth, righteous conduct, peace, love, nonviolence, scientific temper, citizenship values.
 - Formulate a position or argument about an ethical issue from multiple perspectives.
 - Identify ethical issues related to work and follow ethical practises, including avoiding unethical behaviour, such as fabrication or misrepresentation of data, or committing plagiarism and adhering to intellectual property rights.

• Adopt an objective, and biased, and truthful actions in all aspects of work.

Programme Specific Outcomes

- **PSO-1:** Acquire strong understanding of foundational Mathematical concepts across various areas
- **PSO-2:** Equip the student with skills to analyze problems, formulate a hypothesis, evaluate and validate results, and draw reasonable conclusions thereof.
- **PSO-3:** Employ mathematical ideas encompassing logical reasoning, analytical, numerical ability, theoretical skills to model real-world problems and solve them.
- **PSO-4:** Develop critical thinking, creative thinking, self confidence for eventual success in career.
- **PSO-5:** To prepare the students to communicate mathematical ideas effectively and develop their ability to collaborate both intellectually and creatively in diverse contexts.
- **PSO-6:** Recognize the importance of lifelong learning and professional development in mathematics and related fields, exhibiting the motivation and initiative to stay updated with advancements in the field and continuously improve their skills and knowledge.

Contents

Sl No.	Course Code	Course Title	Page No.
1.	UK1DSCMAT100	Foundations of Mathematics	1
2.	UK1DSCMAT101	Differential Calculus and Linear Algebra	5
3.	UK1DSCMAT102	Differentiation, Sequences and Series	9
4.	UK1DSCMAT103	Differentiation and Linear system of Equations	13
5.	UK1DSCMAT104	Differentiation and Theory of Numbers	17
6.	UK1DSCMAT105	Differentiation and Complex Numbers	21
7.	UK1DSCMAT106	Number Theory and Linear System of Equations	25
8.	UK1DSCMAT107	Relations, Functions and Number Theory	29
9.	UK1DSCMAT108	Differential Calculus	33
10.	UK1DSCMAT109	Mathematics for Social Sciences -I	36
11.	UK1DSCMAT110	Matrices and Linear Equations	40
12.	UK1MDCMAT100	Numerical Ability - I	43
13.	UK1MDCMAT101	Mathematical Thinking	47
14.	UK2DSCMAT100	Theory of Equations, Differential Calculus and Geometry	51
15.	UK2DSCMAT101	Integration and Multivariate Calculus	56
16.	UK2DSCMAT102	Integration and Applications of Differentiation	60
17.	UK2DSCMAT103	Integral Calculus and Vectors	64
18.	UK2DSCMAT104	Integral Calculus and Ordinary Differential Equations	68
19.	UK2DSCMAT105	Applications of Differentiation and Ordinary Differential Equations	72
20.	UK2DSCMAT106	Linear Algebra and Graph Theory	76
21.	UK2DSCMAT107	Mathematics for Social Sciences -II	80
22.	UK2DSCMAT108	Integral Calculus and Series	84
23.	UK2DSCMAT109	Matrices and Linear Equations	88
24.	UK2DSCMAT110	Partial Differentiation and Analytic functions	91
25.	UK2MDCMAT100	Numerical Ability - II	95
26.	UK2MDCMAT101	Business Mathematics	99
27.	UK2MDCMAT102	Basic Operations Research	103
28.	UK2MDCMAT103	Introduction to Modular Arithmetic and Cryptography	107
29.	UK3DSCMAT200	Integral Calculus and Foundations of Vector Calculus	110

Sl No.	Course Code	Course Title	Page No.
-			

30.	UK3DSCMAT201	Differential Equations, Multiple Integrals and Vector Calculus	114
31.	UK3DSCMAT202	Group Theory and Probability	118
32.	UK3DSCMAT203	Numerical Analysis	122
33.	UK3DSCMAT204	Applications of Integration and Vector Calculus	126
34.	UK3DSCMAT205	Multivariate Calculus and Multiple Integrals	130
35.	UK3DSCMAT206	Complex Analysis	134
36.	UK3DSCMAT207	Applications of Integration, Special Functions and Fourier Series	138
37.	UK3DSCMAT208	Geometry, Multivariate and Vector Calculus	142
38.	UK3DSCMAT209	Mathematics for Social Sciences - III	146
39.	UK3DSCMAT210	Integral Transforms	150
40.	UK3DSCMAT211	Discrete Mathematics	154
41.	UK3DSCMAT212	Vector Calculus	158
42.	UK3DSEMAT200	Programming with LAT_EX and Python	162
43.	UK3DSEMAT201	Numerical Analysis	166
44.	UK3DSEMAT202	Discrete Mathematics	170
45.	UK3DSEMAT203	Probability Theory	174
46.	UK3VACMAT200	Introduction to Actuarial Mathematics	177
47.	UK3VACMAT201	Project Management and Game Theory	181
48.	UK4DSCMAT200	Introduction to Real Analysis and Multiple Integrals	184
49.	UK4DSCMAT201	Partial Differentiation and Introduction to Abstract Algebra	188
50.	UK4DSEMAT200	Elementary Graph Theory	192
51.	UK4DSEMAT201	Introduction to Operations Research	196
52.	UK4DSEMAT202	Data Analysis using Python	200
53.	UK4SECMAT200	Typesetting Documents with	204
54.	UK4SECMAT201	Numerical Methods	208
55.	UK4VACMAT200	Introduction to Mathematical Modeling	212
56.	UK4VACMAT201	Mathematics in Nature	216
57.	UK5DSCMAT300	Differential Equations and Vector Calculus	220
58.	UK5DSCMAT301	Fundamentals of Real Analysis - I	224

Sl No.	Course Code	Course Title	Page No
59.	UK5DSCMAT302	Abstract Algebra	228
60.	UK5DSCMAT303	Advanced Mathematics for Social Science	232
61.	UK5DSEMAT300	Intermediate Graph Theory	236
62.	UK5DSEMAT301	Advanced Python Programming	240
63.	UK5DSEMAT302	Special Functions	244
64.	UK5DSEMAT303	Optimization Techniques	247
65.	UK5DSEMAT304	Difference Equations and Z-Transforms	251
66.	UK5SECMAT300	Programming with Python	255
67.	UK5SECMAT301	Programming with Scilab	258
68.	UK6DSCMAT300	Real Analysis - II	262
69.	UK6DSCMAT301	Complex Analysis I	266
70.	UK6DSCMAT302	Linear Algebra	270
71.	UK6DSEMAT300	Advanced Linear Programming	274
72.	UK6DSEMAT301	Partial Differential Equations	278
73.	UK6DSEMAT302	Stochastic Processes	282
74.	UK6DSEMAT303	Foundations of Computational Mathematics with SageMath	286
75.	UK6DSEMAT304	Integral Transforms	290
76.	UK6DSEMAT305	Fuzzy Mathematics	294
77.	UK6SECMAT300	Programming with R	298
78.	UK7DSCMAT400	Topology	302
79.	UK7DSCMAT401	Complex Analysis - II	306
80.	UK7DSEMAT400	Advanced Graph Theory	310
81.	UK7DSEMAT401	Functional Analysis	314
82.	UK7DSEMAT402	Advanced Linear Algebra	318
83.	UK7DSEMAT403	Advanced Abstract Algebra	322
84.	UK7DSEMAT404	Semigroups	326
85.	UK7DSEMAT405	Ordinary and Partial Differential Equations	330
86.	UK7DSEMAT406	Coding Theory	334
87.	UK7DSEMAT407	Measure Theory	338
88.	UK7DSEMAT408	Queueing Theory	342
89.	UK7DSEMAT409	Machine Learning using Python	346

Discipline	Mathen	Mathematics						
Course Code	UK1DS	UK1DSCMAT100						
Course Title	Founda	tions of Ma	thematics					
Type of Course	DSC							
Semester	Ι							
Academic Level	100-19	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	4	4	-	-	4			
Pre-requisites	1. Defii	nition and p	reliminary r	esults of ma	atrices.			
	2. Unde	erstanding o	on methods t	to solve a sy	vstem of			
	simu	ltaneous of	equations.					
	3. Basi	3. Basic knowledge of various number system.						
Course Summary	number	This course includes set theory, determinants and matrices, number theory and solution of system of equations using matrices and number theory						

Module	Unit	Unit Contents							
Ι		Sets -Relations - Functions							
	1	Sets: Sets and Elements, Subsets, Venn Diagram, Set							
		Operations. Relation: Product sets, Relations, Types of							
		Relations, Equivalence Relations, Partial Ordering Relations							
		Functions: Functions, One-to-One, Onto and Invertible							
		Functions. (Chapter 1: Sections 1.2, 1.3, 1.4, Chapter 2:							
		2.2, 2.3, 2.6, 2.8, Chapter 3: 3.2, 3.3. of Text[2])							

Module	Unit	Contents	Hrs
II		Matrices and Determinants	12
	2	Definition, Properties of Determinants and problems, Special Matrices Review of Matrix operations and Related Matrices Rank of a matrix-Elementary transformation, Equivalent matrix , Elementary matrices, Normal form (Chapter 1: Section 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7.1 to 2.7.7 of Text[1])	
III		Solution of system of equation	10
	3	Solution of Linear system equation method Cramer's Rule, Matrix Inversion Method Consistency of linear system of equation, Rouche's Theorem (Statement only), System of homogeneous equation (Chapter 2: Sections 2.9, 2.9.1, 2.9.2, 2.10 of Text[1])	
IV		Number Theory	26
	4	Mathematical induction, The division algorithm, Pigeonhole principle, divisibility relations, inclusion-exclusion principle (<i>These topics can be found in Chapter 1 section 1.3, Chapter</i> 2 sections 2.1, 2.5 of Text [3]. The topics from the subsection 'A Number-Theoretic Function' onwards are excluded for examination. But Theorem 2.12 and Lemma 2.25 to be discussed.)	
	5	 Prime and composite numbers, infinitude of primes, GCD, linear combination of integers, pairwise relatively prime integers, the Euclidean algorithm for finding GCD the fundamental theorem of arithmetic, canonical decomposition of an integer into prime factors, LCM. (<i>These topics can be found in Chapter 3 sections 3.1 to 3.4 of Text [3]. The subsections marked as optional, Theorems 3.1, 3.2, 3.3, 3.12, 3.14, and Lemma 3.2 are excluded for examination.</i>) Congruences, Modular exponentiation. <i>These topics can be found in Chapter 4 sections 4.1 and 4.2 Text [3]. The subsections marked as optional and 'The monkey and coconut puzzle revisited' are excluded for examination.</i> 	

- 1. B.S. Grewal, Higher Engineering Mathematics, 42nd Edition, Khanna Publishers, 2012
- 2. Seymour Lipschutz, Marc Lipson. Discrete Mathematics, 3rd Edition, Schaum's outline, 2007.
- 3. Thomas Koshy, Elementary Number Theory with Applications, 2nd Edition, Academic Press, 2007.

References

- 1. David M. Burton, Elementary Number Theory, Seventh Edition, McGraw-Hill, 2011.
- 2. Gilbert Strang, Introduction to Linear Algebra , 5th Edition, 2005.
- 3. G A Jones, J M Jones, Elementary Number Theory, Springer, 1998.
- 4. Lee W. Johnson, R Dean Riess, Jimmy T. Arnold, Introduction to Linear Algebra, Fifth Edition, Addison Wesley, 2019.
- 5. Seymour Lipschutz. Set Theory and Related Topics, 3rd Edition, Schaum's outline, 1998.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Describe the basic concept of set theory, determinants, Matrices and numbers	PSO1, PO1, 2, 4, 8	U	F,C	L	
CO 2	Solve system of linear equations using determinants, Matrices	PSO2, PO1, 2, 3, 4, 7, 8	Ap	Р	L	
CO 3	Illustration of Mathematical Induction, Division Algorithm and Euclidean Algorithm	PSO1, PO1, 2, 3, 4, 6, 7, 8	U	F,C	L	
CO 4	Categorise functions based on the properties	PSO4, PO1		F,C	L	

Course Outcomes

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create)

(F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	2	1	1	2	2	2	1	3	1	1	2	2
CO2	2	3	2	2	1	1	2	3	1	2			1	2
CO3	3	2	2	1	1	1	3	2	1	3			1	1
CO4	2	2	1	3	1	1	3	1	1	1		1	1	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK1DS	UK1DSCMAT101						
Course Title	Differe	ntial Calcul	us and Line	ar Algebra				
Type of Course	DSC							
Semester	Ι	Ι						
Academic Level	100-19	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	4	4	-	1	5			
Pre-requisites	1. Deriv	1. Derivative of functions 2. Matrices						
Course Summary	This co	This course provides a comprehensive idea of differentiation,						
	its appl	ications and	solutions o	f linear equ	ations			

Module	Unit	Contents	Hrs						
Ι		Differentiation	18						
	1	Basic concepts and techniques of Differentiation(review only).							
	2	2 Tangent lines and rate of change, Derivative of a function							
	3	Implicit differentiation							
	4	Rectilinear motion, Rolle's theorem, Mean value theorem							
	5	Derivatives of logarithmic, exponential and inverse trigonometric functions.							
	Chapt	er 2: Section 2.1, 2.2, 2.7, Chapter 3: 3 section 3.6, chapter 6: section							
	6.2(di	fferentiation only), 6.3(differentiation only) of Text [2]							
II		Applications of Differentiation							
	6	Relative rates							
	7	Analysis of functions - Increasing, Decreasing, concavity							

Module	Unit	Contents	Hrs						
	8	Analysis of functions - Relative extrema, Absolute maxima							
		and minima.							
	9	Applied maxima and minima problems.							
	Chapt	er 2: Section 2.8, chapter 3: section 3.1,3.2(graphing of polynomials							
	is not required), 3.4, 3.5. of Text [2]								
III		System of Linear equations	12						
	10	Linear systems of equations, Coefficient matrix, Augmented							
		matrix, Elementary row operations, Guass elimination							
	11	Rank of a matrix.							
	12	Existence and uniqueness of solutions							
	13	Solving systems of equations using cramer, srule,.							
	Chapter 7: Section 7.3, 7.4(rank of matrix only), 7.5, 7.7 of Text [1]								
IV		Eigen values and Diagonalization	12						
	14	Eigen values and eigen vectors							
	15	Some applications of eigen value problems							
	16	Diagonalization of Matrices							
	Chapter 8: Section 8.1, 8.2, 8.4(quadratic forms excluded) of Text [1]								
Practical	Practi	cal sessions can be given using suitable software like sagemath (not	15						
		t for examination purpose)							

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition Wiley, 2011
- 2. Howard Anton, Irel Bivens, Stephens Davis, Calculus 10th Edition Wiley, 2012

References

- 1. G. B. Thomas, R. L. Finey, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004
- 2. Joel Hass, Maurice D, Weir, *Thomas Calculus Early Transcendentals* 12th Edition, Addison-Weseley Publishing Company, 2006
- 3. J. Stewart, *Calculus with Early Transcendentals Functions* 7th Edition, Cengage India, 2008
- 4. David C Lay, Linear Algebra and its Applications, Pearson, 2003
- 5. T.S. Blyth, E.F. Robertson, Linear Algebra, Second Edition, Springer, 2013

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the fundamental concepts of Differentiation	PSO1, 2	U	F,C	L	
CO 2	Explore Differentiation techniques to functions involving vectors and matrices	PSO 2,4	An, C	С, М	L	
CO 3	Develop problem-solving skills through the application of differentiation concepts and systems of linear equations	PSO 2,3	An, C	Р, М	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	P01	P02	PO3	P04	PO5	P06	PO7	PO8
CO1	3	1	2	2	3	3	3	-	1	-	-	2	1	1
CO2	1	3	1	2	1	1	1	1	3	-	-	2	1	1
CO3	1	3	2	3	2	3	1	3	3	-	-	3	1	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- End Semester Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK1DS	UK1DSCMAT102							
Course Title	Differe	ntiation, Sec	quence and	Series					
Type of Course	DSC								
Semester	Ι								
Academic Level	100-19	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	4	4	-	-	4				
Pre-requisites	1. Func	tions and lin	mits 2. A	rithmetic an	d geometric progression				
Course Summary	This co	urse provide	es a detailed	l study of di	fferentiation and				
	converg	gence of seq	uence and s	eries					

Module	Unit	Contents	Hrs						
Ι		Differentiation	20						
	1	Tangent lines and limits (review only), One sided limits (review only), Limits at infinity, Infinite limits, Continuity (up to continuity of composite functions) (<i>Chapter 1 Sections 1.1, 1.3, 1.4 and 1.5 of Text 1</i>)							
	2	2 Tangent lines and rate of change, The derivative function (<i>Chapter 2 Sections 2.1, 2.2 of Text 1</i>)							
	3	Introduction to Techniques of Differentiation, The Product and Quotient Rules, Derivatives of Trigonometric Functions (review only)							
	4	The Chain Rule, Implicit Differentiation (<i>Chapter 2 Sections</i> 2.6, 2.7 of Text 1)							
II	D	ifferentiation of exponential and logarithmic functions	10						
	5	Exponential and logarithmic functions (review only) (Chapter 6 Section 6.1 of Text [1])							

Module	Unit	Contents	Hrs					
	6	Derivatives involving Exponential and logarithmic functions						
		(Chapter 6 Section 6.2 of Text [1])						
	7	L'Hôpital's rule (Chapter 6 Section 6.5 of Text [1])						
III		Sequences and Series						
	8	Sequences, their limits, convergence and related theorems						
		(without proof). (Chapter 9 Sections 9.1, 9.2 of Text 1)						
	9	Infinite series, their convergence and sums, geometric Series						
		and harmonic series (Chapter 9 Section 9.3 of Text [1])						
IV		Convergence and Divergence tests						
	10	Algebraic properties of infinite series, Integral test, p-series						
		(Chapter 9 Section 9.4 of Text [1] (avoid proofs of theorems))						
	11	Comparison test, limit comparison test, Ratio test, Root						
		test(Chapter 9 Section 9.5 of Text [1])						
	12	Alternating Series - Absolute and conditional Convergence,						
		Ratio test for absolute convergence, Power series, Maclaurin						
		and Taylor Polynomials Maclaurin and Taylor series						
		(Chapter 9 Sections 9.6, 9.7 of Text [1] (avoid proofs of						
		theorems))						

1. Howard Anton, Irl Bivens, Stephens Davis, *Calculus* 10th Edition , Wiley, 2012.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. Mary L Boas, Mathematical Methods in Physical Science, 3rd Edition, 2006.
- 3. K. F. Riley, .M. P. Hobson, S. J. Bence, *Mathematical Methods for Physics and Engineering*, Third Edition, Cambridge University Press, 2006.
- 4. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 5. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the fundamental concepts of Differentiation	PSO1, 2, PO1, 3, 6, 7, 8	U	F,C	L	
CO 2	Explore Differentiation techniques to functions involving vectors and matrices	PSO 2,4, PO1, 3, 6, 7, 8	An, C	С, М	L	
CO 3	Develop problem-solving skills through the application of differentiation concepts and systems of linear equations	PSO 2,3, PO1, 3, 6, 7, 8	An, C	Р, М	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	P01	P02	PO3	P04	P05	P06	PO7	PO8
CO1	3	1	2	2	3	3	3	-	1	-	-	2	1	1
CO2	1	3	1	2	1	1	1	1	3	-	-	2	1	1
CO3	1	3	2	3	2	3	1	3	3	-	-	3	1	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- End Semester Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK1DS	UK1DSCMAT103							
Course Title	Differe	ntiation and	Linear Syst	tem of Equa	ations				
Type of Course	DSC								
Semester	Ι								
Academic Level	100-19	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	1	5				
Pre-requisites	1. Func	tions and L	imits 2. N	Aatrices					
	Solution	n of system	of linear eq	uations in t	wo variables				
Course Summary	This co	urse provide	es brief idea	about diffe	erentiation				
	and bas	ics of Linea	ır Algebra						

Module	Unit	Contents	Hrs
Ι		Differentiation	20
	1	Tangent lines and limits (review only), One sided limits (review only), Limits at infinity, Infinite limits, Continuity (up to continuity of composite functions) (<i>Chapter 1 Sections 1.1, 1.3, 1.4 and 1.5 of Text [1]</i>)	
	2	Tangent lines and rate of change, The derivative function (<i>Chapter 2 Sections 2.1, 2.2 of Text [1]</i>)	
	3	Introduction to Techniques of Differentiation, The Product and Quotient Rules, Derivatives of Trigonometric Functions (review only)	
	4	The Chain Rule, Implicit Differentiation (<i>Chapter 2 Sections</i> 2.6, 2.7 of Text [1])	

Module	Unit	Contents	Hrs
II		Differentiation of exponential and logarithmic functions	10
	5	Exponential and logarithmic functions (review only) (Chapter 6 Section 6.1 of Text [1])	
	6	Derivatives involving Exponential and logarithmic functions (<i>Chapter 6 Section 6.2 of Text [1]</i>)	
	7	L'Hôpital's rule (Chapter 6 Section 6.5 of Text [1])	
III		Matrices and Systems of linear equations	15
	8	Linear Systems of Equations, Gauss Elimination, Linear Independence, Rank of a Matrix. (Sections 7.2, 7.4 of Text [2] (avoid vector space))	
	9	Solutions of Linear Systems: Existence, Uniqueness (Chapter 7 Section 7.5 of Text [2] (omit proofs of theorems))	
	10	Determinants Cramer's Rule (<i>Chapter 7 Section 7.7 of Text</i> [2])	
IV		Eigen values and Eigen vectors	15
	11	The Matrix Eigenvalue Problem. Determining Eigenvalues and Eigenvectors (<i>Chapter 8 Section 8.1 of Text [2]</i>)	
	12	Symmetric, Skew-Symmetric, and Orthogonal Matrices (<i>Chapter 8 Section 8.3 of Text</i> [2])	
	13	Diagonalization, Quadratic Forms (<i>Chapter 8 Section 8.4 of</i> <i>Text</i> [2] except eigen bases)	
Practical		cal sessions can be given using suitable software like sagemath (not for examination purpose)	15

- 1. H Anton, Irl Bivens, S Davis, Calculus, 10th Edition, John Wiley & Sons. 2012.
- 2. Erwin Kreyszig, *Advanced Engineering Mathematics*, Wiley Publishers, 10th Edition, 2018.

References

- 1. T S Blyth, E F Robertson, *Linear Algebra*, Second Edition, Springer, 2013.
- 2. David C Lay, Linear Algebra and its applications, Pearson, 2003.
- 3. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 4. Lee W. Johnson, R Dean Riess, Jimmy T. Arnold, *Introduction to Linear Algebra*, Fifth Edition, Addison Wesley, 2001.
- 5. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2004.

- 6. Thomas Banchoff, John Wermer, *Linear Algebra Through Geometry*, 2nd Edition, Springer, 2012.
- 7. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2006.

E-resources

- 1. https://www.geogebra.org/m/z3jEUrvv
- 2. https://www.khanacademy.org

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	DS4/04	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of differentiability	PSO 1	U	F, C	L	
CO 2	Apply the concept of differentiability	PSO 2, 4	Ap, An	Р	L	
CO 3	Understand the concepts of Matrix operations and their algebraic properties, System of linear equations and their Matrix representation, Gauss Elimination	PSO 1	U	F, C	L	
CO 4	Able to find the eigen values powers of matrices and diagonalization of matrices (R-Remember U-Understand Ap-Apply	PSO 2, 4	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	-	-	-	-	-	-	-	-	-	1	2	-	-
CO2	-	2	-	2	-	-	-	-	-	-	-	2	-	1
CO3	2	-	-	-	-	-	-	-	-	-	1	2	-	-
CO4	-	2	-	2	-	-	-	-	-	-	_	2	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK1DS	UK1DSCMAT104						
Course Title	Differe	ntiation and	Theory of I	Numbers				
Type of Course	DSC							
Semester	Ι							
Academic Level	100-19	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	4	4	-	-	4			
Pre-requisites	1. Func	tions, limits	and contin	uity 2. N	atural numbers			
Course Summary	This co	urse provide	es a brief id	ea about dif	ferentiation			
	and the	ory of numb	bers					

Module	Unit	Contents	Hrs							
Ι		Differentiation	20							
	1	Tangent lines and limits (review only), One sided limits (review only), Limits at infinity, Infinite limits, Continuity (up to continuity of composite functions) (<i>Chapter 1:</i> Sections 1.1, 1.3, 1.4 and 1.5 of Text [1])								
	2									
	3	Introduction to Techniques of Differentiation, The Product and Quotient Rules, Derivatives of Trigonometric Functions (review only)(<i>Chapter 2: Sections 2.3, 2.4, 2.5 of Text [1]</i>)								
	4	The Chain Rule, Implicit Differentiation (<i>Chapter 2:</i> Sections 2.6, 2.7 of Text [1])								
II	D	ifferentiation of exponential and logarithmic functions	10							
	5	Exponential and logarithmic functions (review only) (Chapter 6 Section 6.1 of Text 1)								

Module	Unit	Contents	Hrs
	6	Derivatives involving Exponential and logarithmic functions	
		(Chapter 6 Section 6.2 of Text 1)	
	7	L'Hôpital's rule (Chapter 6 Section 6.5 of Text 1)	
III		The Euclidean Algorithm	15
	8	Mathematical induction, recursion, The division algorithm	
		(Chapter 1 Sections 1.3, 3.4 of Text [2])	
	9	The division algorithm, Pigeonhole principle, divisibility relations, inclusion-exclusion principle (<i>Chapter 2 Sections 2.1, 2.5 of Text [2] The topics from the subsection 'A</i>	
		Number-Theoretic Function' onwards are excluded for examination. But Theorem 2.12 and Lemma 2.25 to be discussed.)	
	10	Prime and composite numbers, infinitude of primes, GCD, linear combination of integers, pairwise relatively prime integers, the Euclidean algorithm for finding GCD (<i>Chapter</i> <i>3 Section 3.1 of Text [2]. The subsections marked as</i> <i>optional, Theorems 3.1, 3.2, 3.3, 3.12, 3.14, and Lemma 3.2</i> <i>are excluded for examination.</i>)	
IV		Congruences	15
	11	The fundamental theorem of arithmetic, canonical decomposition of an integer into prime factors (<i>Chapter 3 Sections 3.3 of Text [2]. The subsections marked as optional, Theorem 3.14 are excluded for examination.</i>)	
	12	LCM (Chapter 3 Section 3.4 of Text [2])	
	13	congruences, modular exponentiation (Chapter 4 Section 4.1 of Text [2]. The subsections marked as optional and 'The monkey and coconut puzzle revisited' are excluded for examination.)	

- 1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012
- 2. Thomas Koshy, *Elementary Number Theory with Applications*, 2nd Edition, Academic Press, 2007.

References

- 1. David M. Burton, *Elementary Number Theory*, 7th Edition, McGraw Hill, 2011.
- 2. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 3. G A Jones, J M Jones, Elementary Number Theory, Springer, 1998.
- 4. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.

5. G B Thomas, R L Finney, Calculus, 9th, Addison-Weseley Publishing Company, 2004.

E-resources

- 1. https://www.geogebra.org/m/z3jEUrvv
- 2. https://www.khanacademy.org

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of differentiability	PSO 1, PO5, 6	U	F,C	L	
CO 2	Apply the concept of differentiability	PSO 2, 4, PO6, 8	Ap, An	Р	L	
CO 3	Examine integrated approach to number theory	PSO 1, 3, PO1, 2, 6	U	F, C	L	
CO 4	Apply the concept of congruences	PSO 2, 3, 4, PO1, 2, 5, 6	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
CO1	2	-	-	-	-	-	-	-	-	-	1	2	-	-	
CO2	-	2	-	2	-	-	-	-	-	-	-	2	-	1	
CO3	2	-	1	-	-	-	1	1	-	-	-	1	-	-	
CO4	-	2	2	1	-	-	1	2	-	-	1	1	-	-	

- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK1DS	UK1DSCMAT105						
Course Title	Differe	ntiation and	Complex N	lumbers				
Type of Course	DSC							
Semester	Ι							
Academic Level	100-19	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	4	4	-	-	4			
Pre-requisites	1. Func	tions, limits	and contin	uity 2. C	omplex numbers			
Course Summary	This co	urse provide	es basics on	differentiat	tion			
	and cor	nplex numb	ers					

Module	Unit	Contents	Hrs						
Ι		Differentiation	20						
	1	Tangent lines and limits (review only), One sided limits							
		(review only), Limits at infinity, Infinite limits, Continuity							
		(up to continuity of composite functions) (Chapter 1							
		Sections 1.1, 1.3, 1.4 and 1.5 of Text [1])							
	2	2 Tangent lines and rate of change, The derivative function							
		(Chapter 2 Sections 2.1, 2.2 of Text [1])							
	3	Introduction to Techniques of Differentiation, The Product							
		and Quotient Rules, Derivatives of Trigonometric Functions							
		(review only) Chapter? : Section? of Text [1]							
	4	The Chain Rule, Implicit Differentiation (Chapter 2 Sections							
		2.6, 2.7 of Text [1])							
II	D	ifferentiation of exponential and logarithmic functions	10						
	5	Exponential and logarithmic functions (review only)							
		(Chapter 6 Section 6.1 of Text [1])							

Module	Unit	Contents	Hrs
	6	Derivatives involving Exponential and logarithmic functions	
		(Chapter 6 Section 6.2 of Text 1)	
	7	L'Hôpital's rule (Chapter 6 Section 6.5 of Text [1])	
III		Complex Numbers	15
	8	Sums and Products, Basic Algebraic Properties (Chapter 1	
		Sections 1, 2 of Text [2])	
	9	Further Properties of complex numbers, Vectors and Moduli	
		(Chapter 1 Sections 3, 4 of Text [2])	
	10	Complex Conjugates (Chapter 1 Section 5 of Text [2])	
IV		Argument and roots of complex numbers	15
	11	Exponential Form, Products and Powers in Exponential	
		Form (Chapter 1 Sections 6, 7 of Text [2])	
	12	Arguments of Products and Quotients (Chapter 1 Section 8	
		<i>of Text</i> [2])	
	13	Roots of Complex Numbers, Examples (Chapter 1 Sections	
		9, 10 of Text [2])	

- 1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012
- 2. James Ward Brown, Ruel V. Churchill, *Complex Variables and Applicatons*, 8th edition, McGraw Hill, 2001.

References

- 1. Dennis G. Zill, Patric D Shanahan, A First Course in Complex Analysis with Applications, Jones and Bartlett Publishers, 2003.
- 2. Edward B. Saff, Arthur David Snider, *Fundamentals of Complex Analysis with Applications to Engineering and Science*, 3rd Edition, Pearson Education India, 2017.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India, 2011.
- 4. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 5. John H Mathews and Russel W Howell, *Complex Analysis for Mathematics and Engineering*, Sixth Edition, Jones and Bartlett Publishers, 2012.
- 6. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 7. G B Thomas, R L Finney, *Calculus*, 9th, Addison-Weseley Publishing Company, 2004.

E-resources

- 1. https://www.geogebra.org/m/z3jEUrvv
- 2. https://www.khanacademy.org

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of differentiability	PSO 1, PO5, 6	U	F,C	L	
CO 2	Apply the concept of differentiability	PSO 2, 4, PO6, 8	Ap, An	Р	L	
CO 3	Understand the concepts of complex numbers and their algebraic operations	PSO 1, PO6	U	F, C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
CO1	2	-	-	-	-	-	-	-	-	-	1	2	-	-	(
CO2	-	2	-	2	-	-	-	-	-	-	-	2	-	1	
CO3	2	-	-	-	-	-	-	1	-	-	-	1	-	-	

- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

• Quiz/Assignment/Discussion/Seminar

- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark

Discipline	Mathen	Mathematics								
Course Code	UK1DSCMAT106									
Course Title	Numbe	Number Theory and Linear System of Equations								
Type of Course	DSC									
Semester	Ι	Ι								
Academic Level	100-199									
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week		Hours per week					
	4	4	-	-	4					
Pre-requisites	1. Natural Numbers 2. Matrices									
Course Summary	This course provides a study on number theory									
	and line	ear system c	of equations							

Module	Unit	Contents	Hrs
Ι		The Euclidean Algorithm	15
	1	Mathematical induction, recursion, The division algorithm (<i>Chapter 1 Sections 1.3, 3.4 of Text [2]</i>)	
	The division algorithm, Pigeonhole principle, divisibility relations, inclusion-exclusion principle (<i>Chapter 2 Sections 2.1, 2.5 of Text [2] The topics from the subsection 'A Number-Theoretic Function' onwards are excluded for examination. But Theorem 2.12 and Lemma 2.25 to be discussed.</i>)		
	3	Prime and composite numbers, infinitude of primes, GCD, linear combination of integers, pairwise relatively prime integers, the Euclidean algorithm for finding GCD (<i>Chapter</i> 3 Section 3.1 of Text [2]. The subsections marked as optional, Theorems 3.1, 3.2, 3.3, 3.12, 3.14, and Lemma 3.2 are excluded for examination.)	

Module	Unit	Contents	Hrs
II		Congruences	15
	4	The fundamental theorem of arithmetic, canonical decomposition of an integer into prime factors (<i>Chapter 3 Sections 3.3 of Text [2]. The subsections marked as optional, Theorem 3.14 are excluded for examination.</i>)	
	5	LCM (Chapter 3 Section 3.4 of Text [2])	
	6	congruences, modular exponentiation (<i>Chapter 4 Section</i> 4.1 of Text [2]. The subsections marked as optional and 'The monkey and coconut puzzle revisited' are excluded for examination.)	
III		Matrices and Systems of linear equatios	15
	7	Linear Systems of Equations, Gauss Elimination, Linear Independence, Rank of a Matrix. (Sections 7.2, 7.4 of Text [2] (avoid vector space))	
	8	Solutions of Linear Systems: Existence, Uniqueness (<i>Chapter 7 Section 7.5 of Text 2(omit proofs of theorems</i>)	
	9	Determinants Cramer's Rule (<i>Chapter 7 Section 7.7 of Text</i> [2])	
IV		Eigen values and Eigen vectors	15
	10	The Matrix Eigen value Problem. Determining Eigen values and Eigen vectors (<i>Chapter 8 Section 8.1 of Text [2]</i>)	
	11	Symmetric, Skew-Symmetric, and Orthogonal Matrices (<i>Chapter 8 Section 8.3 of Text [2]</i>)	
	12	Diagonalization, Quadratic Forms (Chapter 8 Section 8.4 of Text [2] (except eigen bases))	

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley, 10th Edition, 2011.
- 2. Thomas Koshy, *Elementary Number Theory with Applications*, 2nd Edition, Academic Press, 2007.

References

- 1. T S Blyth, E F Robertson, *Linear Algebra*, Second Edition, Springer, 2013.
- 2. David C Lay, Linaer algebra and its applications, Pearson, 2003.
- 3. David M. Burton, *Elementary Number Theory*, 7th Edition, McGraw Hill, 2011.
- 4. G A Jones, J M Jones, Elementary Number Theory, Springer, 1998.
- 5. Lee W. Johnson, R Dean Riess, Jimmy T. Arnold, *Introduction to Linear Algebra*, Fifth Edition, Addison Wesley, 2019
- 6. Thomas Banchoff, John Wermer, *Linear Algebra Through Geometry*, 2nd Edition, Springer, 2012.

E-resources

1. https://www.khanacademy.org

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Examine integrated approach to number theory	PSO 1, 3, PO2	U	F, C	L	
CO 2	Apply the concept of congruences	PSO 2, 3, 4, PO1, 2, 5, 6	Ap, An	Р	L	
CO 3	Understand the concepts of Matrix operations, their algebraic properties, System of linear equations and their Matrix representation, Gauss Elimination	PSO 1, PO1, 2, 5, 6	U	F, C	L	
CO 4	Able to find the eigen values of powers of matrices and diagonalization of matrices	PSO 2, 4, PO1, 2, 6	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO3	2	-	1	-	-	-	-	1	-	-	-	1	-	-
CO4	-	2	2	1	-	-	1	2	-	-	1	1	-	-
CO3	2	-	-	-	-	-	2	1	-	-	1	2	-	-
CO4	-	2	-	2	-	-	2	2	-	-	-	2	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Descipline	Mathematics									
Course Code	UK1DS	UK1DSCMAT107								
Course Title	Relation	ns, Functior	ns and Num	ber theory						
Type of Course	DSC									
Semester	Ι	Ι								
Academic Level	100-19	100-199								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week		Hours per week					
	4	4	-	-	4					
Pre-requisites	Sets									
Course Summary	Sets,	, relations, f	unctions and	d basics of	number theory					

Module	Unit	Contents	Hrs							
Ι		Set theory	12							
	1	Definition, types and operations on sets (This topic can be								
		found in Chapter 2 of Text [2])								
	2	Partition of Set: POSET - HASSE diagrams for partial								
		ordering - lub, glb. (These topics can be found in Chapter								
		2 of Text [2])								
	3	3 Lattices: Definition and Examples (<i>This topic can be found</i>								
		in Chapter 2 of Text [2] (avoid proof of theorems, properties								
		and principles of duality))								
II		Relations and Functions	18							
	4	Relations - Definition, Relation and Digraph (These topics								
		can be found in Chapter 4 of Text [2])								
	5	The matrix of a relation, Properties of relations, Equivalence								
		relations (These topics can be found in Chapter 4 of Text [2])								

Module	Unit	Contents	Hrs
	6	Transitive closure, Warshal's algorithm, Functions (These	
		topics can be found in Chapter 4 of Text [2]) (Avoid computer	
		programs)	
III		The fundamental theorem of arithmetic	15
	7	Mathematical induction, binomial theorem (Chapter 1	
		Sections 1.1, 1.2 of Text [1])	
	8	The division algorithm, the greatest common divisor, the	
		Euclidean algorithm, prime numbers (Chapter 2 Sections	
		2.1, 2.2, 2.3 of Text [1])	
	9	The fundamental theorem of arithmetic (Chapter 3 Section	
		3.1 of Text [1])	
IV		Congruences	15
	10	Basic properties of congruences, binary and decimal	
		representation of integers (Chapter 4 Sections 4.1, 4.2, 4.3	
		of Text [1])	
	11	Fermat's theorem, Wilson's Theorem (Avoid proofs of	
		theorems) (Chapter 5 Sections 5.1, 5.2 of Text [1])	
	12	The sum and number of divisors (Chapter 6 Section 6.1 of	
		<i>Text</i> [1])	

Textbooks

- 1. David M. Burton, *Elementary Number Theory*, 7th Edition, McGraw Hill, 2011.
- 2. T. Veerarajan, *Discrete Matematics with Graph Theory and Combinatorics*, Tata McGraw Hill, 2007.

References

- 1. G A Jones, J M Jones, Elementary Number Theory, Springer, 1998.
- 2. C L Liu, D P Mohapatra, *Elements of Discrete Mathematics, A Computer oriented approach*, Tata McGraw-Hill, 2008.
- 3. Rajendra Akerkar, Rupali Akerkar, Discrete Mathematics, Perason Education, 2007.
- 4. R M Somasundaram, Discrete Mathematical Structures, Prentice Hall of India, 2003.
- 5. Thomas Koshy, *Elementary Number Theory with Applications*, 2nd Edition, Academic Press, 2007.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of set theory	PSO 1, PO2, 6	R, U	F,C	L	
CO 2	Analyze real world problems	PSO 1, 2, PO1, 2, 3, 4, 5, 6	Ap, An	Р	L	
CO 3	Examine integrated approach to number theory	PSO 1, 3, PO1, 2, 6	U	F, C	L	
CO 4	Apply the concept of congruences	PSO 2, 3, 4, PO1, 2, 5, 6	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	-	-	-	-	-	-	1	-	-	-	1	-	-
CO2	2	2	-	-	-	-	2	2	1	1	2	1	-	-
CO3	3	-	2	-	-	-	1	1	-	-	-	1	-	-
CO4	-	2	3	2	-	-	1	2	-	-	1	1	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics								
Course Code	UK1DSCMAT108									
Course Title	Differen	Differential Calculus								
Type of Course	DSC									
Semester	Ι									
Academic Level	100-199									
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week		Hours per week					
	4	4	-	-	4					
Pre-requisites	Functio	ons								
Course Summary	extremu	ndental fun 1m problem	ctions and s, curve-sk	their appl etching, ap	ial and elementary lications, derivatives, proximations, Use of vare in calculus.					

Module	Unit	Contents	Hrs							
Ι		Functions, limits and continuity								
	1	Families of functions, inverse functions, exponential and logarithmic functions, Computing limits of functions, limits at infinity, Continuity, Intermediate value theorem and applications, Continuity of various functions. Sections 0.3,0.4,0.5, 1.2, 1.3, 1.5, 1.6 of Text I								
II		Introduction to derivatives	15							
	2	The derivative of a function, Algebra of derivatives, Derivatives of various functions, The chain rule. Sections 2.2, 2.3, 2.4 2.5, 2.6 (Proofs of theorems excluded)								

Module	Unit	Contents	Hrs
III		Techniques of differentiation	15
	3	Implicit differentiation, derivatives of logarithmic, exponential and inverse trigonometric functions, related rates and local linear approximation, L'Hopital rule. Sections 2.7, 2.8, 2.9, 6.1, 6.2(Integrals involving logarithmic functions excluded), 6.3,6.5	
IV		Analysis of functions using derivatives	20
	4	Increasing, decreasing and concavity, extremum problems, graphing polynomials, absolute maxima and minima, Rolle's theorem, Mean-value theorem Sections 3.1, 3.2, 3.4, 3.8	

Textbooks

1. H Anton, I Bivens, S Davis, Calculus, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Joel Hass, Maurice D. Weir, Thomas' Calculus Early Transcendentals, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited, 2004.
- 3. G B Thomas, R L Finney, Calculus, 9th Edition, Addison-Weseley Publishing Company, 2004.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understand the basic concept of functions, limit, continuity and derivatives	PSO1,2, PO1	U	F,C	L,T	
CO 2	Analyse the properties of functions using derivatives	PSO2, PO3, 4	An	F	L,T	
CO 3	Apply deferentiation techniques to solve various problems (R-Remember, U-Understand, Ap-Apply, A	PSO1,3, PO2, 3		С	L,T	

(K-Kemember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	1					3							
CO2		2							1	3				
CO3	2		3					2	2					

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics								
Course Code	UK1DS	UK1DSCMAT109								
Course Title	Mathen	Mathematics for Social Science I								
Type of Course	DSC									
Semester	Ι	Ι								
Academic Level	100-199	100-199								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week		Hours per week					
	4	4	-	-	4					
Pre-requisites	Basic k	nowledge o	f Mathemat	ics in Secor	ndary level					
Course Summary	This co	This course includes basic set theory, solutions of linear and quadratic								
	equatio	ns, linear pr	ogramming	problems a	and functions					

Module	Unit	Contents	Hrs								
Ι		Theory of sets	15								
	1	Finite and infinite sets, set operations									
	2 Ordered pairs, Cartesian products, Relations										
	3 Functional Relations and Functions										
	Chapt	Chapter 1: Sections 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.14, 1.15, 1.16,									
	1.17										
II		Linear Equations	15								
	4	Equations and identities -Linear and quadratic equations									
	5	Solution of equations, Solutions of quadratic equations,									
		Solution of simultaneous equations									
	6	Applications									
	Chapt	er 3: Section 3.1.									
III		Linear Programming	18								

Module	Unit	Contents	Hrs							
	7	Introduction, Basic assumptions, The general linear								
		rogramming Problem (For two variables only)								
	8	eometry of Linear Programming Problem (Graphical plution)								
	9	Feasible and basic feasible solutions, Concept of degeneracy, multiple optimal solutions, Problems with no feasible solution (simple problems only)								
	Chapt	er 18: Section 18.1, 18.2, 18.4, 18.5, 18.6								
IV		Functions and Curves	12							
	10	Demand functions and curves								
	11	Total Revenue curve, Cost Curves.								
	Chapt	er 4: Appendix								

Textbook

1. B.C. Mehta, G.M.K. Madnani, *Mathematics for Economics*. Sultan Chand & Sons, 1976.

References

- 1. Agarwal B.M, Business Mathematics and Statistics, Vikas Publishing House, New Delhi, 2009.
- 2. Allen, R.G.D., Mathematical Analysis for Economists. New Delhi: AITBS Publishers, 2008.
- 3. Yamane, Taro, Mathematics for Economists: An Elementary Survey. New Delhi: Prentice Hall of India, 2012.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concepts of sets, ordered pairs, relations and functions	PSO1, PO1, 2, 3, 4, 7	R, U	F,C	L	
CO 2	Solve linear and quadratic equations	PSO3, PO1, 2, 3, 6, 7,8	U	Р	L	
CO 3	Analyze and interpret solutions of linear programming problems using graphical method	PSO4, PO1, 2, 3, 4, 5, 6, 7,8	An	Р	L	
CO 4	Create Diagrams to represent Demand Functions, Total Revenue and Cost Functions	PSO5, PO1, 2, 3, 4, 5, 6, 7,8	An	С	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	90Sd	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	2	3	1	3	-	-	1	-
CO2	-	-	3	-	-	-	2	3	2	-	-	1	3	2
CO3	-	-	-	3	-	-	3	3	3	1	1	3	2	2
CO4	-	-	-	-	3	-	3	2	1	2	2	2	3	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics									
Course Code	UK1DS	UK1DSCMAT110									
Course Title	Matrice	Matrices and Linear Equations									
Type of Course	DSC										
Semester	Ι	Ι									
Academic Level	100-199	100-199									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week		Hours per week						
	4	4	-	-	4						
Pre-requisites	Matrice	Matrices									
Course Summary			oductory co	ourse on ma	This is a brief introductory course on matrices and system of linear equations						

Module	Unit	Contents	Hrs							
Ι		System of linear equations and matrices	10							
	1	Introduction to Systems of Linear Equations, Gaussian								
		Elimination, Matrices and Matrix Operations,								
		Inverses; Algebraic Properties of Matrices, [Section 1.1								
		to 1.4 of the Text]								
II		Further properties of matrices								
	2	Elementary matrices and method for finding inverse,								
		more on linear systems and invertible matrices, diagonal,								
		triangular and symmetric matrices, matrix transformations								
		[Section 1.5 to 1.8 of the Text]								
III		Determinants	15							
	3	Determinants by cofactor expansion, evaluating								
		determinants by row reduction, properties of determinants,								
		Cramer's rule								

Module	Unit	Unit Contents						
IV		Euclidean vector spaces	20					
	4	Vectors in 2 space, 3 space and n-space, Norm, dot product, and distance in \mathbb{R}^n , Orthogonality, the geometry of linear systems, cross product						

Textbook

1. H Anton, C Rorres. Elementary linear algebra, 11th Edition, John Wiley & Sons.

References

- 1. David Poole, Linear Algebra, a modern introduction, Brooks/Cole Cengage learning
- 2. Lee W.Johnson, R. Deanriess, Jimmy T. Arnold, Introduction to Linear Algebra, 5th edition, Addison Wisely

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	DS4/04	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understands system of linear equations	PSO1, 2, PO1	U	F,C	L,T	
CO 2	Perform various operations on matrices and determinants	PSO2, PO3, 4	An	F	L,T	
CO 3	Understand the concept of vectors in Euclidean spaces	PSO1, 3, PO2, 3	U,An	С	L,T	
CO 4	Apply matrices to solve system of linear equations	PSO1, 3	Ap	C	L,T	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	1					3							
CO2		2							1	3				
CO3	2		3					2	2					
CO4	2		3											

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			
CO2	\checkmark			
CO3	\checkmark			
CO4	\checkmark			\checkmark

Discipline	Mathen	natics								
Course Code	UK1M	UK1MDCMAT100								
Course Title	Numeri	Numerical Ability - I								
Type of Course	MDC									
Semester	Ι									
Academic Level	100-19	100-199								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	3	3			3					
Pre-requisites	Basic N	<i>Aathematica</i>	l Operation	S						
Course Summary	undergo school. mathem	Basic Mathematical Operations This course is primarily meant for students who have not undergone a Mathematics course beyond their secondary school. The course is expected to improve the student's basic mathematical skills and to understand the mathematics used in their respective fields better.								

Module	Unit	Contents	Hrs						
Ι		HCF, LCM, Percentage and Average	11						
	1	Highest Common Factor, Methods of finding HCF, Least Common Multiple, Methods of finding LCM, Problems							
		involving HCF and LCM. (<i>Chapter 2 of Text [1]</i>)							
	2	Percentage, Problems involving percentage. (Chapter 5 of Text [1])							
	3	Average, Problems involving average. (Chapter 6 of Text [1])							
II		Ratio and Proportion, Profit and Loss	12						
	4	Ratio, Types of Ratios, Proportion, Problems involving Ratio and Proportion. (<i>Chapter 7 of Text [1]</i>)							

Module	Unit	Contents	Hrs
	5	Partnership, Problems involving partnership. (Chapter 8 of	
		<i>Text</i> [1])	
	6	Profit and Loss, Problems involving profit and loss. (Chapter	
		9 of Text [1])	
III		Time, Work and Wages, Pipes and Cisterns	11
	7	Problems involving Time, Work and Wages. (Chapter 10 of	
		<i>Text</i> [1])	
	8	Problems involving Pipes and Cisterns. (Chapter 11 of Text	
		[1])	
IV		Time and Distance, Boats and Streams	11
	9	Problems involving Time and Distance. (Chapter 12 of Text	
		[1])	
	10	Problems involving Boats and Streams. (Chapter 13 of Text	
		[1])	
	11	Alligation Rule, Problems involving Alligation. (Chapter 15	
		of Text [1])	

Textbook

1. Dinesh Khattar, *Quantitative Aptitude for Competitive Examinations*, Fourth Edition, Pearson, 2016

References

- 1. H Kruglak, JT Moore, RA Mata-Toledo, *Schaum's outline of theorey and problems of Basic Mathematics, with Applications to Science and Technology*, Second Edition, McGraw-Hill, 1998.
- 2. Rajesh Verma, Fast Track Objective Arithmetic, Arihant, 2018.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand basic level mathematics used in real life situations	PSO1, PSO2, PSO3, PO1, PO2, PO5	U, An, E	С, Р	L	
CO 2	Do maths problems quickly using ready to use formulae	PSO3, PO2	R, Ap	Р	L	
CO 3	Understand the concepts of Ratio and Percentage	PSO1, PO1, PO2, PO5	U, E	Р	L	
CO 4	Understand the concepts of direct proportion and inverse proportion	PSO1, PO1	U, E	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	90Sd	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	3	-	-	-	2	1	-	-	1	-	-	-
CO2	-	-	3	-	-	-	-	1	-	-	-	-	-	-
CO3	2	-	-	-	-	-	2	1	-	-	1	-	-	-
CO4	2	-	-	-	-	-	2	-	-	-	-	-	-	-

(- -Nil, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		
CO2	\checkmark			\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics								
Course Code	UK1M	UK1MDCMAT101								
Course Title	Mathen	Mathematical Thinking								
Type of Course	MDC									
Semester	Ι									
Academic Level	100-199									
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	3	3			3					
Pre-requisites	Basic S	chool Math	ematics							
Course Summary		undamental			oundations of logic, nd linear Diophantine					

Module	Unit	Contents	Hrs				
Ι		Foundations of Logic and Proof	15				
	1	Logical connectives, Quantifiers, Techniques of proof. Basic set operations, Relations and Functions (Chapter 1: Sections 1, 2, 3 of in Text [2], Chapter 2: Sections 1, 2, 3 of in Text [2])					
II		Divisibility of integers	15				
	2	Divisibility, Euclid's Theorem, The Sieve of Eratosthenes, The Division Algorithm, The Greatest Common Divisor, The Euclidean Algorithm, Fermat and Mersenne Numbers. (Chapter: Section 1.1 (Not for examination), 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 of Text [1])					

Module	Unit	Contents	Hrs							
III	Diopł	ntine equations and the Fundamental Theorem of Arithmetic								
	3	Diophantine equations, The Postage Stamp Problem. The Fundamental Theorem of Arithmetic, Euclid and the Fundamental Theorem of Arithmetic. (Chapter 2: Sections 2.1, 2.2, Chapter 3: Sections 3.1, 3.2, 3.3 of Text [1])								

Textbooks

- 1. James S.Kraft, Lawrence C. Washington. Elementary Number Theory, CRC Press, 2014.
- 2. S R Lay. Analysis with an Introduction to Proof, 5th Edition, Pearson Education, 2015.

References

- 1. J P D'Angelo, D B West. Mathematical Thinking Problem Solving and Proofs 2nd Edition, Prentice Hall, 2018.
- 2. Daniel J Velleman. How to Prove it : A Structured Approach, 2nd Edition, Cambridge University Press, 2006
- 3. Elena Nardi, Paola lannonne. How to Prove it : A brief guide for teaching Proof to Year 1 mathematics undergraduates, University of East Anglia, Centre for Applied Research in Education, 2006.
- 4. James S.Kraft, Lawrence C. Washington, An Introduction to Number Theory with Cryptography, CRC Press, 2014.
- 5. G A Jones, J M Jones, Elementary Number Theory, Springer, 1998.
- 6. Thomas Koshy, Elementary Number Theory with Applications, 2^{nd} Edition, Academic Press, 2007.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	DS4/04	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Describe the basic methods of Proof	PSO1, PSO2, PSO3	U, Ap	F,C	L,T	
CO 2	Apply division algorithm to solve various problems.	PSO1, PSO2	U,Ap	F	L,T	
CO 3	Describe Fundamental Theorem of Arithmetic	PSO1, PSO3	R, U,An	С	L,T	
CO 4	Solve Diophantine equations	PSO2, PSO3	R,U,An		L,T	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	90Sd	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	2	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO3	2	-	2	-	-	-	-	-	-	-	-	-	-	-
CO4	-	2	3	-	-	-	-	-	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics								
Course Code	UK2DSCMAT100									
Course Title	Theory	Theory of equations, Differential Calculus and Geometry								
Type of Course	DSC									
Semester	Π									
Academic Level	100-19	100-199								
Course Details	Credit	Total								
		per week	per week		Hours per week					
	4	4		1	5					
Pre-requisites	1. Awa	reness on po	olynomials							
	2. Knov	wledge on th	ne concepts	of function	s, differentiation					
	and basic geometry									
Course Summary	This co	urse include	es theory of	equations, o	differential calculus,					
	polar co	o-ordinates a	and conic se	ections						

Module	Unit	Contents								
Ι		Theory of Equations								
	1	Introduction, General Properties, Transformation of								
		Equation, Reciprocal Equation, Solution of cubic Equations-								
		Cardan's Method. Solution of biquadratic equation-Ferrari's								
		method, Descarte's method.								
	Chapt	er 1: Section 1.1 to 1.6 of Text[2]								

Module	Unit	Contents	Hrs							
	Pract	ical: Solving Equations in SageMath - write a function f	(x) in							
	sagem	hath, show the function using show(), generate LATEX code	using							
	latex((), function in $\$$, value of $f(x)$, numerical value of $f(x)$	using							
	.n(), s	solving functions using $solve(f(x) == 0, x)$, solution in dict	ionary							
	form	$solve(f(x) == 0, x, solution_dict = True)$, finding roots	using							
		roots(), declaring variable using $var()$ and solve functions of the solution of the soluti	two or							
	more variables. Explore sage reference or tutorial using help menu.									
	(not m	neant for examination purpose)								
II		Differential calculus I	20							
	2	Related Rates, Analysis of function- Increasing, Decreasing								
		and Concavity. Relative Extrema Graphing polynomials								
		Absolute Maxima and minima								
	Chapt	er2: Section 2.8 and Chapter 3: Section 3.1,3.2, 3.4 of Text[1]								
	Pract	ical: Differentiating function n times. Plotting graph using	plot()							
	with n	ecessary attributes as parameters, plot derivative of function, f	inding							
	root ii	n an interval using <i>find_root()</i> , finding critical points, finding	g local							
		num and local minimum of a function in an interval using in	n-built							
		ons find_local_maximum() and find_local_minimum()								
	(not m	neant for examination purpose)								
III		Differential calculus II	20							
	3	Applied Maxima and Minima Problems (excluding								
		application to economics, Relative Motion, Mean								
		value theorem, Rolle's Theorem, L-Hopital's rule and								
		Indeterminate forms.								
	-	er 3: Section 3.5, 3.6, 3.8, and Chapter 6: Section 6.5 of Text[1	_							
		ical: Verify Mean value theorem and Rolle's Theorem								
		hath, Draw the graph of $\frac{\sin x}{x}$ using sagemath and observe the line								
		. Evaluate the limits of various indeterminate forms using sager	nath.							
	(not m	neant for examination purpose)								
IV		Polar coordinates and Conics Section	15							
	4	Polar Co-ordinate, Conic Section, Rotation of axes								
		Second degree equation, Conic section in polar								
		coordinates(Excluding the solution on Application in								
	ai	astronomy)								
	-	er 10: Section 10.2, 10.4, 10.5, 10.6 of Text[1]								
		ical: Draw graphs using <i>polar_plot()</i> and <i>implicit_plot()</i> .								
	(not m	neant for examination purpose)								

Textbooks

- 1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley & Sons, 2012
- 2. B.S. Grewal, Higher Engineering Mathematics, 42nd Edition, Khanna Publishers, 2012.

References

- 1. Barnard and Child, Higher Algebra, Mac Millan, 2000.
- 2. Joel Hass, Maurice D. Weir, Thomas' Calculus Early Transcendentals, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 3. T. K. Manicavachagom Pillay, T. Natarajan, K.S. Ganapathy, Algebra Volume I Ananda Book Depot, 1996.
- 4. J Stewart, Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited, 2004.
- 5. G B Thomas, R L Finney, Calculus, 9th Edition, Addison-Weseley Publishing Company, 2004.

E- resources

1. https://www.sagemath.org/help.html

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Describe algebraic techniques to solve polynomial equations and to identify conic sections	PSO2, PO1, PO2, 3, 4, 7, 8	U,E	F,P	L	
CO 2	Apply differentiation techniques to analyse extrema of functions and solving real life problems	PSO4, PO1, 2, 3, 4, 7, 8	U,An	F,P	L	
CO 3	Sketching parabola, ellipse and hyperbola, and relating polar and cartesian co-ordinates	PSO5, PO1, 2, 3, 7,8	U,E	F,P	L	
CO 4	Analysing parametric representation of curves	PSO2, PO1, 2, 3, 4, 6, 7, 8	R,An	F,P	L	

⁽R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	3	2	2	1	1	3	3	2	1			1	2
CO2	2	2	2	3	2	1	3	2	2	1			1	2
CO3	2	2	2	2	3	1	3	2	3	1			2	1
CO4	2	3	2	2	2	1	3	2	2	1		1	1	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics								
Course Code	UK2DS	UK2DSCMAT101								
Course Title	Integrat	Integration and Multivariate Calculus								
Type of Course	DSC									
Semester	II									
Academic Level	100-199	100-199								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	4	4	-	1	5					
Pre-requisites	1. Deriv	vative of fur	nctions 2.	Vectors						
Course Summary	This co	urse equip t	he students	to find the in	ntegral of functions,					
	its appl	its applications, partial derivatives of functions and to know about								
	the basi	c concepts	of vector va	lued functio	ns					

Module	Unit	Contents	Hrs								
Ι		Integration									
	1	Basic concepts and techniques of Integration. (review only).									
	2	An overview of area problem, Definite integral, properties.									
	3	Fundamental theorem of Integral Calculus									
	4	Rectilinear motion revisited using integration, Average value									
		of a function									
	5	Evaluation of definite integral by substitution									
	6	Integrals of logarithmic, exponential and inverse									
		trigonometric functions									
	Chapt	hapter 4: Section 4.1, 4.5, 4.6, 4.7, 4.8, 4.9, Chapter 3 section 3.6, chapter									
	6: sec	tion 6.2(integration only), 6.3(integration only) of Text [2]									

Module	Unit	Contents	Hrs						
	Pract	ical: Defing functions, Finding integral of a function using sag	emath,						
	Convergence of improper integral, Finding numerical value of integral.								
	(not n	neant for examination purpose)							
II	Applications of Integration								
	7	Area between two curves							
	8	Length of a plane curve							
	9	Volume of solid of revolution(problems only)							
	10	Area of a surface of revolution							
	Chapt	er 5: Section 5.1, 5.2, 5.4, 5.5 Relevant problems in sections	5.2 and						
	6.3 ar	6.3 are included of Text [2]							
	Practical: Integral as signed area under the curve. Plotting a function and								
	its integral. Average value of f in an interval.								
	(not n	(not meant for examination purpose) Vector Calculus 1 19							
III	Vector Calculus 1								
	11	Introduction to vector valued functions							
	12	Calculus of vector valued functions							
	13	Unit tangent, normal and bi-normal vectors							
	14	Motion along a curve							
	Chapter 12: Section 12.1, 12.2, 12.4 and 12.6 of Text [1]								
	Practical: Finding partial derivatives, gradient, divergence, curl and								
	Laplacian. (not meant for examination purpose)								
IV		Partial Differentiation	14						
	15	Functions of two or more variables							
	16	Limit and Continuity							
	17	Partial derivatives							
	18	Chain rule, Implicit differentiation							
	19 Maxima and minima of functions of two variables								
	20 Langrange multiplier								
	Chapter 13: Section 13.1, 13.2, 13.3, 13.5, 13.8, 13.9 of Text [1]								

Textbooks

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition Wiley, 2018.
- 2. Howard Anton, Irel Bivens, Stephens Davis, *Calculus* 10th Edition Wiley, 2012.

References

- 1. Ian Sneddon, Elements of Partial Differential Equations, Mc Graw-Hill, 2013.
- 2. Peter. V. O Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.

- 3. M. D. Raisinghaniya, Ordinary and Partial Differential Equations, S Chand 18th Edition, 2008.
- 4. G. F. Simmons, *Differential Equations with Applications and Historical Notes*, Tata McGraw-Hill, 2003.
- 5. G. B. Thomas, R. L. Finey, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E- resources

1. https://www.sagemath.org/help.html

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the fundamental concepts of Integration and Vector valued function.	PSO1, 2 PO1, 3, 6, 7, 8	U, Ap	F,C	L	
CO 2	Analyze the various techniques both in Integration and in Vector Calculus	PSO 2,3 PO1, 2, 3, 6, 7, 8	U, An	С,Р	L	
CO 3	Develop problem-solving techniques	PSO 1,2,3,4 PO1, 2, 3, 6, 7, 8	An, E	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	1	2	2	3	3	3	-	1	-	-	2	1	1
CO2	1	3	1	2	1	1	1	1	3	-	-	2	1	1
CO3	1	3	2	3	2	3	1	3	3	-	-	3	1	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- End Semester Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK2DS	UK2DSCMAT102							
Course Title	Integrat	tion and Ap	plications of	f differentia	tion				
Type of Course	DSC								
Semester	II	Ш							
Academic Level	100-19	100-199							
Course Details	Credit	Credit Lecture Tutorial Practical Total							
		per week	per week		Hours per week				
	4	4	-	1	5				
Pre-requisites	1. Integ	1. Integration of elementary functions 2. Differentiation							
Course Summary	This co	This course enables the student to understand the applications							
	of diffe	rentiation a	nd evaluate	the integral	s				

Module	Unit	Contents	Hrs						
Ι		Applications of Derivatives	20						
	1	1 Increase, Decrease, and Concavity (<i>Chapter 3: Section 3.1</i>							
		<i>of Text</i> [1])							
	2	Relative Extrema (Chapter 3: Section 3.2 of Text [1])							
	3	Absolute Maxima and Minima (Chapter 3: Section 3.4 of							
		<i>Text</i> [1])							
	Pract	ical: Finding first and second derivatives of a function, plotting	graphs						
	using	using $plot()$, finding value of a function, finding maximum and minimum							
	of a fu	unction in an interval. (not meant for examination purpose)							
II		Maximum Minimum Problems	20						
	4	Applied Maximum and Minimum Problems (Chapter 3:							
		Section 3.5 of Text [1])							
	5	5 Rectilinear Motion (Section 3.6 of Text [1])							
	6	Rolle's Theorem; Mean-Value Theorem (Chapter 3: Section							
		3.8 of Text [1])							

Module	Unit	Contents	Hrs						
	Pract	ical: Verify Rolle's Theorem and Mean-Value Theorem							
	(not n	neant for examination purpose)							
III		Definite Integral	20						
	7	Integration by Substitution, The Definite Integral (Chapter							
		4: Sections 4.3, 4.5 of Text [1])							
	8	Average Value of a Function and its Applications (Chapter							
		4: Section 4.8 of Text [1])							
	9	Evaluating Definite Integrals by Substitution (Chapter 4:							
		Sections 4.9 of Text [1])							
	Pract	Practical: Finding indefinite and definite integral, average value							
	functi	on. (not meant for examination purpose)							
IV		Evaluation of Integrals	15						
	10	Integration by Parts (Chapter 7: Section 7.2 of Text [1])							
	11	Integrating Trigonometric Functions (Chapter 7: Section 7.3							
		of Text [1])							
	12	Trigonometric Substitutions (Chapter 7: Section 7.4 of Text							
		[1])							

Textbooks

1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2004.
- 3. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E-resourses

- 1. https://www.sagemath.org/help.html
- 2. https://www.geogebra.org/m/ngfvakga
- 3. https://www.geogebra.org/m/AzVR5uU7
- 4. https://www.geogebra.org/m/yyu2my9w

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of integration	PSO 1	U	F, C	L	
CO 2	Evaluation of integrals of functions and learn its physical interpretation through various examples	PSO 2, 4	Ap, An	Р	L	
CO 3	Define maxima, minima, critical points and points of inflection	PSO 1	U	F, C	L	
CO 4	Apply the concept of differentiation in real life situation	PSO 3, 4	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO2	-	3	-	3	-	-	-	3	2	-	-	-	-	-
CO3	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO4	-	-	3	3	-	-	-	3	2 Modin	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics								
Course Code	UK2DS	UK2DSCMAT103								
Course Title	Integral	Calculus a	nd Vectors							
Type of Course	DSC									
Semester	II	II								
Academic Level	100-199	100-199								
Course Details	Credit	Credit Lecture Tutorial Practical Total								
		per week	per week		Hours per week					
	4	4	-	1	5					
Pre-requisites	1. Integ	1. Integral of elementary functions 2. Vectors								
Course Summary	This co	This course enable the students to find the integrals and know about								
	the vect	tor valued fu	unctions							

Module	Unit	Contents	Hrs						
Ι		Definite Integral	20						
	1	Integration by Substitution, The Definite Integral (Chapter							
		4: Sections 4.3, 4.5 of Text [1])							
	2	Average Value of a Function and its Applications (Chapter							
		4: Section 4.8 of Text [1])							
	3	Evaluating Definite Integrals by Substitution (Chapter 4:							
		Sections 4.9 of Text [1])							
	Pract	Practical: Finding indefinite and definite integral of various function							
		Average value of a function. Convergence of improper integral, Finding							
	numer	rical value of integral. (not meant for examination purpose)							
II		Evaluation of Integrals	20						
	4	Integration by Parts (Chapter 7: Section 7.2 of Text [1])							
	5	Integrating Trigonometric Functions (<i>Chapter 7 Section 7.3</i> of Text 1)							
		<i>OJ IEM I)</i>							

Module	Unit	Contents	Hrs				
	6	Trigonometric Substitutions (Chapter 7: Section 7.4 of Text					
		[1])					
III		Vector Algebra	18				
	7	Three dimensional space, vectors, Cylindrical surfaces, algebra of vectors, norm of a vector, vectors determined by length and angle, vectors determined by length and a vector in the same direction, resultant of two Concurrent forces. <i>(Chapter 11: Sections 11.1, 11.2 of Text [1])</i>					
	8	Dot Product, Projections, Algebraic properties of dot product, Angle between vectors, Direction angles (<i>Chapter</i> 11: Section 11.3 of Text [1])					
	 9 Cross product - Algebraic and geometric properties of cross product, scalar triple product, Algebraic and geometric properties of scalar triple product (<i>Chapter 11: Section 11.4 of Text [1]</i>) 						
	Practical: define a vector field with generic components, define dot p and cross product of vector fields, Finding norm by defining $norm(sqrt(u.dot(u)))$, plotting vector field using 3D plot. (not meant for examination purpose)						
IV	Vector Valued Functions						
	10	Introduction to vector valued Functions, Parametric Curves in 3-Space - The parametric equations (introduction only) vector valued functions (introduction only) vector form of a line segment (introduction only) (<i>Chapter 12: Sections 12.1</i> of Text [1])					
	11	Calculus of vector-valued Functions - Limits and Continuity, Geometric interpretations of limits, Derivatives, Geometric interpretation of the derivative, derivative rules Derivatives of dot and cross products (fundamentals only) Integrals of vector valued functions and integral rules (fundamentals only)(<i>Chapter 12: Section 12.2 of Text [1]</i>)					
	12	Unit Tangent, Normal and Binormal vectors (introduction only) Normal and Tangential Components of Acceleration (<i>Chapter 12: Section 12.4 of Text [1]</i>)					
	Practical: drawing parametric curves, Finding limit, derivative components of a vector function (not meant for examination purpose)						

Textbook

1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 3. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E-resourses

- 1. https://www.sagemath.org/help.html
- 2. https://www.geogebra.org/m/ngfvakga
- 3. https://www.geogebra.org/m/AzVR5uU7
- 4. https://www.geogebra.org/m/yyu2my9w

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of integration	PSO 1	U	F, C	L	
CO 2	Describe the integration of a function and learn its physical interpretation through various examples.	PSO 2, 4	Ap, An	Р	L	
CO 3	Understand the concepts of three dimensional space, vectors, different vector operations, vector valued functions and calculus of vector valued functions	PSO 1	U	F, C	L	
CO 4	Able to find limits, derivatives of vector valued functions (R-Remember, U-Understand, Ap-Apply,	PSO 2	Ap	P	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO2	-	3	2	3	-	-	-	3	2	-	-	-	-	-
CO3	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO4	-	3	3	-	-	-	3	2	_	-	_	_	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK2DS	UK2DSCMAT104							
Course Title	Integral	Calculus a	nd Ordinary	Differentia	al Equations				
Type of Course	DSC								
Semester	Π	ΙΙ							
Academic Level	100-199	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	1	5				
Pre-requisites	1. Integ	ration 2.	Differentiat	ion					
Course Summary	This co	urse enable	the students	s to find the	integrals and				
	to solve	certain diff	erential equ	ations					

Module	Unit	Contents	Hrs						
Ι		Definite Integral	20						
	1	Integration by Substitution, The Definite Integral (Chapter							
		4: Sections 4.3, 4.5 of Text [1])							
	2								
		4: Section 4.8 of Text [1])							
	3	3 Evaluating Definite Integrals by Substitution (<i>Chapter 4:</i>							
		Sections 4.9 of Text [1])							
	Pract	ical: Defing functions, Finding integral of a function using sage	emath,						
	Conve	ergence of improper integral, Finding numerical value of in	tegral.						
	Findir	ng average value of a function. (not meant for examination purp	oose)						
II		Evaluation of Integrals	20						
	4	Integration by Parts (Chapter 7: Section 7.2 of Text [1])							
	5	Integrating Trigonometric Functions (Chapter 7 Section 7.3							
		of Text 1)							

Module	Unit	Contents	Hrs						
	6	Trigonometric Substitutions (Chapter 7: Section 7.4 of Text							
		[1])							
III		Differential Equations	23						
	7	Solution curves without a solution (not meant for							
		examination purpose), Separable Equations (Chapter 2:							
		Sections 2.1, 2.2 of Text [2])							
	8	Linear Equations, Exact Equations (Chapter 2: Section 2.3,							
		2.4 of Text [2])							
	9	9 Solutions by Substitutions, A Numerical Method (<i>Chapter</i>							
		2: Section 2.5, 2.6 of Text [2])							
	10	Linear Models, Nonlinear Models (Chapter 2: Section 2.7,							
		2.8 of Text [2])							
	Pract	ical: equation representing ODE, solving ODE numerically.							
	(not n	neant for examination purpose)							
IV		Higher Order Differential Equations	12						
	11	Initial-Value and Boundary-Value Problems, Homogeneous							
		Equations, Nonhomogeneous Equations, Reduction of Order							
		(Chapter 3: Sections 3.1, 3.2 of Text [2])							
	12	Homogeneous Linear Equations with Constant Coefficients							
		(Chapter 3: Section 3.3 of Text 2)							
	13	Cauchy–Euler Equations (Chapter 3: Section 3.6 of Text [2])							

Textbooks

- 1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012
- 2. Dennis G. Zill, Advanced Engineering Mathematics 6th Edition, Jones & Bartlett Learning, 2016.

References

- 1. Erwin Kreyszig, *Advanced Engineering Mathematics*, Wiley Publishers, 10th Edition, 2018.
- 2. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 3. Peter V. O. Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.
- 4. G. F. Simmons, *Differential Equations with Applications and Historical Notes*, Tata McGraw-Hill, 2003.
- 5. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 6. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E-resourses

- 1. https://www.sagemath.org/help.html
- 2. https://www.geogebra.org/m/ngfvakga
- 3. https://www.geogebra.org/m/AzVR5uU7
- 4. https://www.geogebra.org/m/yyu2my9w

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of integration	PSO 1	U	F, C	L	
CO 2	Describe the integration of a function and learn its physical interpretation through various examples.	PSO 2, 4	Ap, An	Р	L	
CO 3	Demonstrate a thorough understanding of basic concepts in ordinary differential equations and initial value problems.	PSO 1	U	F, C	L	
CO 4	Able to solve various types of first-order, second order ordinary differential equations, including separable equations, linear equations and equations with constant coefficients	PSO 2, 5	Ар	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO2	-	3	-	2	-	-	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	-	3	-	-	3	-	-	-	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK2DS	UK2DSCMAT105						
Course Title	Applica	ations of Dif	fferentiation	and Ordina	ry Differential Equations			
Type of Course	DSC							
Semester	II	П						
Academic Level	100-19	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	4	4	-	1	5			
Pre-requisites	Differe	ntiation, Int	egration					
Course Summary	This co	urse enable	the students	s to understa	and the applications			
	of diffe	rentiation a	nd to solve o	certain diffe	rential equations			

Module	Unit	Contents	Hrs
Ι		Applications of Derivatives	20
	1	Increase, Decrease, and Concavity (Chapter 3: Section 3.1	
		of Text 1)	
	2	Relative Extrema (Chapter 3: Section 3.2 of Text [1])	
	3	Absolute Maxima and Minima (Chapter 3: Section 3.4 of	
		<i>Text</i> [1])	
	Pract	ical: Value of function, derivative of function, concavity, extre	ema of
	functi	ons. (not meant for examination purpose)	
II		Maximum Minimum Problems	20
	4	Applied Maximum and Minimum Problems (Chapter 3:	
		Section 3.5 of Text [1])	
	5	Rectilinear Motion (Section 3.6)	
	6	Rolle's Theorem; Mean-Value Theorem (Chapter 3: Section	
		3.8 of Text [1])	

Module	Unit	Contents	Hrs						
	Pract	ical: Maxima and Minima of functions. (not meant for exami	nation						
	purpo	se)							
III		Differential Equations	23						
	7	Solution curves without a solution (not meant for							
		examination purpose), Separable Equations (Chapter 2:							
		Sections 2.1, 2.2 of Text [2])							
	8	Linear Equations, Exact Equations (Chapter 2: Section 2.3,							
		2.4 of Text [2])							
	9	9 Solutions by Substitutions, Numerical Method (<i>Chapter 2:</i>							
		Section 2.5, 2.6 of Text [2])							
	10	Linear Models, Nonlinear Models (Chapter 2: Section 2.7,							
		2.8 of Text [2])							
	Pract	ical: equation representing ODE, drawing, solving ODE numer	rically.						
	(not n	neant for examination purpose)							
IV		Higher Order Differential Equations	12						
	11	Initial-Value and Boundary-Value Problems, Homogeneous							
		Equations, Nonhomogeneous Equations, Reduction of Order							
		(Chapter 3: Sections 3.1, 3.2 of Text [2])							
	12	12 Homogeneous Linear Equations with Constant Coefficients							
		(Chapter 3: Section 3.3 of Text 2)							
	13	Cauchy–Euler Equations (Chapter 3: Section 3.6 of Text [2])							

Textbooks

- 1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012.
- 2. Dennis G. Zill, *Advanced Engineering Mathematics* 6th Edition, Jones & Bartlett Learning, 2016.

References

- 1. Erwin Kreyszig, *Advanced Engineering Mathematics*, Wiley Publishers, 10th Edition, 2018.
- 2. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 3. Peter V. O. Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.
- 4. G. F. Simmons, *Differential Equations with Applications and Historical Notes*, Tata McGraw-Hill, 2003.
- 5. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 6. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E-resourses

- 1. https://www.sagemath.org/help.html
- 2. https://www.geogebra.org/m/ngfvakga
- 3. https://www.geogebra.org/m/AzVR5uU7
- 4. https://www.geogebra.org/m/yyu2my9w

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Define maxima, minima, critical points and points of inflection	PSO 1	U	F, C	L	
CO 2	Apply the concept of differentiation in real life situation	PSO 3, 4	Ap, An	Р	L	
CO 3	Demonstrate a thorough understanding of basic concepts in ordinary differential equations and initial value problems.	PSO 1	U	F, C	L	
CO 4	Able to solve various types of first-order, second order ordinary differential equations, including separable equations, linear equations and equations with constant coefficients	PSO 2, 5	Ар	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	3	-	-	3	-	-	-	-	-	-	-
CO2	-	-	2	3	-	-	-	3	2	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	-	3	-	-	3	-	-	-	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK2DS	UK2DSCMAT106							
Course Title	Linear .	Algebra and	l Graph The	ory					
Type of Course	DSC								
Semester	Π	ΙΙ							
Academic Level	100-19	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	1	5				
Pre-requisites	1. Matr	ices 2. Line	ar equations	S					
Course Summary	This co	This course aims to solve systems of linear equations							
	and to ı	understand t	he basic cor	ncepts of gr	aph theory				

Module	Unit	Contents	Hrs					
Ι		Matrices and Systems of linear equatios	20					
	1	Linear systems of equations, Gauss elimination, linear						
		Independence, rank of a matrix. (Chapter7: Sections 7.2,						
		7.4 of Text [1] (vector space is not included))						
	2	Solutions of linear systems: existence, uniqueness (Chapter						
		7: Section 7.5 of Text [1] (proofs of theorems are not						
		required))						
	3	Determinants, Cramer's Rule (Chapter 7: Section 7.7 of Text						
		[1])						
	Pract	ical: Matrix constructors, product, augmented matrix, inve	rse of					
	matrix	x, and determinant of matrices using softwares like sagemath	. (not					
	meant	t for examination purpose)						
II		Eigenvalues and Eigenvectors	20					
	4	The Matrix Eigenvalue Problem. Determining Eigenvalues						
		and Eigenvectors (Chapter 8: Section 8.1 of Text [1])						

Module	Unit	Contents	Hrs				
	5	Symmetric, Skew-Symmetric, and Orthogonal Matrices					
		(Chapter 8: Section 8.3 of Text [2])					
	6	Diagonalization, Quadratic Forms (Chapter 8: Section 8.4 of					
		Text [1] eigen bases is not included)					
		ical: Solving simultaneous equations. (not meant for exami	nation				
	purpo						
III		Graphs	20				
	7	Basic Concepts of graph theory, Graph terminology and special types of graphs Representation of graphs, (<i>Chapter 1: Sections 1.1 to 1.5 of Text [2]</i>)					
	8	Graph isomorphism, connected graphs, disconnected graphs, definitions and examples of Euler's path, circuits, Hamiltonion Path, Hamiltonian circuits (<i>Chapter 2: Sections 2.1, 2.5, 2.6, 2.9 of Text [2]</i>)					
	Practical: Drawing standard graphs, graph constructs, graph prop graph representation-adjacency matrix (not meant for examination pu						
IV	Trees and Spanning Trees						
	9	Trees, properties, pendant vertices, distance and centers, spanning trees, Rooted and binary trees (<i>Chapter 3: Sections 3.1 to 3.5 and 3.7 of Text [2]</i>)					
	10	Fundamental circuits, finding all spanning trees in a graph, spanning trees in a weighted graph (<i>Chapter 3: Section 3.8, 3.9, 3.10 of Text [2] (proofs of theorems are not required))</i>					
	11	Incidence matrices, path matrices and adjacency matrices of graphs (definitions and examples only) (<i>Chapter 7: Sections 7.1, 7.8, 7.9 of Text [2] (proofs of theorems are not required))</i>					

Textbook

- 1. Erwin Kreyszig, *Advanced Engineering Mathematics*, Wiley Publishers, 10th Edition, 2018.
- 2. Narasingh Deo, *Graph Theory with Applications to Engineering and Computer Science*, PHI, 1974.

References

- 1. R. Balakrishnan, K. Ranganathan, A Text book of Graph Theory, Second Edition, Springer, 2012.
- 2. T S Blyth, E F Robertson, *Linear Algebra*, Second Edition, Springer, 2013.
- 3. David C Lay, *Linaer algebra*, Pearson, 2003.
- 4. Gary Chartrand and Ping Zhang, *Introduction to Graph Theory*, New Delhi, New York: Tata McGraw-Hill Pub. Co., 2006.

- 5. Lee W. Johnson, R Dean Riess, Jimmy T. Arnold, *Introduction to Linear Algebra*, Fifth Edition, Addison Wesley, 2019.
- 6. Robin J. Wilson, *Introduction to Graph Theory*, Pearson Education Asia, 5th Edition, 2010.
- 7. Thomas Banchoff, John Wermer, *Linear Algebra Through Geometry*, 2nd Edition, Springer, 2003.

E-resourses

- 1. https://www.sagemath.org/help.html
- 2. https://www.geogebra.org/m/ngfvakga
- 3. https://www.geogebra.org/m/AzVR5uU7
- 4. https://www.geogebra.org/m/yyu2my9w

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concepts of Matrix operations their algebraic properties, System of linear equations and their Matrix representation, Gauss Elimination	PSO 1	U	F, C	L	
CO 2	Able to find the eigen values, powers of matrices and diagonalization of matrices	PSO 2, 4	Ap, An	Р	L	
CO 3	To define and understand the fundamental concepts of graph theory	PSO 1	U	F, C	L	
CO 4	To apply the concepts and theorems that are treated in the course for problem-solving (R-Remember U-Understand Ap-Apply)	PSO 2, 4	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	-	-	-	-	-	1	1	-	-	1	2	-	-
CO2	-	2	-	2	-	-	2	2	-	-	-	2	-	-
CO3	2	-	-	-	-	-	1	1	-	-	1	1	-	-
CO4	-	2	-	3	-	-	2	1	1	-	_	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK2DS	UK2DSCMAT107							
Course Title	Mathen	natics for So	ocial Scienc	es - II					
Type of Course	DSC								
Semester	Π								
Academic Level	100-19	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	-	4				
Pre-requisites	1.Know	ledge of fu	nctions, part	ticularly, de	mand functions,				
	revenue	e functions a	and cost fun	ctions					
Course Summary	This co	ourse includ	es Different	tial calculus	s, its applications				
	in matri	ix theory an	d game theo	ory					

Module	Unit	Contents	Hrs						
Ι		Basics of Differentiation	15						
	1	One variable Differentiation, Basic Definition, Process of differentiation, Rules of differentiation, Some Standard rules (without proof)							
	2								
	Chapt	er 6: 6.3, 6.4, 6.5 of Text [1].							
II		Applications of Derivatives	15						
	3	Sign of differential coefficients, Second derivative and nature of curve, Maximum and minimum value of a function, Order Condition for maximum-minimum extreme values.							

Module	Unit	Contents	Hrs							
	4	Applications of simple derivatives: Differential Coefficient								
		and elasticity of demand.								
	Chapt	hapter 6: Sections 6.3, 6.4, 6.5, and Chapter 7: Section 7.1 of Text [1]								
III		Matrices	18							
	5	Addition, subtraction of Matrices, matrix multiplication,								
		transpose of a matrix properties of transpose of a matrix								
	6	Some special form of square matrices, determinants, inverse								
		of a matrix (cofactor method only)								
	Chapt	Chapter 5: Sections 5.1, 5.2, 5.3, 5.5, 5.6, 5.7, 5.10, 5.13 and 5.15 of								
	[1]									
IV		Game Theory	12							
	7	Basic concepts of Game theory Classification and								
		Description of games Pay-off matrix,								
	8	Saddle point solutions (Strictly Determined Games)								
	Chapt	er 20: Sections 20.1, 20.2, 20.3, 20.4 of Text [1]								

Textbook

1. B.C. Mehta, G.M.K. Madnani, Mathematics for Economics. Sultan Chand & Sons, 1976.

References

- 1. Agarwal B.M, Business Mathematics and Statistics, Vikas Publishing House, New Delhi, 2009.
- 2. Allen, R.G.D., Mathematical Analysis for Economists. New Delhi: AITBS Publishers, 2008.
- 3. Yamane, Taro., Mathematics for Economists: An Elementary Survey. New Delhi: Prentice Hall of India, 2012.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concepts of derivatives, Maxima-minima	PSO1	R, U	F,C	L	
CO 2	Apply the concepts of differentiation in real life situations	PSO3, 5	Ар	C	L	
CO 3	The basic concepts of matrices	PSO3	U	Р	L	
CO 4	The basic concepts of game theory	PSO1, PO1	U	F,C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	2	2	1	3	3	2	1	3
CO2	-	-	3	-	3	-	2	3	1	-	-	-	-	1
CO3	-	-	3	-	-	-	3	3	3	2	3	2	1	3
CO4	3	-	-	-	-	-	3	2	-	-	2	1	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK2DS	UK2DSCMAT108						
Course Title	Integral	Calculus a	nd Series					
Type of Course	DSC							
Semester	II	ΙΙ						
Academic Level	100-19	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	4	4	-	1	5			
Pre-requisites	Differe	ntial Calcul	us	-				
Course Summary	fundam	The course deals with Integrals, applications of integrals and the fundamental theorem of calculus. The intuitive idea of Infinite series and Taylor's theorem is also explained.						

Module	Unit	Contents	Hrs								
Ι		Integrals									
	1	Area problem, Indefinite Integral, Integration by substitution, Area as a limit, Definite Integral, Fundamental theorem of Calculus.									
	Chapt	Chapter 4: Section 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 of Text [1]									
	Pract	Practical: Finding indefinite and definite integrals, shading area under the									
	curve.	(not meant for examination purpose)									
II		Application of Integrals	20								
	2	2 Area between two curves, Length of a plane curve, Area of surface of revolution, Work.									
	Chapt	er 5: Section 5.1, 5.4, 5.5, 5.6 of Text [1]									
		ical: Sketch graph of function, finding integrals, shading area be s (not meant for examination purpose)	etween								

Module	Unit	Unit Contents									
III		Infinite series									
	3	3 Sequences, Monotone sequences, Infinite series,									
		Convergence tests, Comparison, ratio and root test.									
	Chapter 9: Section 9.1, 9.2, 9.3, 9.4, 9.5 of Text [1]										
IV		Taylors theorem									
	4	4 Alternating series, Absolute and conditional convergence,									
		Maclaurin and Taylor Polynomials and series, Power series,									
		Convergence of Taylor series, Modeling of Taylor series.									
	Chapt	er 9: Section 9.6, 9.7, 9.8, 9.9, 9.10 of Text [1]									
	Pract	ical: Series representation, sum the series. convergent tests (not	meant								
	for ex	amination purpose)									

Textbook

1. Howard Anton, Irel Bivens, Stephens Davis, *Calculus* 10th Edition Wiley, 2012.

References

- 1. Erwin Kreyszig, *Advanced Engineering Mathematics*, Wiley Publishers, 10th Edition, 2018.
- 2. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004
- 3. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008
- 4. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E- resources

1. https://www.sagemath.org/help.html

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understands the basic concept of Integrals and fundamental theorem of Calculus	PSO1, 2, PO1	U	F,C	L,T	
CO 2	Realise the concept of area between two curves	PSO2, PO3, 4	R, U	F	L,T	
CO 3	Develop a concrete idea about sequences and series	PSO1,3 PO2, 3	3,U,An	С	L,T	
CO 4	Use convergence tests to find limits	PSO3, PO3	Ар	C,P	Т	As
CO 5	Apply integration in Modeling Taylor series	PSO1,3 PO3	3,Ap	C,P	Т	As

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	1	3				
2	2					
3						
3						
	3	3 3	3 3	3 3	3 3	3

Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark			\checkmark

Descipline	Mathen	Mathematics						
Cours Code	UK2DS	UK2DSCMAT109						
Course Title	Matrice	Matrices and Linear Equations						
Type of Course	DSC	DSC						
Semester	II	Ι						
Academic Level	100-19	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	4	4	-	-	4			
Pre-requisites	Matrices							
Course Summary	This is a brief introductory course on matrices and system of linear equations							

Module	Unit	Contents	Hrs						
Ι		System of linear equations and matrices							
	1	Introduction to Systems of Linear Equations, Gaussian							
		Elimination, Matrices and Matrix Operations,							
		Inverses; Algebraic Properties of Matrices, [Section 1.1							
		to 1.4 of the Text]							
II		Further properties of matrices							
	2	Elementary matrices and method for finding inverse,							
		more on linear systems and invertible matrices, diagonal,							
		triangular and symmetric matrices, matrix transformations							
		[Section 1.5 to 1.8 of the Text]							
III		Determinants	15						
	3	Determinants by cofactor expansion, evaluating							
		determinants by row reduction, properties of determinants,							
		Cramer's rule							

Module	Unit	Contents	Hrs
IV		Euclidean vector spaces	20
	4	Vectors in 2 space, 3 space and n-space, Norm, dot product, and distance in \mathbb{R}^n , Orthogonality, the geometry of linear systems, cross product	

Textbook

1. H Anton, C Rorres. Elementary linear algebra, 11th Edition, John Wiley & Sons, 2013

References

- 1. David Poole, Linear Algebra, a modern introduction, Brooks/Cole Cengage learning, 2005.
- 2. Lee W.Johnson, R. Deanriess, Jimmy Arnold, Introduction to Linear Algebra, Fifth edition, Addison Wisely, 2019.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understands system of linear equations	PSO1,2, PO1	U	F,C	L,T	
CO 2	Perform various operations on matrices and determinants	PSO2, PO3, 4	An	F	L,T	
CO 3	Understand the concept of vectors in Euclidean spaces	PSO1,3, PO2, 3	U,An	С	L,T	
CO 4	Apply matrices to soleve system of linear equations	PSO1,3	Ар	C	L,T	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	1					3							
CO2		2							1	3				
CO3	2		3					2	2					

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1		\checkmark		\checkmark
CO2		\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark			\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK2DS	UK2DSCMAT110							
Course Title	Partial	Differentiati	on and Ana	lytic function	ons				
Type of Course	DSC	DSC							
Academic Level	100-199	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	-	4				
Pre-requisites	1. Integ	ration 2.	Differentiat	tion					
Course Summary	Integrat	tion and app	lications of	Differentia	tion				

Module	Unit	Contents	Hrs
Ι		Multivariate Calculus	18
	1	Functions of Two or More Variables, Limits and Continuity	
		(Chapter13: Sections 13.1, 13.2 of Text[1])	
	2	Partial Derivatives, The Chain Rule (Chapter 13: Section	
		13.3, 13.5 of Text [1])	
	3	Directional derivatives, Maxima and Minima of Functions of	
		Two Variables (Chapter 13: Sections 13.6, 13.7 of Text [1])	
II		Analytic functions	15
	4	Complex Numbers and Their Geometric Representation	
		(Chapter 13: Section 13.1 of Text [2] (review only))	
	5	Polar Form of Complex Numbers-Powers and Roots	
		(Chapter 13: Section 13.2 of Text [2]	
	6	Derivative-Analytic Function, Cauchy–Riemann Equations	
		Laplace's Equation (Chapter 13: Section 13.3, 13.4 of Text	
		[2])	

Module	Unit	Contents	Hrs
III		Cauchy's Integral Theorem	15
	7	Line Integral in the Complex Plane and is properties (Except	
		Existence of Complex Line integrals & ML Inequality)	
		(Chapter 14: Section 14.1 of Text [2])	
	8	Cauchys Integral Theorems (without proof) Caucy's Integral	
		Formula (without proof) Derivative of Analytic Functions	
		(Chapter 14: Sections 14.2, 14.3 of Text [2])	
	9	Derivatives of Analytic Functions Lioville's Theorem and	
		Morreras theorem (both without proof) (Chapter 14: Section	
		14.4 of Text [2])	
IV		Conformal Mapping	12
	10	Geometry of Analytic Functions, Conformal Mapping,	
		Principle of Inverse Mapping (Chapter 17: Section 17.1 of	
		<i>Text</i> [2] all theorems without proof)	
	11	Möbius Transformations, Extended Complex Plane, Fixed	
		Points (Chapter 17: Section 17.2 of Text [2] all theorems	
		without proof)	
	12	Special Linear Fractional Transformations, Mapping of	
		Standard Domains (Chapter 17: Section 17.3 of Text [2] all	
		theorems without proof)	

Textbooks

- 1. H Anton, I Bivens, S Davis, Calculus, 10th Edition, John Wiley and Sons, 2012.
- 2. Erwin Kreyszig, *Advanced Engineering Mathematics*, Wiley Publishers, 10th Edition, 2018.

References

- 1. Anant R Shastri, Basic Complex Analysis of One Variable, Macmillan, 2010.
- 2. Edward B. Saff, Arthur David Snider, *Fundamentals of Complex Analysis with Applications to Engineering and Science*, 3rd Edition, Pearson Education India, 2017.
- 3. James Ward Brown and Ruel V Churchill, *Complex Variables And Applications*, Eighth Edition, McGraw Hill International Edition, 2001.
- 4. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 5. John H Mathews and Russel W Howell, *Complex Analysis for Mathematics and Engineering*, Sixth Edition, Jones and Bartlett Publishers, 2012.
- 6. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2018.

- 7. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.
- 8. B S Tyagi, Functions of A Complex Variable, Kedar Nath Ram Nath, 2021.

E-resources

- 1. https://www.geogebra.org/m/VMa4z2RU
- 2. https://www.geogebra.org/m/wcjfy77h

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Define the concept of functions of two or more variables	PSO 1	U	F, C	L	
CO 2	Illustrate derivatives of multivariate functions	PSO 2, 4	Ap, An	Р	L	
CO 3	Understand the algebraic operations of complex numbers, complex functions, limits, continuity, differentiablilty of complex functions and conformal mapping.	PSO 1	U	F, C	L	
CO 4	Able to find line integrals, integrals using Cauchy's integral formula (R-Remember, U-Understand, Ap-Apply,	PSO 2, 4	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	2	1	-	-	-	3	-	-
CO2	-	-	3	3	-	-	2	1	-	-	-	3	-	-
CO3	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO4	-	3	3	-	-	-	-	3	2	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK2M	UK2MDCMAT100						
Course Title	Numeri	cal Ability	- II					
Type of Course	MDC							
Semester	II							
Academic Level	100-19	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	3	3			3			
Pre-requisites	Basic A	Arithmetic C	perations					
Course Summary	undergo The cou problem quadrat	This course is primarily meant for students who have not undergone a Mathematics course beyond their secondary school. The course is expected to equip the student tackle basic arithmetic problems. The student is further expected to form linear and quadratic equations from simple real world problems on their own and solve the same.						

Module	Unit	Contents	Hrs								
Ι		Series and Progression	11								
	1	Arithmetic Series, Geometric series, Arithmetic Series of									
		different orders, Arithmetico-Geometric series, Geometrico-									
		Arithmetic Series. Problems involving the above concepts									
		(Chapter 23 of Text [1])									
	2	Arithmetic Progression, Geometric Progression, Harmonic									
		Progression.Problems involving the above concepts									
		(Chapter 29 of Text)									
II		Interest Calculation	12								
	3	Simple Interest, Problems involving Simple Interest									
		(Chapter 17 of Text [1])									

Module	Unit	Contents	Hrs
	4	Compound Interest, Problems involving Compound Interest	
		(Chapter 18 of Text [1])	
	5	Types of Shares, Face value and market value of a share,	
		Stocks and Brokerage, Income on a Stock, Market Value of	
		a stock, Gain or Loss in Sale and Purchase of Stock, Change	
		in income on Sale or Re-investment. Problems involving the	
		above concepts. (Chapter 20 of Text [1] (Debentures not	
		included)	
III		Equations	11
	6	Linear Equation in one variable, Linear equation in two	
		variables, Solving two simultatneous linear equations.	
		Consistent and inconsistent equations. (Chapter 27 of Text	
		[1])	
	7	Quadratic Equation, Solution of a quadratic equation, Nature	
		of roots, Relation between roots and coefficients, Formation	
		of a quadratic equation with given roots. (Chapter 28 of Text	
		[1])	
IV		Permutations, Combinations, Probability	11
	8	Fundamental principle of counting, Permutations,	
		Permutations under restrictions, Combinations. (Chapter 31	
		<i>of Text</i> [1])	
	9	Terms and Concepts regarding Events, Probability, Odds,	
		Fundamental theorems on probability, Independent Events	
		(Chapter 32 of Text [1])	

Textbook

1. Dinesh Khattar, *Quantitative Aptitude for Competitive Examinations*, Fourth Edition, Pearson, 2016.

References

- 1. H Kruglak, JT Moore, RA Mata-Toledo, *Schaum's outline of theorey and problems of Basic Mathematics, with Applications to Science and Technology*, Second Edition, McGraw-Hill, 1998.
- 2. Rajesh Verma, Fast Track Objective Arithmetic, Arihant, 2018.
- 3. Steven T Karris, *Mathematics for Business, Science and Technology*, Third Edition, Orchard Publications, 2007.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand basic level mathematics used in real life situations	PSO1, PSO2, PSO3, PO1, PO2, PO5	U, An, E	С, Р	L	
CO 2	Do maths problems quickly using ready to use formulae	PSO3, PO2	R, Ap	Р	L	
CO 3	Converting real world problems to mathematical problems	PSO1, PSO2, PSO3, PSO5, PO1, PO2, PO5, PO6	U, An, E	С, Р	L	
CO 3	Understand the concepts of probability and compute it	PSO1, PSO2, PSO3, PO1, PO2	U, An, E	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	3	-	-	-	3	2	-	-	2	-	-	-
CO2	-	-	3	-	-	-	-	2	-	-	-	-	-	-
CO3	2	3	2	-	2	-	3	2	-	-	2	2	-	-
CO4	2	3	2	-	-	-	3	2	-	-	-	-	-	-

(- -Nil, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		
CO2	\checkmark			\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK2M	UK2MDCMAT101						
Course Title	Busines	ss Mathema	tics					
Type of Course	MDC							
Semester	II							
Academic Level	100-19	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	3	3			3			
Pre-requisites	Basic algebra							
Course Summary	compou concept	The course covers methods for finding simple interest and compound interest using different period of compounding concepts like index numbers, time series, trend arc - introduced and different ways for finding these are dealt in detail.						

Module	Unit	Contents	Hrs
Ι		Basic Mathematics of Finance	18
	1	Nominal rate of Interest and effective rate of interest, Continuous Compounding, force of interest, compound interest calculations at varying rate of interest, present value, interest and discount, Nominal rate of discount, effective rate of discount, force of discount, Depreciation. (Chapter 8: Sections: 8.1, 8.2, 8.3, 8.4. 8.5, 8.6, 8.7, 8.9 of text [1])	

Module	Unit	Contents	Hrs
II		Index Numbers	18
	2	Definition, types of index numbers, methods of construction of price index numbers, Laspeyer's price index number, Paasche's price index number, Fisher ideal index number, advantages of index numbers, limitations of index numbers (Chapter 6 of Unit II of text [1] - Sections: 6.1, 6.3, 6.4, 6.5, 6.6, 6.8, 6.16, 6.17)	
III		Time Series	9
	3	Definition of Time Series, Components of Time Series, Analysis of Time Series, Measurement of Trend- Free hand Method, Semi Average Method, Method of Least Squares. (Chapter 7 of Unit II of text [1] - Sections: 7.1, 7.2, 7.4)	

Textbook

1. B M Agarwal, Business Mathematics and Statistics, Vikas Publishing House, New Delhi, 2009.

References

- 1. Alpha C Chiang, Kevin Wainwright, Fundamental methods of Mathematical Economics, 4th Edition, Mc-Graw Hill, 2005.
- 2. Qazi Zameeruddin, et al., Business Mathematics, Vikas Publishing House, New Delhi, 2009.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Define Index Numbers and find index numbers from a given data using various methods.	PSO1, PO1, 2, 3, 4, 5, 6, 7	U, E	L	С	
CO 2	Define Time Series, components of Time Series and related concepts.	PSO1, PO1, 2, 3, 4, 5, 6, 7	U	L	С	
CO 3	Solve problems related to simple and compound interest using varying periods of compounding.	PSO2, PO1, 2, 3, 4, 5, 6, 7	Ap, E	L	Р	
CO 4	Use mathematical tools to analyse time series and measure trend	PSO2, PO1, 2, 3, 4, 5, 6, 7	E, Ap, An	L	Р	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	2	1	2	1	2	3	1	2	1	2	1	-
CO2	3	2	2	1	2	1	2	1	1	3	1	1	1	-
CO3	2	3	2	2	1	1	2	3	1	1	1	2	-	-
CO4	1	3	2	1	1	1	2	3	1 Modiu	1	1	2	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics						
Course Code	UK2M	DCMAT102	2					
Course Title	Basic C	Basic Operations Research						
Type of Course	MDC	MDC						
Semester	II	Ι						
Academic Level	100-19	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	3	3			3			
Pre-requisites	Basic n	nathematica	l operations	-				
Course Summary	includin graphic Problem for obt algorith	This course covers the fundamentals of Operations Research including the historical background, mathematical formulation, graphical solution methods. It delves into the Transportation Problem and Assignment Problem, exploring various methods for obtaining initial basic feasible solutions and introducing algorithms for solving the Assignment Problem and travelling salesman problem.						

Module	Unit	Contents	Hrs							
Ι		Introduction to Operations Research	9							
	1	The History of Operations Research								
	2	Methodology of Operations Research								
	3	3 Applications and computer software of Operations Research								
	(Chap	(Chapter 1: Section 1.2,1.9,1.13,1.15 of Text [1].)								
II		Linear Programming	12							
	4	Structure of linear programming model								
	5	Mathematical model of an LPP								
	6	Graphical solution of LP problem								
	7	Special Cases in Linear Programming								

Module	Unit	Contents	Hrs							
	(Chap	ter 2: Sections 2.2, 2.6, 2.8.1, Chapter 3: sections 3.2, 3.3 (Exa	amples							
	3, 5, 3	3, 5, 3.6, 3.7, 3.11) and section 3.4 of Text [1].)								
III		Transportation Problem	14							
	8	Mathematical model of transportation problem								
	9	Initial feasible solution to Transportation Problem								
	10	10 The Optimal Solution by MODI method								
	(Chap	ter 9: Section 9.2, 9.4.1, 9.4.2, 9.4.3, 9.5.3, 9.5.4 of Text [1].)								
IV		Assignment Problem	10							
	11	Mathematical model of Assignment problem								
	12	Hungarian Method for solving Assignment problem								
	13	Travelling Salesman Problem								
	(Chap	ter10: Section 10.2, 10.3.1, 10.4, 10.6 of Text [1].)								

Textbook

1. J. K. Sharma, Operations Research - Theory and Applications, Sixth Edition, 2016.

References

- 1. Goel B.S and Mittal S.K "Operations Research" Pragati Prakashan, Meerut ,1973.
- 2. Hardly G, "Linear Programming" Addison Wesley, Reading. Mass, 1962.
- 3. Kapoor V.K, "Operations Research" Sultan chand and sons, New Delhi 1985.
- 4. Nita H.Shah, Ravi M.Gor, Hardik Soni, "Operations Research", Prentice Hall of India, New Delhi, 2007.
- 5. Ravindran A, Don.T. Phillips, James.J.Solberg, "Operations research-Principles and Practice", Second edition, John Wiley and Sons, 2000.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand and apply the concept of mathematical modelling	PSO2, PSO3, PO2	R,U, Ap	F,P	L	
CO 2	Apply the techniques of LPP to solve problems	PSO3, PO2	Ap , E	Р	L	
CO 3	Recognize and formulate a transportation problem	PSO2, PSO3, PO2	R, U	F	L	
CO 4	Solve a travelling salesman problem. (R-Remember, U-Understand, Ap-Apply .	PSO3	Ap, E	P	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	-	3	2	-	-	-	-	2	-	-	-	-	-	-
CO2	-	-	3	-	-	-	-	3	-	-	-	-	-	-
CO3	-	3	3	-	-	-	-	2	-	-	-	-	-	-
CO4	-	-	3	-	-	-	-	-	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics						
Course Code	UK2M	DCMAT103	3					
Course Title	Introdu	Introduction to Modular Arithmetic and Cryptography						
Type of Course	MDC	MDC						
Semester	Π	Ι						
Academic Level	100-19	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	3	3			3			
Pre-requisites	Basic p	roperties of	integers, di	visibility, gc	:d			
	Linear	Linear Diophantine equations, Unique factorization						
Course Summary	This is	a short intro	duction to (Cryptograph	y using congruences.			

Module	Unit	Contents	Hrs				
Ι		Modular Arithmetic	12				
	1	Definition of congruence relation, Modular exponentiation, Divisibility tests, linear congruences, The Chinese remainder theorem (Chapter 5: Sections 5.1, 5.2, 5.3, 5.4, 5.5 of Text[1])					
II		Three Classical Theorems					
	2	Fermat's theorem, Euler's theorem, Wilson's theorem					
		(Chapter 6: Section 6.1, 6.2, 6.3 of Text[1])					
III		Introduction to Cryptography	20				
	3	Shift and affine cipher, Vigenere ciphers, transposition					
		ciphers, RSA, stream ciphers, block ciphers, secret sharing					
		(Chapter 7: Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8 of					
		Text[1])					

Textbook

1. James S.Kraft, Lawrence C. Washington. Elementary Number Theory, CRC Press, 2015.

References

- 1. James S.Kraft, Lawrence C. Washington, An Introduction to Number Theory with Cryptography, CRC Press, 2014.
- 2. G A Jones, J M Jones, Elementary Number Theory, Springer, 1998.
- 3. Thomas Koshy, Elementary Number Theory with Applications, 2nd Edition, Academic Press, 2007.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	OS4/04	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Describe the basic concept of Modular arithmetic	PSO1, PSO2	R	F,C	L	
CO 2	Apply congruence to solve various problems.	PSO3	U,Ap	Р	L	
CO 3	Analyse the properties of integers using congruences via three milestone theorems	PSO3, PSO4	U,An	С	L	
CO 4	Apply congruence to cryptography (P Remember 11 Understand An Apply A	PSO3	R,U,An		L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	1	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	3	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	1	2	-	-	-	-	-	-	-	-	-	-
CO4	-	-	3	-	-	-	-	-	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4		\checkmark		\checkmark

Discipline	Mathen	Mathematics								
Course Code	UK3DS	UK3DSCMAT200								
Course Title	Integral	Integral Calculus and Foundations of Vector Calculus								
Type of Course	DSC									
Semester	III	III								
Academic Level	200-29	200-299								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week		Hours per week					
	4	4		1	5					
Pre-requisites	1.Awar	eness of Dif	ferential Ca	lculus and	Integral Calculus					
	2. Knov	wledge of va	arious co-or	dinate syste	ems in 2-dimension					
Course Summary	The cou	urse deal wi	th identifyir	ng the appli	cations of integration					
	and vec	tor valued f	functions							

Module	Unit	Contents	Hrs
Ι		Integral Calculus I	15
	1	Area between two curves, Volume by Slicing, Volume by	
		cylindrical shells. Chapter 5: Section 5.1, 5.2, 5.3 of Text	
		[1]	
II		Integral Calculus II	15
	2	Length of the plane curve Area of surface of revolution	
		Work(done by constant force in the direction of motion only)	
		Chapter 5: Section 5.4, 5.5, 5.6 of Text [1]	
III		Vector Valued Functions I	15
	3	Rectangular Coordinates In 3-Space; Spheres; Cylindrical	
		Surfaces, Vectors, Dot Product; Projections, Cross Product,	
		Parametric equations of lines, Planes in 3- space, Cylindrical	
		and spherical Coordinates. Chapter 11: Section 11.1 to 11.6,	
		11.8 of Text [1]	

Module	Unit	Contents	Hrs
IV		Vector Valued Functions II	15
	4	Introduction To Vector-Valued Functions, Calculus Of Vector-Valued Functions, Change Of Parameter; Arc Length, Unit Tangent, Normal, And Binormal Vectors, Curvature, Motion Along A Curve. Chapter 12: Section 12.1 to 12.6 of Text [1]	
Practical		cal sessions can be given using suitable software like sagemath (not for examination purpose)	15

Textbook

1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Joel Hass, Maurice D. Weir, Thomas' Calculus Early Transcendentals, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited, 2008.
- 3. G B Thomas, R L Finney, Calculus, 9th Edition, Addison-Weseley Publishing Company, 2004.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Demonstrate applications of Integration	PSO3, PO1, 2, 3, 4, 5, 6, 7, 8	U,E	F,P	L	
CO 2	Computing area and volume using Integration	PSO2, PO1, 2, 3, 4, 5, 7, 8	U,An	F, P		
CO 3	Analysing geometry of curves and surfaces using Vector Calculus	PSO2, PO1, 2, 3, 4, 5, 6, 7, 8	U, E	F, P		
CO 4	Distinguish cylindrical and spherical co-ordinates	PSO4, PO1, 2, 3, 4, 5, 6, 7, 8	R, An	F, P		

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1			3				3	3	2	2	1	2	2	1
CO2		3					3	3	1	1	2		2	1
CO3		3					3	2	1	1	2		2	1
CO4				3			3	2	1	1	1	2	3	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1		\checkmark		
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK3DS	UK3DSCMAT201							
Course Title	Differe	Differential Equations, Multiple Integrals and Vector Calculus							
Type of Course	DSC								
Semester	III	III							
Academic Level	200-299								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	4	4	-	1	5				
Pre-requisites	1. Diffe	erential calc	ulus 2. Ve	ectors 3.]	Integration				
Course Summary	The cou	urse enable	the students	to find the s	solutions of certain				
	differen	tial equatio	ns, identifyi	ing the appli	cations of				
	multiple	e integrals a	nd to get a l	brief idea of	vector calculus.				

Module	Unit	Contents	Hrs			
Ι		First Order Ordinary Differential Equations	20			
	1	Basic Concepts, solution, Initial Value Problem, Modelling				
	2	Separable ODE, reduction to separable form, exact ODEs and integrating factors, reducing to exact form				
	3 Homogeneous and non homogeneous linear ODEs					
	4 Special equations like Bernoulli equation					
	5	Homogeneous linear ODE of second order, initial value problem, basis, and general solutions, finding a basis if one solution is known, Reduction of order, homogeneous linear ODE with constant coefficients (various cases that arise depending on the characteristic equation)				
	6	Existence and uniqueness of solutions with respect to Wronskian, solving non-homogeneous ODE via the method of undetermined coefficients.				

Module	Unit	Contents	Hrs					
	Chapt	er 1: Section 1.1, 1.3, 1.4, 1.5 (population dynamics not required),						
	2.1, 2.	2, 2.6, 2.7 of Text [1]						
II		Multiple Integrals	16					
	7	Double Integrals						
	8	Double integrals over non rectangular regions						
	9	Double integrals in polar coordinates						
	10	Triple integrals						
	11	Triple integrals in cylindrical and spherical coordinates						
	Chapt	ter 14: Section 14.1, 14.2, 14.3, 14.5, 14.6 of Text [2]						
III		Vector Calculus 1	12					
	12	Vector Fields, Inverse square field, Gradient field,						
		Conservative fields and potential function, Divergence and						
		Curl, ∇ -operator, The Laplacian ∇^2						
	13	Integrating a function along a curve (line integrals),						
		Integrating a vector field along a curve, defining work done						
		as a line integral.						
	14	14 Line integrals along piece wise-smooth curves, integration						
	1.5	of vector fields and independence of path,						
	15	Fundamental theorem of line integrals, line integrals along closed paths, test for conservative vector fields, <i>(excluding</i>)						
		conservative vector fields in 3- Space, and conservation of						
		<i>Energy</i>) Green's theorem and applications(<i>without proof</i>).						
	Chapt	er 15: Section 15.1, 15.2, 15.3, 15.4 of Text [2]						
IV		Vector Calculus- II	12					
	16	Defining and evaluating surface integrals, their applications						
	17	Orientation of surfaces, evaluating flux integrals						
	18	The divergence theorem						
	19	Gauss' Law, Stoke's theorem, applications of these						
		theorems.						
	Chapt	Chapter 15: Section 15.5, 15.6, 15.7, 15.8 of Text [2]						
Practical	-	cal sessions can be given using suitable software like sagemath (not	15					
	meant	for examination purpose)						

Textbooks

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition Wiley, 2018.
- 2. Howard Anton, Irel Bivens, Stephens Davis, *Calculus* 10th Edition Wiley, 2012.

References

- 1. Ian Sneddon, Elements of Partial Differential Equations, Mc Graw-Hill, 2013.
- 2. Peter. V. O Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.
- 3. M. D. Raisinghaniya, Ordinary and Partial Differential Equations, S Chand 18th Edition, 2008.
- 4. G. F. Simmons, *Differential Equations with Applications and Historical Notes*, Tata McGraw-Hill, 2003.
- 5. G. B. Thomas, R. L. Finey, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concepts of ordinary differential equations, integration over multi variables geometric and physical interpretations of vector integration	PSO1, 2, PO3, 6, 7, 8	U, Ap	F,C	L	
CO 2	Analyze the solutions of ordinary differential equations, Multiple Integrals and Vector Integration	PSO 2,3, PO1, 2, 3, 6, 7, 8	U, An	C,P	L	
CO 3	Develop problem-solving skills and application skills	PSO 1, 2, 3, 4, PO1, 2, 3, 6, 7, 8	An, E	Р	L	

Course Outcomes

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	1					3	-	1	-	-	2	1	1
CO2		3	1				1	1	3	-	-	2	1	1
CO3	1	3	2	3	2		1	3	3	-	_	3	1	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- End Semester Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK3DS	JK3DSCMAT202						
Course Title	Group	Group Theory and Probability						
Type of Course	DSC							
Semester	III							
Academic Level	200-299	9						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	4	4	-		4			
Pre-requisites	Sets, re	lations, fund	ctions, matri	ices				
Course Summary	and pro and sub and the probabi	Sets, relations, functions, matrices This course provides a comprehensive idea about group theory and probability. We start the course with the concepts of groups and subgroups and then we go through permutation groups, cosets and their properties. After this we give an idea about basic probability theory, infact, random variables and its distributions namely binomial, normal and poisson						

Module	Unit	Contents	Hrs						
Ι		Groups and Subgroups	15						
	1	Binary operations and isomorphic binary structures							
	2	2 Groups and Subgroups							
	3	3 Cyclic groups							
	The to	The topics to be discussed in the module can be found in Chapter 1, Section							
	2, Sec	ction 3, Section 4, Section 5, Section 6 of the Text [2]. Theorem	m 6.14						
	statem	nent only.							
II		Permutation groups and Cosets	20						
	4	Groups of permutations							
	5	Orbits, cycles and alternating groups							
	6	Cosets and Lagrange theorem							

Module	Unit	Contents	Hrs					
	The to	ppics to be discussed in the module can be found in Chapter 2: S	ection					
	8, Sec	tion 9, Section 10 of the Text [2]. Theorem 9.15 statement only	/.					
III		Probability and statistics	25					
	7	Probability and sample space: Definition and examples						
	8	Probability theorems						
	9	Random variables and continuous distributions						
	10	Binomial distribution, Normal distribution, Poisson						
		distribution						
	The t	opics to be discussed in the module can be found in Chapt	er 15:					
	Sectio	on 1, Section 2, Section 3, Section 5, Section 6, Section 7, S	lection					
	8, Sec	tion 9 of Text [1]						

Textbooks

- 1. M L Boas, Mathematical methods in physical sciences, 3rd Edn, John Wiley & Sons, 2006.
- 2. J B Fraleigh, A first course in abstract algebra, 7th Edn, Pearson, 2013.

References

- 1. Ian Sneddon, Elements of Partial Differential Equations, Mc Graw-Hill, 2013.
- 2. Peter. V. O Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.
- 3. M. D. Raisinghaniya, Ordinary and Partial Differential Equations, S Chand 18th Edition, 2008.
- 4. G. F. Simmons, *Differential Equations with Applications and Historical Notes*, Tata McGraw-Hill, 2003.
- 5. G. B. Thomas, R. L. Finey, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understand the concepts of groups, subgroups and their properties.	PSO1, 2, PO1, 3	U	F,C	L, T	As
CO 2	Realise the concepts of permutation group, alternating group and cosets	PSO2, , PO2, 3	R, U	F, C	L, T	As
CO 3	Create an idea about basic probability theory and distributions	PSO2, PO2, 3	Ap, An	F,C	L, T	As
CO 4	Apply the knowledge to solve real world problems	PSO4, 5, 6, PO2, 3, 4	E	M	L, T	As

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2					2		1			
CO2		2	2						2	2		
CO3		2	2						2	2		
CO4				2	2	2			2	2	2	

(--Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4		\checkmark		

Discipline	Mathen	Mathematics						
Course Code	UK3DS	UK3DSCMAT203						
Course Title	Numeri	cal Analysi	S					
Type of Course	DSC							
Semester	III	(I						
Academic Level	200-299	200-299						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	4	4	-	1	5			
Pre-requisites	1. Diffe	erentiation	2. Integrat	ion				
Course Summary	This co	urse enable	the students	s to gain a th	ourough understanding			
	of vario	ous numerica	al methods u	used for solv	ving mathematical problems			

Module	Unit	Contents	Hrs
Ι		Solution of Algebraic and Transcendental equations	15
	1	Introduction, Bisection Method, Method of false position.	
		Chapter 2: Section 2.1 to 2.3 of Text[1]	
	2	Iteration Method, Newton-Raphson method. Chapter 2:	
		section 2.4 to 2.5 of Text[1]	
	3	Ramanujan's method, Secant method, Muller's method.	
		Chapter 2: Section 2.6 to 2.8 of Text[1]	
II		Interpolation	15
	4	Finite differences. Chapter 3: Section 3.3	
	5	Newton's formulae for interpolation. Chapter 3: Section 3.6	
		of Text[1]	
	6	Interpolation with unevenly spaced points. Chapter 3:	
		Section 3.9 of Text[1]	

Module	Unit	Contents	Hrs
	7	Divided differences and their properties. Chapter 3: Section	
		3.10 of Text[1]	
III		Numerical Differentiation and Integration	15
	8	Numerical differentiation. Chapter 6: Section 6.2 (excluding	
		6.2.1 and 6.2.2) of Text[1]	
	9	Maximum and Minimum values of a tabulated function.	
		Chapter 6: Section 6.3 of Text[1]	
	10	Numerical integration Chapter 6: Section 6.4.1 to 6.4.4 of	
		Text[1]	
IV		Numerical Solution of Ordinary Differential equations	15
	11	Solution by Taylor's series Chapter 8: Section 8.2 of Text[1]	
	12	Picard's method of Successive Approximations. Chapter 8:	
		Section 8.3 of Text[1]	
	13	Euler's method Chapter 8: Section 8.4 of Text[1]	
	14	Runge- Kutta Methods.Chapter 8: Section 8.5 of Text[1]	
Practical	Practi	cal sessions can be given using suitable software like sagemath (not	15
	meant	for examination purpose)	

Textbook

1. S.S. Sastry, *Introductory Methods of Numerical Analysis*, Fifth edition, PHI Learning Pvt. Ltd, 2012

References

- 1. A. C. Faul, A Concise Introduction to Numerical Analysis, CRC Press, 2016.
- 2. George A Anastassiou, Razvan A Mezei, *Numerical Analysis Using Sage*, Springer, 2015.
- 3. Richard L. Burden, J. Douglas Faires, *Numerical Analysis*, Ninth Edition, Cengage Learning, 2011.
- 4. Timo Heister, Leo G. Rebholz, Fei Xue, Numerical Analysis An Introduction, De Gruyter, 2019
- 5. Timothy Sauer, Numerical Analysis, Third Edition, Perason Education, 2018

E- resources

1. https://www.sagemath.org/help.html

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Find the solution of algebraic and transcendental equation using numerical methods	PO 2, PSO1, 2,3	U, Ap	F,C	L	
CO 2	Apply numerical techniques to interpolate data points effectively	PO1, PSO1, 2,3	U, Ap	F,C	L	
CO 3	Apply numerical techniques for differentiation and integration	PO2, PSO1, 2,3	U, Ap	F,C	L	
CO 4	Find the solution of ordinary differential equations using numerical methods	PO2, PSO1, 2,3	U, Ap	F,C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	2					3						
CO2	3	3	2				3							
CO3	3	3	2					3						
CO4	3	3	2		• • •			3						

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics							
Course Code	UK3DS	UK3DSCMAT204							
Course Title	Applica	Applications of Integration and Vector Calculus							
Type of Course	DSC	DSC							
Semester	III	III							
Academic Level	200-299	200-299							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	1	5				
Pre-requisites	1. Integ	ration 2.	Differentiat	ion 3. Ve	ectors				
Course Summary	This co	urse enable	the students	s to get an ic	dea about the applications				
	of integ	ration and v	vector calcul	lus.					

Module	Unit	Contents	Hrs				
Ι		Application of Integration	18				
	1	Area Between Two Curves, Volumes by Slicing; Disks and Washers (<i>Chapter 5: Sections 5.1, 5.2 of Text[1]</i>)					
	2	<i>Text[1]</i>)					
	3	Length of a Plane Curve, Area of revolution (<i>Chapter 5:</i> Sections 5.4, 5.5 of Text[1])					
II		Work, Moments and Centroids	12				
	4	Work (Chapter 5: Section 5.6 of Text[1])					
	5	Moments, Centers of Gravity, and Centroids (<i>Chapter 5</i> Section 5.7 of Text[1])					

Module	Unit	Contents	Hrs			
III		Vector Differentiation	12			
	6	Vector fields (Definition), inverse square fields, Gradient fields, Conservative Fields and potential functions, Divergence and Curl, the ∇ operator (<i>Chapter 15: Section 15.1 of Text[1]</i>)				
IV						
	7	Line integrals, Integrating a vector field along a curve - Exercise Set 15.2- problems 15-30, 33-36, 41-46. (<i>Chapter</i> 15 Section 15.2 of Text[1])				
	8	Independence of Path; Conservative Vector Fields, Green's Theorem(<i>Chapter 15: Sections 15.3, 15.4 of Text[1]</i>)				
	9	Surface integrals evaluating surface integrals, Flux, evaluation of flux integrals, The divergence theorem (without proof) using the divergence theorem to find flux. Stoke's the (all without proof) Relationships between Green's theorem and Stoke's theorem (<i>Chapter 15: Sections</i> 15.5 to 15.8 of Text[1])				
Practical		cal sessions can be given using suitable software like sagemath (not for examination purpose)	15			

Textbook

1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 3. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E-resourses

- 1. https://www.sagemath.org/help.html
- 2. https://www.geogebra.org/m/AzVR5uU7
- 3. https://www.geogebra.org/m/yyu2my9w
- 4. https://www.geogebra.org/m/zQzssykZ
- 5. https://www.geogebra.org/m/Bx8nFMNc

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Demonstrate various applications of integration	PSO 1, PO1, 6	U	F, C	L	
CO 2	Compute tangent lines to polar curves, arc length and area	PSO 2, 4, PO6	Ap, An	Р	L	
CO 3	Describe the concepts Vector fields, Gradient fields, potential functions and vector integrals	PSO1, PO1, 6	U	F, C	L	
CO 4	Apply vector integrals to find areas	PSO 3, 4, PO1, 6	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	1	-	-	-	-	2	-	-
CO2	-	2	-	3	-	-	-	-	-	-	-	2	-	-
CO3	3	-	-	-	-	-	2	-	-	-	-	2	-	-
CO4	-	-	3	3	-	-	2	-	-	-	-	2	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics							
Course Code	UK3DS	UK3DSCMAT205							
Course Title	Multiva	Multivariate Calculus and Multiple Integrals							
Type of Course	DSC	DSC							
Semester	III	II							
Academic Level	200-29	200-299							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	1	5				
Pre-requisites	1. Integ	gration 2.	Differentiat	ion					
Course Summary		This course gives an insight to multi variable calculus, multiple integrals, vector calculus							

Module	Unit	Contents	Hrs			
Ι		Multivariable Calculus	18			
	1	Functions of Two or More Variables, Limits and Continuity				
		(Chapter13: Sections 13.1, 13.2 of Text[1])				
	2 Partial Derivatives, The Chain Rule (<i>Chapter 13 Section</i>					
		13.3, 13.5 of Text[1])				
	3	Directional derivatives, Maxima and Minima of Functions of				
		Two Variables (Chapter 13: Sections 13.6, 13.7 of Text[1])				
II		Multiple Integrals	12			
	4	Double Integrals, Double Integrals over Nonrectangular				
		Regions (Chapter 14: Section 14.1, 14.2 of Text[1]				
	5	Double Integrals in Polar Coordinates (Chapter 14: Section				
		14.3 of Text[1])				
	6	Triple Integrals (Chapter 14: Section 14.5 of Text[1])				

Module	Unit	Contents	Hrs
III		Vector Differentiation	10
	7	Vector fields (Definition), inverse square fields, Gradient fields, Conservative Fields and potential functions, Divergence and Curl, the ∇ operator (<i>Chapter 15: Section 15.1 of Text[1]</i>)	
IV		Vector Integration	20
	8	Line integrals, Integrating a vector field along a curve - Exercise Set 15.2- problems 15-30, 33-36, 41-46. (<i>Chapter</i> 15: Section 15.2 of Text[1])	
	9	Independence of Path; Conservative Vector Fields, Green's Theorem (<i>Chapter 15: Sections 15.3, 15.4 of Text[1]</i>)	
	10	Surface integrals evaluating surface integrals, Flux, evaluation of flux integrals, The divergence theorem (without proof) using the divergence theorem to find flux. Stoke's the (all without proof) Relationships between Green's theorem and Stoke's theorem (<i>Chapter 15: Sections</i> 15.5 to 15.8 of Text[1])	
Practical	1	cal sessions can be given using suitable software like sagemath (not for examination purpose)	15

Textbook

1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 3. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E-resourses

- 1. https://www.sagemath.org/help.html
- 2. https://www.geogebra.org/m/VMa4z2RU
- 3. https://www.geogebra.org/m/wcjfy77h
- 4. https://www.geogebra.org/m/g4xzgh8u
- 5. https://www.geogebra.org/m/Bp2mU8tk

- 6. https://www.geogebra.org/m/cu3yv7q8
- 7. https://www.geogebra.org/m/cqak5q98
- 8. https://www.geogebra.org/m/m7rzymub
- 9. https://www.geogebra.org/m/vm3jr9my
- 10. https://www.geogebra.org/m/wvxr8wxr
- 11. https://www.geogebra.org/m/zQzssykZ
- 12. https://www.geogebra.org/m/Bx8nFMNc

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Define the concept of functions of several variables, their limit, continuity and derivative	PSO 1, PO1, 2, 6	U	F, C	L	
CO 2	Illustrate various applications of multivariable calculus	PSO 2, 4, PO1, 2, 6	Ap, An	Р	L	
CO 3	Describe the concepts Vector fields, Gradient fields, potential functions and vector integrals	PSO 1, PO1, 2, 6	U	F, C	L	
CO 4	Apply vector integrals to find areas	PSO 3, 4, PO1, 2, 6	Ap, An	P	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	2	1	-	-	-	3	-	-
CO2	-	-	3	3	-	-	2	1	-	-	-	3	-	-
CO3	3	-	-	-	-	-	1	1	-	-	-	2	-	-
CO4	-	-	3	3	-	-	2	1	-	-	_	3	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics									
Course Code	UK3DS	SCMAT206									
Course Title	Comple	Complex Analysis									
Type of Course	DSC	DSC									
Semester	III										
Academic Level	200-299	200-299									
Course Details	Credit	Credit Lecture Tutorial Practical		Total							
		per week	per week	per week	Hours per week						
	4	4			4						
Pre-requisites	Complex numbers, Partial derivatives										
Course Summary	Equips students with the fundamental knowledge and skills necessary to understand and apply complex analysis in various scientific and engineering disciplines. Students will be prepared for more advanced studies in complex analysis and its applications.										

Module	Unit	Contents	Hrs						
Ι		Analytic functions							
	1	Complex Numbers and Their Geometric Representation (Chapter 13: Section 13.1 of Text[1] (review only))							
	2	2 Polar Form of Complex Numbers-Powers and Roots (<i>Chapter 13: Section 13.2 of Text[1]</i>)							
	3	Derivative-Analytic Function, Cauchy–Riemann Equations Laplace's Equation (<i>Chapter 13: Section 13.3, 13.4 of</i> <i>Text[1]</i>)							
II		Cauchy's Integral Theorem							
	4	4 Line Integral in the Complex Plane and is properties (Except Existence of Complex Line integrals & ML Inequality) (Chapter 14: Section 14.1 of Text[1])							

Module	Unit	Contents	Hrs					
	5	Cauchys Integral Theorems (without proof) Caucy's Integral						
		Formula (without proof) Derivative of Analytic Functions						
		(Chapter 14: Sections 14.2, 14.3 of Text[1])						
	6 Derivatives of Analytic Functions Liouville's Theorem and							
		Morera's theorem (both without proof) (Chapter 14: Section						
		14.4 of Text[1])						
III		Taylor and Maclaurian Series	12					
	7	Power Series Radius of Convergence, Taylor and Maclaurian						
		Series (Chapter 15: Section 15.2, 15.4 of Text[1])						
	8	Laurents Series Singularities, Zeros - (exclude Riemann's						
		Sphere) (Chapter 16: Section 16.1, 16.2 of Text[1])						
	9	Evaluation of an Integral by means of a Residue						
		(Chapter 16: Section 16.3 of Text[1])						
IV		Complex Integration	18					
	10	Evaluation of an Integral by Means of a Residue, Formulas						
		for Residues, Residue Theorem, Application of the Residue						
		Theorem, (Chapter 16: Section 16.3 of Text[1])						
	11	Residue Integration of Real Integrals, Another Kind of						
		Improper Integral (Chapter 16: Section 16.4 of Text[1])						

Text books

1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley Publishers, 2018

References

- 1. Anant R Shastri, Basic Complex Analysis of One Variable, Macmillan, 2010.
- 2. Edward B. Saff, Arthur David Snider, *Fundamentals of Complex Analysis with Applications to Engineering and Science*, 3rd Edition, Pearson Education India, 2017.
- 3. James Ward Brown and Ruel V Churchill, *Complex Variables And Applications*, Eighth Edition, McGraw Hill International Edition, 2013.
- 4. John H Mathews and Russel W Howell, *Complex Analysis for Mathematics and Engineering*, Sixth Edition, Jones and Bartlett Publishers, 2012.
- 5. Murray R Spiegel, Seymour Lipschutz, Schaum's Outline Series, *Complex Variables*, 2009.
- 6. B S Tyagi, Functions of A Complex Variable, Kedar Nath Ram Nath, 2021.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand complex numbers, analytic functions, Series, Residues and conplex integration	PSO 1, PO1, 2	U	F, C	L	
CO 2	Apply Residue theory to find real integrals	PSO 2, 3, PO2	Ap, An	Р	L	
CO 3	Explore applications of complex analysis in various fields	PSO 3, 4, PO2, 3	Ap, An	Р	L	
CO 4	Develop problem soving skills	PSO 3, 4, 5, PO2, 3	Ap, An , E	P , M	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	3	3	-	-	-		-	-
CO2	-	3	3		-			3	-	-	-		-	-
CO3		-	3	3	-	-		3	3	-	-		-	-
CO4	-	-	3	3	3	-		2	2	-	-		-	-
		(-	-Nill	. 1-S	light	lv/La	w. 2-M	 oderate	e/Medii	ım, 3-S	ubstant	ial/Hig	h)	1

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mather	natics								
Course Code	UK3DS	JK3DSCMAT207								
Course Title	Applica	Applications of Integration, Special Functions and Fourier Series								
Type of Course	DSC	DSC								
Semester	III	II								
Academic Level	200-29	200-299								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week		Hours per week					
	4	4	-	-	4					
Pre-requisites	1. Integ	gration 2.	Differentiat	ion						
Course Summary		This course provides applications of integration, beta and gamma functions and Fourier series								

Module	Unit	Contents	Hrs								
Ι		Application of Integration	18								
	1	Area Between Two Curves, Volumes by Slicing; Disks and									
		Washers (Chapter 5: Sections 5.1, 5.2 of Text [1])									
	2	Volumes by Cylindrical Shells (Chapter 5: Section 5.3 of									
		Text 1)									
	3	Length of a Plane Curve, Area of revolution (Chapter 5:									
		Sections 5.4, 5.5 of Text [1])									
II		Work, Moments and Centroids									
	4	Work (Chapter 5: Section 5.6 of Text [1])									
	5	Moments, Centers of Gravity, and Centroids (Chapter 5:									
		Section 5.7 of Text [1])									
III		The Beta and Gammma Functions	10								
	6	The Factorial Function, Definition of the Gamma Function;									
		Recursion Relation (Chapter 11: Sections 11.1, 11.2, 11.3 of									
		<i>Text</i> [3])									

Module	Unit	Contents	Hrs								
	7	The Gamma Function of Negative Numbers, Formulas									
		Involving Gamma Functions (Chapter 11: Sections 11.4,									
		11.5 of Text [3])									
	8	Beta Functions, Beta Functions in Terms of Gamma									
		nctions (Chapter 11: Sections 11.6, 11.7 of Text [3])									
IV		Fourier Series	20								
	9	Basic Examples, Euler Formulas (proof is not required),									
		Convergence and Sum of a Fourier Series, (Chapter 11:									
		Section 11.1 of Text [2])									
	10	Arbitrary Period, Even and Odd Functions, Half-Range									
		Expansions: From Period 2π to any Period $p = 2l$									
		Simplifications: Even and Odd Functions, Half Range									
		Expansions(Chapter 11: Section 11.2 of Text [2])									

Textbooks

- 1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley Publishers, 2018.
- 3. Mary L Boas, *Mathematical Methods in Physical Science*, 3rd Edition, 2006.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. Peter V. O. Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.
- 3. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008
- 4. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E-resourses

1. https://www.geogebra.org/m/AzVR5uU7

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Demonstrate various applications of integration	PSO 1, PO1, 6	U	F, C	L	
CO 2	Compute tangent lines to polar curves, arc length and area	PSO 2, 4, PO 6	Ap, An	Р	L	
CO 3	Understand the concepts of factorial function, gamma function beta function and Fourier series	PSO 1, PO1, 6	U	F, C	L	
CO 4	Able to find Fourier series of different functions	PSO 3, 4, PO1, 2, 6	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	90Sd	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	1	-	-	-	-	2	-	-
CO2	-	2	-	3	-	-	-	-	-	-	-	2	-	-
CO3	3	-	-	-	-	-	2	-	-	-	-	1	-	-
CO4	-	-	3	3	-	-	2	1	-	-	-	2	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

• Quiz/Assignment/Discussion/Seminar

- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Descipline	Mathen	natics									
Cours Code	UK3DS	UK3DSCMAT208									
Course Title	Geome	Geometry, Multivariate and Vector Calculus									
Type of Course	DSC	DSC									
Semester	III	III									
Academic Level	200-29	200-299									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week		Hours per week						
	4	4	-	1	5						
Pre-requisites	1.Diffe	rentiation	2. Integration	on 3. Vec	tors						
Course Summary	polar re	This course enables the students to know the parametric and polar representation of curves, vector-valued functions, partial derivatives multiple integrals and vector fields									

Module	Unit	Contents	Hrs							
Ι		Parametric and polar curves: Conic sections	10							
	1	parametric curves, Polar coordinates, Tangent lines, arc length and area of polar curves, Conic sections, Conic section in Polar coordinates.								
	Chapt	er 10: Section 10.1 ,10.2, 10.3, 10.4, 10.6 of Text[1]								
II		Vector-valued functions	15							
	2	Introduction to vector-valued function, Calculus of vector- valued function, Change of parameter: Arc length, Unit tangent, normal and binomial vectors, curvature, motion along a curve								
	Chapt	er 12: Section 12.1, 12.2, 12.3, 12.4, 12.5, 12.6 of Text[1]								

Module	Unit	Contents	Hrs								
III		Partial derivatives	15								
	3	Functions of two or more variables, Limits and continuity,									
		Partial derivatives, Differentiability, differentials and local									
		linearity, Chain rule, Maxima and minima of functions of									
		two variables									
	Chapter 13: Section 13.1, 13.2, 13.3, 13.4, 13.5, 13.8 of Text[1]										
IV		Multiple integrals and vector fields	20								
	4	Double integrals, double integrals over non-rectangular									
		region, Double integrals in polar coordinates, Surface									
		area, Parametric surface, Triple integrals, triple integrals in									
		cylindrical and spherical coordinates, Change of variables									
		in multiple integrals, Jacobians, Vector fields, line integrals,									
		Independence of paths, Conservative vector fields.									
	Chapt	er 14: Section 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, Chapter 15:									
	Sectio	on 15.1, 15.2, 15.3 of Text[1]									
Practical	Practi	cal sessions can be given using suitable software like sagemath (not	15								
	meant	t for examination purpose)									

Textbooks

1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 3. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E-resourses

1. https://www.geogebra.org/m/AzVR5uU7

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understands basic concepts of parametric and polar curves, conic section and vector-valued function	PSO1, 2, PO1	R,U	F,C	L,T	
CO 2	Evaluate multiple Integrals	PSO2, PO3, 4	An,Ap	F	L,T	
CO 3	Develop a concrete idea Partial derivatives	PSO1, PO2, 3	U,An	С	L,T	
CO 4	Apply multiple integrals to solve problems	PSO3, PO2	Ap,E	C,P	Т	As

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	1					3							
CO2		3							1	3				
CO3	2							2	2					
CO4			2					3						

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics								
Course Code	UK3DS	UK3DSCMAT209								
Course Title	Mathen	natics in So	cial Science	s - III						
Type of Course	DSC									
Semester	III	III								
Academic Level	200-29	200-299								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week		Hours per week					
	4	4	-	-	4					
Pre-requisites	Basic k	nowlegde of	f differentia	l calculus						
Course Summary	This co	urse include	e Integral ca	lculus, Part	ial Differentiation					
	and Dif	ferential equ	uations.							

Module	Unit	Contents	Hrs									
Ι		Integral Calculus	18									
	1	Simple integration, Basic Definition, basic rule of										
		integration, standard results										
	2											
		with simple problems), integration by parts (except										
		trigonometeric functionss and logarithmic functions)										
	3	Definite integeal, properties of Definite integrals (without										
		problems), Applications of definite integrals										
	Chapt	er 12: Sections 12.1, 12.2, 12.3, 12.4, 12.5 and 12.9 of T	ext[1],									
	Chapt	er 13: Section 13.4 of Text[1]										
II		Partial Differentiation	18									
	4	Partial derivatives. Technique of partial differentiation,										
		partial differentiation of second order Cross partial										
		differentiation										

Module	Unit	Contents	Hrs							
	5	Partial derivatives of functions of more than two variables,								
		Maxima and minima of a functions of two variables								
	6	Maxima and minima under given condition (Constrained								
		extreme values) use of Lagrange multiplier first order condition								
	Chapt	er 8: Sections 8.2, 8.8 8.4, 8.5, 8.10, 8.12 of Text [1]								
III		Differential Equations I	12							
	7	Definition, Kinds of differential equation. order of differential equation, degree of differential equation, solutions of differential equation of first order								
	8	Variable separable form, general first order differential equation, Lineal differential equation with constant Coefficients Chapter 14: Sections 14.1, 14.2, 14.3, 14.4, 14.5. 14.6. 14.10. 14.11 of Text[1].								
IV		Differential Equations II	12							
	9	Second order lineal differential equations with constant coefficients								
	10	Rules for obtaining particular integral (involving e^x only)								
	11 Applications of differential equation: Harrold-Domar model, Domar model.									
	Chapt	er 14: Sections 14.12, Chapter 15: Section 15.3 (A and B) of T	ext[1]							

Textbook

1. B.C. Mehta, G.M.K. Madnani Mathematics for Economics. Sultan Chand & Sons, 2008.

References

- 1. Agarwal B.M, Business Mathematics and Statistics, Vikas Publishing House, New Delhi, 2009.
- 2. Allen, R.G.D., Mathematical Analysis for Economists. New Delhi: AITBS Publishers, 2008.
- 3. Yamane, Taro, Mathematics for Economists: An Elementary Survey. New Delhi: Prentice Hall of India, 2012.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concepts of integration, Definite integrals and partial derivatives	PSO1, PO1, 3, 8	U	F,C	L	
CO 2	Solve different types of differential equations	PSO3, PO1, 2, 3, 8	U,E	C,P	L	
CO 3	Applications of differential equations in Domar's models	PSO5, PO1, 2, 3, 4, 5, 6, 7, 8	Ap	C,M	L	
CO 4	Analyse different types of diferential equations	PSO2, PO1, 2, 3, 7	An	C, P	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	3	-	1	-	-	-	-	1
CO2	-	3	3	-	-	-	1	3	3	-	-	-	-	1
CO3	-	-	-	-	3	-	2	3	2	2	3	2	1	3
CO4	-	3	-	-	-	-	2	2	3	-	-	-	1	_

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics									
Course Code	UK3DS	UK3DSCMAT210									
Course Title	Integral	Integral Transforms									
Type of Course	DSC	DSC									
Semester	III	Ш									
Academic Level	200-29	200-299									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours per week						
	4	4 Hours	-	-	4						
Pre-requisites	1. Integ	gral Calculu	s								
Course Summary	utilize				lge and techniques to Analysis for solving						

Module	Unit	Contents	Hrs									
Ι		Laplace Transform	15									
	1	Definition, Transforms of Elementary function										
	2	Properties of Laplace Transform, Transform of Periodic Functions										
	3	3 Transforms of Derivatives, Transforms of Integrals, Multiplication by t^n , Division by t										
	4	Evaluation of Integrals by Laplace Transform.										
	Chapt	er 21: Sections 21.2, 21.3, 21.4, 21.5, 21.7, 21.8, 21.9, 21.10, 2	1.11of									
	Text [1]										
II		Inverse Laplace Transform	15									
	5	Inverse Transforms, Method of Partial Fractions, Other										
		Methods of finding Inverse transforms, Convolution										
		Theorem										
	6	Application to Differential Equation										

Module	Unit	Contents	Hrs									
	Chapt	er 21: Sections 21.12, 21.13, 21.14, 21.15 of Text [1]										
III		Fourier Series	15									
	7	Fourier Series, Basic Examples, Derivation of Euler Formulas, Convergence and Sum of a Fourier Series										
	8	Arbitrary Period, Even and Odd Functions, Half Range expansions from period 2π to any period $P = 2L$										
	9	Simplifications, Even and Odd functions, half range expansions.										
	Chapt	rer 11: Sections 11.1, 11.2, 11.3 of Text [2]										
IV		Fourier Integral and Transform	15									
	10	Fourier Integral, From Fourier series to Fourier Integral										
	11	Applications of Fourier Integrals, Fourier Cosine Integral and Fourier Sine Integral										
	12	Fourier Cosine and sine transforms, Linearity, Transforms of Derivatives,										
	13	Fourier Transform, Complex form of Fourier integral, Fourier transform and its inverse, linearity, Fourier transform of derivatives.										
	-	er 11: Sections 11.7, 11.8, 11.9 (excluding physical interpretation, convolution, DFT and FFT) of Text [2]	tion of									

Textbook

- 1. B. S. Grewal, *Higher Engineering Mathematics*, 42^{nd} Edition, Khanna Publishers, 2012.
- 2. E. Kreyszig, Advanced Engineering Mathematics, 10th Edition Wiley, 2018.

References

- 1. M Greenberg, Advanced Engineering Mathematics, 2nd Edition, Prentice Hall, 1998.
- 2. Peter. V. O Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand integral transforms and distinguish between different types of integral transforms, including Fourier transforms, Laplace transforms	PSO1, 2, PO1, 2, 3, 8	U, Ap	F,C	L	
CO 2	Solve differential equation using Laplace Transform	PSO 2, 3, PO1, 2, 3, 6	Ap, An	C,P	L	
CO 3	Analyse the properties of certain functions using Fourier Series	PSO 2, 3, PO1, 2, 3, 4, 5, 6	An, E	Р	L	
CO 4	Equip students with a valuable mathematical tool that can be applied to analyze and solve problems arising in engineering, science and other disciplines (R-Remember, U-Understand, Ap-Apply,	PSO 3, 4, PO1, 2, 3, 4, 5, 6	An, E	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	3	3	2	2	3	2	1	-	-			1
CO2	2	2	3	3	2	2	3	3	1	-	-	1		
CO3	3	3	3	3	3	3	3	3	3	1	1	3		
CO4	2	2	3	3	3	3	3	3	3	3	3	3		

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics								
Course Code	UK3DS	UK3DSCMAT211								
Course Title	Discret	Discrete Mathematics								
Type of Course	DSC	DSC								
Semester	III	ΙΙ								
Academic Level	200-29	200-299								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	4	4 hours	0	0	4					
Pre-requisites	Knowle	edge of basi	c set theory							
Course Summary		ourse includ aic Structure		atical Logic	e, Predicate logic and					

Module	Unit	Contents	Hrs							
Ι		Mathematical Logic	15							
	1	Proposition and Connectives, Conditional and bi- conditional, Equivalence of proposition (<i>These topics</i> <i>can be found in Chapter 1 of Text [2]</i>)								
	2 Tautology and Contradiction, Logical implications well- formed formula, Algebra of proposition (<i>These topics can</i> <i>be found in Chapter 1 of Text [2]</i>)									
	3	De Morgan's law, Duality theorem (<i>These topics can be found in Chapter 1 of Text [1]</i>)								
II		Proof Methods and Logic	15							
	4	Formal Proof, Propositional reasoning by contradiction, indirect method of proof (<i>These topics can be found in</i> <i>Chapter 1 of Text</i> [2])								

Module	Unit	Contents	Hrs
	5	Boolean expressions, Normal forms - Disjunctive normal	
		form, Conjunctive normal form, Principal Conjunctive	
		Normal forms and principal disjunctive normal forms using	
		truth table only (These topics can be found in Chapter 1 of	
		<i>Text</i> [2])	
III		Algebraic Structures	15
	6	Algebra, DeMorgan's Law, Group, Subgroups examples and	
		simple properties (These topics can be found in Text [1])	
	7	Communication Model - coding theory, error corrections,	
		Hamming Codes (Avoid computer programs) (These topics	
		can be found in Text [1])	
IV		Predicate Logic	15
	8	Quantifiers: Essential and Universal quantifier, Free and	
		Bound Variables (These topics can be found in Chapter 1	
		<i>of Text</i> [2])	
	9	Rules of Specifications: Rule US, ES, UG, EG. Using these,	
		convert a given statement into symbolic notation (These	
		topics can be found in Chapter 1 of Text [2])	
	10	Derivation from Premises using truth table (These topics can	
		be found in Chapter 1 of Text [2])	

Textbooks

- 1. R M Somasundaram, Discrete Mathematical Structures, Prentice Hall of India, 2003.
- 2. T. Veerarajan, *Discrete Mathematics with Graph Theory and Combinatorics*, Tata McGraw Hill, 2007.

References

- 1. C L Liu, D P Mohapatra, *Elements of Discrete Mathematics, A Computer oriented approach*, Tata McGraw-Hill, 2008
- 2. Rajendra Akerkar, Rupali Akerkar, Discrete Mathematics, Pearson Education, 2007.
- 3. B. V. Senthil Kumar and Hemen Dutta, *Discrete Mathematical Structures*, CRC Press, 2020

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Identify the concepts needed to test the logic of a programme	PSO 1, 2, PO1, 2, 4, 6	R, U	F, C	L	
CO 2	Explain the underline concepts and tools to solve problems	PSO 2, 3, PO1, 2, 3, 4, 6	U	F, C	L	
CO 3	Examine accurate and efficient use of algebraic techniques	PSO 4, PO1, 2, 3, 4, 6	An	С	L	
CO 4	Understand the basic rules of predicate logic	PSO 1, PO1, 2, 3, 4, 6	R, U	F,C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	-	-	-	-	2	1	-	2	_	1	-	-
CO2	-	3	3	-	-	-	3	3	2	1	-	2	-	-
CO3	-	-	3	-	-	-	3	2	2	1	-	2	-	-
CO4	3	-	-	-	-	-	3	2	2	1	_	2	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mather	natics								
Course Code	UK3DS	UK3DSCMAT212								
Course Title	Vector	Vector Calculus								
Type of Course	DSC	DSC								
Semester	III	III								
Academic Level	200-29	200-299								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week		Hours per week					
	4	4	-	1	5					
Pre-requisites	1. Integ	gration 2.	Differentiat	tion 3. Ve	ectors					
Course Summary	compre valued and the	1. Integration 2. Differentiation 3. Vectors This course in Vector Calculus provides students with a comprehensive understanding of parametric curves, vector- valued functions, differentiation and integration techniques, and their applications in analyzing motion, solving physical problems, and preparing for advanced studies.								

Module	Unit	Contents	Hrs
Ι		Vector Valued Functions	15
	1	Introduction to vector valued Functions, Parametric Curves in 3-Space - The parametric equations (introduction only) vector valued functions (introduction only) vector form of a line segment (introduction only) (<i>Chapter 12: Sections 12.1</i> of Text [1])	
	2	Calculus of vector-valued Functions - Limits and Continuity, Geometric interpretations of limits, Derivatives, Geometric interpretation of the derivative, derivative rules Derivatives of dot and cross products (fundamentals only) Integrals of vector valued functions and integral rules (fundamentals only)(<i>Chapter 12: Section 12.2 of Text [1]</i>)	

Module	Unit	Contents	Hrs							
	3	Arc length parametrization (Chapter 12: Section 12.3 of Text								
		[1])								
II		Tangents and Curvature	10							
	4	Unit Tangent, Normal and Binormal vectors (introduction								
		only) Normal and Tangential Components of Acceleration								
		(Chapter 12: Section 12.4 of Text [1])								
	5									
	(Chapter 12: Section 12.5, 12.6)									
III		Vector Differentiation	15							
	6	Vector fields (Definition), inverse square fields, Gradient								
		fields, Conservative Fields and potential functions,								
		Divergence and Curl, the ∇ operator (<i>Chapter 15: Section</i>								
		15.1 of Text[1])								
IV		Vector Integration	20							
	7	Line integrals, Integrating a vector field along a curve -								
		Exercise Set 15.2- problems 15-30, 33-36, 41-46. (Chapter								
		15 Section 15.2 of Text[1])								
	8	Independence of Path; Conservative Vector Fields, Green's								
		Theorem(Chapter 15: Sections 15.3, 15.4 of Text[1])								
	9	Surface integrals evaluating surface integrals, Flux,								
		evaluation of flux integrals, The divergence theorem								
		(without proof) using the divergence theorem to find flux.								
		Stoke's theorem (all without proof) Relationships between								
		Green's theorem and Stoke's theorem (<i>Chapter 15: Sections</i>								
		15.5 to 15.8 of Text[1])								
Practical		cal sessions can be given using suitable software like sagemath (not	15							
	meant	for examination purpose)								

Textbook

1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Gregory V. Bard, William Stein, *Sage for Undergraduates*, American Mathematical Society, 2015.
- 2. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 3. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 4. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E- resources

1. https://www.sagemath.org/help.html

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understanding of Vector-Valued Functions and Parametric Curves	PSO1	U	F, C	L	
CO 2	Ability to Parametrize Curves and Calculate Arc Length	PSO1, PSO2, PSO3, PSO4, PO1, PO2	R, U, E, Ap, An	P, C, F	L	
CO 3	Application of Line and Surface Integrals	PSO2, PSO3, PO1, PO2	U, Ap, E	P, F, C	L	
CO 4	Analyze and solve complex problems involving vector-valued functions and parametric curves in three- dimensional space.	PSO1, PSO2, PSO3, PSO4, PSO6, PO1, PO2, PO3	U, Ap, An, E, C	Р, М	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	3	2	-	-	2	2	-	-	-	-	-	-
CO3	-	3	3	-	-	-	2	2	-	-	-	-	-	-
CO4	3	3	3	3	-	2	2	2	2	-	_	_	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics								
Course Code	UK3DS	JK3DSEMAT200								
Course Title	Program	Programming with LATEX and Python								
Type of Course	DSE	SE								
Semester	III	Ш								
Academic Level	200-29	200-299								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	4	3	0	2	5					
Pre-requisites	1. Basi	c computer	knowledge							
Course Summary	This co	urse provid	es basic skil	l in Ŀ/TEX ar	nd python programming					

Module	Unit	Contents	Hrs
Ι		Basics of Type setting using LATEX	20
	1	Simple typesetting, Fonts, Type size Typesetting Mathematics,	
	2	Single Equations (equation, equation*, split) Group of Equations (gather, gather*, align, align*, cases) Matrices and Determinants (matrix, pmatrix, bmatrix, vmatrix) Putting one over another (frac, dfrac, int, lim, sum, prod). Chapter 1: Sections 8.1, 8.3.1, 8.3.2, 8.4.2 and 8.4.4 of Text [3].	
	3	Basics of typesetting Theorems and amsthm package (Sections 9.1 to 9.2.1 of Text [1]). Do Exercise questions 4, 5, 6 and 7 of Chapter 9 of Text [2].	
II		Tables, Figures and Presentation	20
	4	Typesetting basic tables. Merge cells using \multicolumn (Chapter 7: Section 7.2 of Text [3], except the portion using \renewcommand)	

Module	Unit	Contents	Hrs							
	5	Inserting pictures using Graphicx package (Chapter 12:								
		Section 12.1.1 to 12.1.3 of Text [1], except the portion on								
		pstricks)								
	6	Creating Floating Figures (Chapter 11: Section 11.1.1 of								
		Text [3])								
	7	Beamer Presentation, Thinking in terms of frames. Set								
		up a Beamer document, Enhance a Beamer presentation.								
		(Chapter 11: Sections 11.1 to 11.4 of Text [2], except the								
		portion using pstricks)								
III		The Essentials of Python	20							
	8	Absolute Basics - Lists, tuples and sets - Strings - Control								
		Flow - Functions - Reading and writing files (Chapter 4, 5								
		(Sections 5.6, 5.8 need not be discussed), 6 (Section 6.5 to								
		6.9 need not be discussed),8, 9.1 to 9.5 (Section 9.3 need not								
		be discussed) and 13.1 to 13.4 of Text [4])								
IV		Working with numbers	15							
	9	Basic Mathematical Operations - Working with different								
		kinds of numbers - Getting user input - Math Programmes								
		- The Programming challenges mentioned in Chapter 1 of								
		Text [1]								

Textbooks

- 1. Amit Saha, Doing Math with Python, No Starch Press, 2015.
- 2. Donald Binder and Martin Erickson, A student's guide to the study, practice and tools of modern mathematics, CRC Press, 2010.
- 3. E. Krishnan, The LATEX Tutorial: A Primer, by The Tutorial Team, Indian TEX Users Group, Sayahna Foundation, http://www.sayahna.org, 2020.
- 4. Naomi Ceder, The Quick Python Book, Manning, 2018.

References

- 1. E Balagurusamy, Introduction to computing and problem solving using Python, Mc Graw Hill Education, 2017.
- 2. Dilip Datta, LATEXin 24 Hours, A Practical Guide for Scientific Writing, Springer, 2017.
- 3. Hubert Partl, Irene Hyna and Elisabeth Schlegl, The Not So Short Introduction to $I\Delta T_E X 2\epsilon$, Tobias Oetiker, Version 6.4, 09 March 2021.
- 4. Kenneth A Lambert, Fundamentals of Python, First Programs, 2nd Edition, Cengage, 2019.

E- resources

- 1. https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
- 2. https://www.python.org/

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the basics of $L^{AT}EX$ and python	PSO1, PO7	U	F,C	L	Р
CO 2	Create documents and programs	PSO5, PO3	Ap,C	Р	L	Р
CO 3	Create good quality presentations	PSO5, PO3, 4	Ap, C	Р	L	Р
CO 4	Apply to the subject and get more insight to the mathematical concepts	PSO2	Ар	М	L	Р

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1												3	
CO2					3				2					
CO3			-	-	3				3	3				
CO4		3												

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

• Quiz/Assignment/Discussion/Seminar

- Midterm Exam
- Programming Assignments
- Final Exam (Theory and Practical)

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		
CO4		\checkmark		

Discipline	Mathen	natics									
Course Code	UK3DS	JK3DSEMAT201									
Course Title	Numeri	Jumerical Analysis									
Type of Course	DSE	DSE									
Semester	III	α									
Academic Level	200-299	200-299									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours per week						
	4	4	-	1	5						
Pre-requisites	1. Diffe	rentiation	2. Integrat	ion 3. So	lution of system of equations						
Course Summary	This co	urse enable	the students	s to gain a th	nourough understanding						
	of vario	ous numerica	al methods u	used for solv	ving mathematical problems						

Module	Unit	Contents	Hrs							
Ι		Solution of Algebraic and Transcendental equations	15							
	1	Introduction, Bisection Method, Method of false position.								
		Chapter 2: Section 2.1 to 2.3 of Text[1]								
	2 Iteration Method, Newton-Raphson method. Chapter 2									
	section 2.4 to 2.5 of Text[1]3Ramanujan's method, Secant method, Muller's method.									
		Chapter 2: Section 2.6 to 2.8 of Text[1]								
II		Interpolation	15							
	4	Finite differences. Chapter 3: Section 3.3								
	5	Newton's formulae for interpolation, Central difference								
		interpolation formulae, Chapter 3: Section 3.6, 3.7 of Text[1]								
	6 Interpolation with unevenly spaced points. Chapter 3:									
		Section 3.9 of Text[1]								

Module	Unit	Contents	Hrs						
	7	Divided differences and their properties. Chapter 3: Section							
		3.10 of Text[1]							
III		Numerical Differentiation and Integration	15						
	8	Numerical differentiation. Chapter 6: Section 6.2 (excluding							
		6.2.1 and 6.2.2) of Text[1]							
	9 Maximum and Minimum values of a tabulated function. Chapter 6: Section 6.3 of Text[1]								
	10	Numerical integration Chapter 6: Section 6.4.1 to 6.4.4 of							
		Text[1]							
IV	Numerical Solution of Ordinary Differential equations								
	11	Solution by Taylor's series Chapter 8: Section 8.2 of Text[1]							
	12	Picard's method of Successive Approximations. Chapter 8:							
		Section 8.3 of Text[1]							
	13	Euler's method Chapter 8: Section 8.4 of Text[1]							
	14	Runge- Kutta Methods.Chapter 8: Section 8.5 of Text[1]							
Practical	Practical sessions can be given using suitable software like sagemath (not								
	meant	t for examination purpose)							

Textbook

1. S.S. Sastry, *Introductory Methods of Numerical Analysis*, Fifth edition, PHI Learning Pvt. Ltd, 2012

References

- 1. A. C. Faul, A Concise Introduction to Numerical Analysis, CRC Press, 2016.
- 2. Richard L. Burden, J. Douglas Faires, *Numerical Analysis*, Ninth Edition, Cengage Learning, 2011.
- 3. Timo Heister, Leo G. Rebholz, Fei Xue, *Numerical Analysis An Introduction*, De Gruyter, 2019.
- 4. Timothy Sauer, Numerical Analysis, Third Edition, Perason Education, 2018.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Calculate the solution of algebraic and transcendental equation using numerical methods	PO 2, PSO1, 2,3	U, Ap	F,C	L	
CO 2	Apply numerical techniques to interpolate data points effectively	PO1, PSO1, 2,3	U, Ap	F,C	L	
CO 3	Apply numerical techniques for differentiation and integration	PO2, PSO1, 2,3	U, Ap	F,C	L	
CO 4	Calculate the solution of ordinary differential equations using numerical methods	PO2, PSO1, 2,3	U, Ap	F,C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	2	-	-	-	-	3	-	-	-	-	-	-
CO2	3	3	2	-	-	-	3	-	-	-	-	-	-	-
CO3	3	3	2	-	-	-	-	3	-	-	-	-	-	-
CO4	3	3	2	-	-	-	-	3	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mather	Mathematics								
Course Code	UK3DS	UK3DSEMAT202								
Course Title	Discret	Discrete Mathematics								
Type of Course	DSE	DSE								
Semester	III	III								
Academic Level	200-299									
Course Details	Credit Lecture Tutorial Practical Total									
	per week per week Hours per we									
	4 4 4									
Pre-requisites	Basic understanding of algebra and mathematical reasoning									
Course Summary	and tee	This course serves as an introduction to the fundamental concepts and techniques of discrete mathematics, focusing on topics relevant to computer science, mathematics, and related fields.								

Module	Unit Contents								
Ι	Mathematical Logic								
	1	1 Propositions, Connectives, Order of Precedence for Logical							
		Connectives, Conditional and Biconditional Propositions,							
		Tautology and Contradiction, Equivalence of Propositions							
		(These topics can be found in Chapter 1 of Text [1])							
	2 Duality Law, Duality Theorem, Algebra of Propositions,								
	Tautological Implication (These topics can be found in								
		Chapter 1 of Text [1])							
	3	3 Normal Forms, Disjunctive and Conjunctive Normal Forms,							
		Principal Disjunctive and Principal Conjunctive Normal							
		Forms (These topics can be found in Chapter 1 of Text [1])							
II		Predicate Logic							
	4	Theory of Inference, Truth Table Technique, Rules of							
		Inference, Form of Argument (These topics can be found in							
		Chapter 1 of Text [1])							

Module	Unit	Contents	Hrs					
	5	Rule of Conditional Proof, Inconsistent Premises, Indirect						
		Method of Proof (These topics can be found in Chapter 1 of						
		<i>Text</i> [1])						
	6	Predicate Logic (These topic can be found in Chapter 1 of						
		<i>Text</i> [1])						
III	Combinatorics							
	7	Pigeonhole Principle, Generalisation of the Pigeonhole						
		Principle (These topics can be found in Chapter 2 of Text [1])						
	8	Principle of Inclusion-Exclusion, Mathematical Induction						
	(These topics can be found in Chapter 2 of Text [1])99Recurrence Relations, Particular Solutions, Solution of							
		Recurrence Relations by using Generating Functions (These						
		topics can be found in Chapter 2 of Text [1])						
IV	Lattices and Algebra							
	10	Lattices, Principle of Duality, Properties of Lattices (These						
		topics can be found in Chapter 5 of Text [1])						
	11	Lattice as Algebraic System, Sublattices, Lattice						
		Homomorphism, Some Special Lattices (<i>These topics can be found in Chapter 5 of Text [1]</i>)						
	12	Boolean Algebra, Additional Properties of Boolean Algebra,						
		Dual and Principle of Duality, Principle of Duality,						
		Subalgebra, Boolean Homomorphism, Isomorphic Boolean						
		Algebras, Boolean Expressions and Boolean Functions						
		(These topics can be found in Chapter 5 of Text [1])						

Textbook

1. T. Veerarajan, Discrete Mathematics, Tata McGraw Hill, 2019.

References

- 1. C L Liu, D P Mohapatra, *Elements of Discrete Mathematics, A Computer oriented approach*, Tata McGraw-Hill, 2008
- 2. Rajendra Akerkar, Rupali Akerkar, Discrete Mathematics, Perason Education, 2007.
- 3. B. V. Senthil Kumar and Hemen Dutta, *Discrete Mathematical Structures*, CRC Press, 2020.
- 4. R M Somasundaram, Discrete Mathematical Structures, Prentice Hall of India, 2003.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	A solid understanding of fundamental concepts in discrete mathematics, including propositional and predicate logic, relations and combinatorics.	PSO1, PO1, 6	U	F, C		
CO 2	Develop problem-solving skills through the application of various proof techniques	PSO 2, 4, PO1, 2, 6	R, U	Р		
CO 3	Develop critical thinking skills and creativity in approaching mathematical problems, exploring alternative approaches, and synthesizing solutions using discrete mathematical concepts.	PSO 2, 3, 4, PO1, 2, 6	An, C	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	-	-	-	-	-	1	-	-	-	-	2	-	-
CO2	-	3	-	3	-	-	1	1	-	-	-	2	-	-
CO3	-	3	2	3	-	-	2	1	-	-	_	2	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	-		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics									
Course Code	UK3DS	JK3DSEMAT203									
Course Title	Probabi	robability Theory									
Type of Course	DSE	DSE									
Semester	III	Π									
Academic Level	200-29	200-299									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours per week						
	4	4			4						
Pre-requisites	Sets, lir	nit and cont	tinuity of fu	nctions							
Course Summary		This course provides a comprehensive idea on basic probability theory and some standard distributions									

Module	Unit	Contents	Hrs										
Ι		Introduction to probability	15										
	1	Basic terminology											
	2	Probability											
	3	3 Axiomatic approach to probability											
	Chapt	Chapter 3: Sections 3.3, 3.4, 3.5, 3.8 of Text [1] Random variables and distribution functions											
II		15											
	4	Distribution function											
	5	Discrete random variable											
	6	Continuous random variable											
	Chapt	er 5: Sections 5.1, 5.2, 5.3, 5.4 of Text [1]											
III		Mathematical Expectation	10										
	7	Expected value of a random variable											
	8	Expected value of function of a random variable											
	9	Properties of expectation and variance, covariance											

Module	Unit	Contents	Hrs										
	Chapt	er 6: Section 6.1, 6.2, 6.3, 6.4, 6.5, 6.6(only the concept of covar	riance)										
	of the	of the Text [1]. Topics from section 6.6.1 onwards are not included											
IV		Standard Distributions 20											
	10	Discrete uniform distribution, Bernoulli distribution											
	11	Binomial distribution, Poisson distribution											
	12	Normal, Gamma and Beta distributions											
	Chapt	er 8: Sections 8.1,8.2, 8.3, 8.4 (subsections 8.4.1 to 8.4.8), S	ection										
	8.5 (si	ubsections 8.5.2 to 8.5.6) and in Chapter 9: Sections 9.2 (subse	ections										
	9.2.1	to 9.2.5), Sections 9.5, 9.6 of the Text [1]											

Textbook

1. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, 4th Edition, Sultan Chand and Sons, 2005.

References

- 1. R J Larsen and M L Marx, An introduction to Mathematical Statistics and its Applications, 6th edition, Pearson, 2011.
- 2. V K Rohatgi and A K Md Ehsanes Saleh, An Introduction to Probability and Statistics, 2nd edition, John-Wiley, 2001.
- 3. Sheldon Ross, A first course in probability, 5th Edn, Prentice Hall, 1998.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understand the different approaches to probability and their properties	PSO1, 2	U	F,C	L, T	As
CO 2	Develop the idea of random variables, distribution functions and their expectations	PSO2, 3	U, Ap	C, P	L, T	As
CO 3	Create a concrete idea of some standard distributions	PSO2, 3	Ap, An	С, Р	L, T	As
CO 4	Apply the knowledge to solve real world problems	PSO4, 5, 6	С	М	L, T	As

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	2					2		1					
CO2		2	2				2		2					
CO3		2	2					2		2				
CO4				2	2	2		2			2	2		

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4		\checkmark		

Discipline	Mather	natics								
Course Code	UK3VA	CMAT200								
Course Title	Introdu	Introduction to Actuarial Mathematics								
Type of Course	VAC	VAC								
Semester	III	III								
Academic Level	200-29	200-299								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	3	3		0	3					
Pre-requisites	probabi varianc 2. Func	 Basics of Probability Theory, including basic concepts like probabilities, events, random variables, expected values, and variance. Fundamentals of algebra, especially for solving equations and manipulating mathematical expressions. 								
Course Summary	in actua mathen topics s premiu	arial mather natics and is such as prol ms, and an	natics, inclu nsurance pr pabilities, ir nuities, stud	iding proba inciples. T iterest calcu lents develo	erview of key concepts bility theory, financial hrough exploration of lations, life insurance p the analytical skills and risk management.					

Module	Unit	Contents	Hrs							
Ι		Probability	10							
	1	Probabilities and events								
	2	2 Conditional probability Δ and E								
	3	Random variables								
	4	Expected values								
	5	5 Variance								
	Chapt	er 1 of Text [3]	•							

Module	Unit	Contents	Hrs
II		The Theory of Interest	10
	6	Simple interest and compound interest	
	7	Continuously compounded interest	
	8	Present value of future payments	
	9	Rate of return	
	10	Continuously varying interest rates	
	Chapt	ter 1 of Text [1]	
III		15	
	11	Introduction to annuity	
	12	Types of Annuities	
	13	Amortization	
	14	Sinking Fund	
	Chapt	ter 9 of Text [4]	
IV		Life insurance	10
	15	Calculating life insurance premiums	
	16	Types of life insurance	
	17	Combined insurance-annuity benefits	
	18	Insurances viewed as annuities	
	19	General insurance-annuity identity	
	Chapt	ter 5 of Text [2]	

Textbooks

- 1. Buchanan, J. R., An undergraduate introduction to financial mathematics, 2012.
- 2. Promislow, S. D. . Fundamentals of actuarial mathematics. John Wiley Sons, 2014.
- 3. Ross, S. M., An elementary introduction to mathematical finance. Cambridge University Press, 2011.
- 4. Trivedi, K., Business mathematics. Pearson Education India, 2011.

References

- 1. Bowers et al., Actuarial Mathematics, Society of Actuaries, 1997.
- 2. Samuel A. Broverman, Mathematics of Investment and Credit, Actex Learning, 2017.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Examine interest calculations, including simple, compound, and continuously compounded interests, and rate of return evaluations	PSO1, 2	R, U, Ap	F, C		
CO 2	Compare various annuities and apply amortization and sinking funds principles.	PSO- 5,6	R, U ,An	Р		
CO 3	Develop methods for calculating life insurance premiums and disting- uishing between different insurance types.	PSO- 1,3	U, An	М		
CO 4	Solve practical problems using statistical and mathematical methods in actuarial contexts.	PSO- 3,4	C,E	C, P		
CO 5	Apply knowledge to analyze insurance-annuity benefits and explore insurance-annuity identities.	PSO- 6	C,Ap.A			

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	3					1	3	3					
CO2					3	3								
CO3	2	3							3					
CO4			3	3										
CO5						3					uhetant			

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark			\checkmark
CO4		\checkmark		\checkmark
CO5		\checkmark		\checkmark

Discipline	Mathen	natics									
Course Code	UK3VA	CMAT201									
Course Title	Project	Project Management and Game Theory									
Type of Course	VAC	VAC									
Semester	III	Ш									
Academic Level	200-29	200-299									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours per week						
	3	3			3						
Pre-requisites	Matrix	theory		-							
Course Summary	followin such as so on,	After completing the course student get the clear ides of the following, minimizing some measure of performance of a system such as the total completion time for the project, overall cost and so on, types of game theory, Mathematic required for solving game theory, Technique of solving for different types of games.									

Module	Unit	Contents	Hrs										
Ι		Critical Path Analysis	11										
	1	Network Components and Precedence Relationships											
	2	2 Critical Path Analysis											
	Chapt	Chapter 13: Sections 13.4 and 13.5 of Text [1]											
II		PERT											
	3	Project Scheduling with uncertain Activity Time (<i>probability not included</i>)											
	4	Basic Difference Between PERT and CPM											
	Chapt	er 13: Sections 13.6 and 13.2 of Text [1]											
III		Games with Saddle Point	11										
	5	Introduction											

Module	Unit	Contents	Hrs										
	6	Two Person Zero Sum Games											
	7	Pure Strategies											
	Chapt	Chapter 12: Sections 12.1, 12,2 and 12.3 of Text [1]											
IV		Games without Saddle Point											
	8	Rules of Dominance											
	9	Solution Methods of Games without Saddle Point											
	(Arithmetic Method, Matrix Method, Graphical Method)												
	Chapt	er 13: Sections 12.5 and 12.6 of Text [1]											

Textbook

1. J K Sharma, Operations Research - Theory and Applications, Sixth Edition, 2016.

References

- 1. Hamdy A Taha, Operations Research an Introduction, Tenth edition, Pearson, 2016.
- 2. Kanti Swarup, P.K.Gupta, Man Mohan, Operations Research, Sultan Chand and Sons, 2005.
- 3. G Srinivasan, Operations Research, Principle and Applications, Second Edition, PHI Learning, 2010.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	OS4/04	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understant concepts in various Mathematical modelling	PSO1, 2, PO4, 5	U	F, C		
CO 2	Evaluate project completion time in different Network	PSO2, 3, PO1, 2, 3, 5	U, E	F, P		
CO 3	To find solutions of problems in Game theory	PSO3, 5, PO3	Ap, E	F, P		
CO 4	Apply techniques in Game theory to solve problems Game theory	PSO4, 5	Ap, E	F, P		

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1			2						2	4			
CO2	2		4	1			2	2	3		1			
CO3			3	-	3				3					
CO3			-	3	3									

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics									
Course Code	UK4DS	UK4DSCMAT200									
Course Title	Introdu	Introduction to Real Analysis and Multiple Integrals									
Type of Course	DSC	DSC									
Semester	IV	V									
Academic Level	200-299	200-299									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week		Hours per week						
	4	4			4						
Pre-requisites	1. Knov	wledge of n	umber syste	ms							
	2. Awai	reness of Ca	llculus								
Course Summary	This co	urse include	es introducta	ary Real An	alysis and Multiple Integrals						

Module	Unit	Contents	Hrs						
Ι		Real Numbers	15						
	1	and the Real Line, The Completeness Property of E Applications of the Supremum Property Intervals (Chapte 2: Sections 2.1, 2.2, 2.3, 2.4, 2.5 (subsections 2.5.1 to 2.5.4 of Text [1])							
II		Sequences	15						
	2	Sequences and their Limits, Limit Theorems, Monotone Sequences (Chapter 3: Sections 3.1, 3.2, 3.3 (subsections 3.3.1 to 3.3.4) of Text [1]) Subsequences and the Bolzano- Weierstrass Theorem (Chapter 3: Section 3.4 (subsections 3.4.1 to 3.4.9), The Cauchy Criterion (Chapter 3: Section 3.5 (subsections 3.5.1 to 3.5.6) of Text [1])							

Module	Unit	Contents	Hrs										
III		Multiple Integral I	15										
	3	Double Integrals, Double Integrals over Non-rectangular											
		Regions, Double Integrals In Polar Coordinates, Surface											
		Area, Parametric Surfaces. (Chapter 14: Sections 14.1 to											
		14.4 of Text [2])											
IV		Multiple Integral II	15										
	4	Triple Integrals, Triple Integrals In Cylindrical And											
		Spherical Coordinates, Change Of Variables In Multiple											
		Integrals, Jacobians, Centers of Gravity using Multiple											
		Integrals. (Chapter 14: Sections 14.5 to 14.8 of text [2])											

Textbook

- 1. R. G. Bartle, Donald R. Sherbert, Introduction to Real Analysis, Fourth Edition, John Wiley & Sons, Inc., 2010.
- 2. Howard Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Joel Hass, Maurice D. Weir, Thomas' Calculus Early Transcendentals, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. W. Rudin, Principles of Mathematical Analysis, Second Edition, McGraw-Hill, 1964.
- 3. Stephen Abbot, Understanding Analysis, 2nd Edition, Springer, 2015.
- 4. J Stewart, Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited, 2008.
- 5. Terrence Tao, Analysis I, Hindustan Book Agency, 2022.
- 6. G B Thomas, R L Finney, Calculus, 9th Edition, Addison-Weseley Publishing Company, 2004.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understanding fundamental properties of real numbers that contributes to formal development of Real Analysis	PSO1, PO1, 2, 3, 4, 5, 6, 7	R, U	F,C	L	
CO 2	Demonstrates and understand the concept of sequence of real numbers and categorize them into convergent and divergent sequence	PSO1, PO1, 2, 3, 4, 5, 6, 7	U,An	F,C	L	
CO 3	Describe the concepts of multiple integration	PSO2, PO1, 2, 3, 4, 5, 6, 7	U, E	C, P	L	
CO 4	Apply double and triple integrals to solve real life problems	PSO3, PO1, 2, 3, 4, 5, 6, 7	Ар	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	1	2	2	1	1	2	1	3	1	2	1	
CO2	3	2	1	2	2	1	2	2	2	3	1	2	1	
CO3	2	3	1	2	1	1	2	2	2	3	1	2	2	
CO4	2	2	3	2	1	1	2	3	2	2	1	2	2	

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics									
Course Code	UK4DS	JK4DSCMAT201									
Course Title	Partial	artial Differentiation and Introduction to Abstract Algebra									
Type of Course	DSC	DSC									
Semester	IV	V									
Academic Level	200-29	9									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week		Hours per week						
	4	4		1	5						
Pre-requisites	Awaren	ess of Diffe	erential Calc	ulus and Se	t theory						
Course Summary	This co	urse include	es Partial dif	fferentiation	and basic Abstract Algebra						

Module	Unit	Contents	Hrs									
Ι		Partial Differentiation I	12									
	1	Functions of two or more variables, Limits And Continuity,										
		Partial Derivatives, Differentiability, Differentials, And										
		Local Linearity, The Chain Rule.										
	Chapt	Chapter 13: Section 13.1, 13.2, 13.3, 13.4, 13.5 of Text [2]										
II		Partial Differentiation II										
	2	Directional Derivatives And Gradients, Tangent Planes And										
		Normal Vectors, Maxima And Minima Of Functions Of Two										
		Variables, Lagrange Multipliers.										
	Chapt	ter 13: Section 13.6, 13.7, 13.8, 13.9 of Text [2]										
III		Groups	18									
	3	Binary Operations, Groups, Abelian Examples, Subgroups,										
		Cyclic Groups.										

Module	Unit	Contents	Hrs										
	Chapt	Chapter 1 : Sections 1, 2, 3, 5, 6 of Text [1]											
IV		Cosets											
	4	Non-abelian Examples, Groups of Permutations, Cosets and											
		Theorem of Lagrange.											
	Chapt	er 1 : Section 4, Chapter 2 : Sections 8 and 10 of Text[1]											
Practical	Practi	cals and assignments can be given using Sagemath for solving the	15										
	proble	problems in the above modules. Chapters 3, 4, 5, 6 of Text [3] (not meant											
	for ex	amination)											

Textbooks

- 1. J. B. Fraleigh, Neal.E.Brand A First Course in Abstract Algebra, Eighth Edition, Pearson Education Inc, 2022
- 2. Howard Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley & Sons, 2012.
- 3. Thomas. W. Judson, Stephen. F. Austin *Abstract Algebra Theory and Applications*, State University, Robert A Beezer, *Sage Exercises for Abstract Algebra*, University of Puget Sound, 2020.

References

- 1. I. N. Herstein, Topics in Algebra, Second Edition, Wiley, 2006.
- 2. Joel Hass, Maurice D. Weir, Thomas' Calculus Early Transcendentals, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 3. Joseph. A. Gallian, Contemporary Abstract Algebra, Eighth Edition, Brooks Cole Cengage Learning, 2012.
- 4. Michael Artin, Algebra, Second Edition, Pearson Education, 2023.
- 5. J Stewart, Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited, 2008.
- 6. G B Thomas, R L Finney, Calculus, 9th Edition, Addison-Weseley Publishing Company, 2004.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Define multivariable functions and relate it to single variable functions	PSO5, PO1, 2, 3, 4, 5, 6, 7	R, U	F,C	L	
CO 2	Describe limits, continuity and partial derivatives	PSO1, PO1, 2, 3, 4, 5, 6, 7	U,E	Р	L	
CO 3	Solve maximization and minimization problems using partial derivatives	PSO2, PO1, 2, 3, 4, 5, 6, 7	Ар	Р	L	
CO 4	Explain the concepts of binary operations and groups and classify the groups as abelian, non-abelian and cycle groups	PSO4, PO1, 2, 3, 4, 5, 6, 7	U,An	F,C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	2	1	1	3	1	2	2	1	3	1	2	2	
CO2	3	2	2	2	2	1	2	3	2	2	1	2	1	
CO3	2	3	2	2	2	1	2	3	2	2	1	2	1	
CO4	2	2	2	3	2	1	3	2	2	2	1	2	1	

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics									
Course Code	UK4DS	UK4DSEMAT200									
Course Title	Elemen	Elementary Graph Theory									
Type of Course	DSE										
Semester	IV	IV									
Academic Level	200-299	200-299									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours per week						
	4	4	0	1	5						
Pre-requisites	Fundan	nental conce	epts in set th	eory, Algeb	ra and Geometry						
Course Summary	This co	urse is inter	nded to moti	vate the stud	dents to study Graph						
	Theory	as a branch	of Discrete	Mathemati	cs and prepare them to						
	learn m	ore advance	ed concepts	in Graph Th	neory						

Module	Unit	Contents	Hrs
Ι		16	
	1	Events	
	2	Union of events	
	3		
	4		
	5	Selections	
	6	Binomial Theorem and its Applications	
	Chapt	ter 5: Sections 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 of Text [2]	
II		16	
	7	What is a graph?	
	8	Application of graphs	
	9	Finite and Infinite graphs	

Module	Unit	Contents	Hrs							
	10	Incidence and Degree								
	11	Isolated Vertex, Pendant Vertex, and Null Graph								
	Chapt	er 1: Sections 1.1, 1.2, 1.3, 1.4, 1.5 of Text [1]								
III		Paths and Circuits	16							
	12	Isomorphism								
	13	Sub-graphs								
	14	Walks, Paths, and Circuits								
	15	15 Connected Graphs, Disconnected Graphs, and Components								
	Chapt	Chapter 2: Sections 2.1, 2.2, 2.3, 2.4, 2.5 of Text [1]								
IV	Euler Graphs and Hamiltonian Graphs									
	16	Euler Graphs								
	17	Operations On Graphs								
	18	More on Euler Graphs								
	19	Hamiltonian Paths and Circuits								
	20	The Traveling Salesman Problem								
	Chapt	er 2: Sections 2.6, 2.7, 2.8, 2.9, 2.10 of Text [1]								
Practical	Practicals and assignments can be given using suitable software (like sagemath, scilab etc) to familiarize the concepts studied in this course. (not meant for examinations)									

Textbooks

- 1. Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Dover Publications Inc. Mineola, New York, 2017.
- 2. W. D. Wallis, A Beginner's Guide to Discrete Mathematics, Second Edition, Birkhauser, Springer International Edition, 2012.

References

- 1. A. Bondy, U. S. R. Murthy, Graph Theory with Applications, Macmillan Press, London, 1976.
- 2. M. Joan and R. J. Wilson, Graphs and Applications: An Introductory Approach, Springer Indian Reprint, 2007.
- 3. Jonathan L. Gross, Jay Yellen, Mark Anderson, Graph Theory and Its Applications, CRC Press, 2018.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Students get motivated to study Graph Theory	PSO 1, 2	R,U	F,C	L	
CO 2	Students develop basic understanding of the concepts in Graph Theory	PSO 1, 2, 3	R,U	F,C	L, T	
CO 3	Students develop skill in solving various problems containing concepts in Graph Theory.	PSO 3, 4, 5	Ap, An, E	F,C, P, M	Т	
CO 4	Students apply the knowledge and skills in new situations	PSO 3, 4, 5, 6	Ap, An, E	F,C, P, M	Т	Р

⁽R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	2	1	0	1	1	1	1	2	2	3	0	1
CO2	2	3	3	2	2	1	2	2	2	3	3	2	1	2
CO3	1	3	3	3	4	3	3	3	2	2	2	2	1	1
CO4	1	1	3	3	3	3	3	3	3	3	3	3	2	2

(0 - Nill, 1 - Slightly/Low, 2 - Moderate/Medium, 3 - Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark

Discipline	Mathen	natics									
Course Code	UK4DS	SEMAT201									
Course Title	Introdu	ntroduction to Operations Research									
Type of Course	DSE	DSE									
Semester	IV	V									
Academic Level	200-29	.00-299									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours per week						
	4	4			4						
Pre-requisites	Matrix	Theory		-							
Course Summary	techniq to arriv an ansy	At the end of the course student get the clear ides of using technique in algebra that uses linear equations to determine how to arrive at the optimal situation (maximum or minimum) as an answer to a mathematical problem, assuming the finiteness of resources and the quantifiable nature of the end optimization									

Module	Unit	Contents	Hrs								
Ι		Linear Algebra	15								
	1	Simultaneous linear equations-Gaussian Elimination, Rules									
		of Rank, Homogeneous linear equations (review only)									
	2 Lines and hyper plane										
	3	Convex sets									
	4	Convex hull									
	5	Basic results in linear programming (statement of the									
		theorems only)									
	Chapt	er 5: Sections 5.2, 5.4 and 5.6, Chapter 6: 6.4, 6.5 and 6.7 of Te	ext [1]								

Module	Unit	Contents	Hrs						
II	Introduction to Linear Programming								
	6	History of Operations Research							
	7 Definitions of Operations Research								
	8	Structure of Linear Programming Model							
	9	Advantages and limitations of Linear Programming							
	10	Linear Programming Model formulation							
	11	Examples of Linear Programming Model formulation							
	Chapter 1: Sections 1.2, 1.3, Chapter 2: Sections 2.2, 2.3, 2.7, 2.8 of Te								
III	Graphical and Simplex Method								
	12	Important Definitions							
	13	Graphical Solution							
	14	Special Cases in Linear Programming							
	15	Standard form of an LPP							
	16	Simplex Algorithm (Maximization case)							
	17	Simplex Algorithm (Minimization case)							
	Chapter 3: Sections 3.2, 3.3, 3.4, Chapter 4: Sections 4.2 and 4.3 of								
	[2]								
IV		Two-phase and Big-M Method	15						
	18	Two phase Method							
	19	Big-M Method							
	Chapter 4: Sections 4.4 of Text[2]								

Textbooks

- 1. G. Hadley: Linear Algebra, Narosa, Reprint, 2002.
- 2. J K Sharma, Operations Research Theory and Applications, Laxmi Publications, Sixth Edition, 2016.

References

- 1. Hamdy A Taha, Operations Research an Introduction, Tenth edition, Pearson, 2021.
- 2. I.N Herstein, Linear Algebra, Wiley Eastern, 2006.
- 3. Kanti Swarup, P.K.Gupta, Man Mohan, Operations Research, Sultan Chand and Sons, 2005.
- 4. Kenneth Hoffman and Ray Kunze, Linear Algebra, Prentice Hall, 1981.
- 5. S. Kumaresan, Linear Algebra, Prentice Hall, 2000.
- 6. G Srinivasan, Operations Research Principle and Applications, Second Edition, PHI Learning, 2010.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand and apply the concept of mathematical modelling	PSO2, PSO3, PO2	R,U, Ap	F,P	L	
CO 2	Formulate LPP	PSO3, PO2	Ap , E	Р	L	
CO 3	Solve LPP using Simplex Method	PSO2, PSO3, PO2	An, Ap	Р	L	
CO 4	Solve LPP using Two-phase and Big M Method .	PSO2, PSO3, PO2	Ap,An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	-	3	2	-	-	-	-	2	-	-	-	-	-	-
CO2	-	-	3	-	-	-	-	3	-	-	-	-	-	-
CO3	-	3	3	-	-	-	-	2	-	-	-	-	-	-
CO4	-	3	3	-	-	-	-	2	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mather	natics								
Course Code	UK4DS	SEMAT202								
Course Title	Data A	Data Analysis using Python								
Type of Course	DSE	DSE								
Semester	IV	V								
Academic Level	200-29	00-299								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	4	3		2	5					
Pre-requisites		1.	-		s, Statistical plotting, sion and correlation					
Course Summary	Python various hypothe	This course in Data Visualization and Statistical Analysis using Python equips students with the skills to visualize data through various plots and graphs, obtain statistical measures, conduct hypothesis tests, and perform correlation and regression analysis, all within the Python programming environment.								

Module	Unit	Contents	Hrs									
Ι		Data Visualization using python	15									
	1	Plotting and interpreting bar diagram, subdivided bar										
		diagram, multiple bar diagram, line chart, histogram, box										
	plot, Normality plot, scatter plot.											
	Chapter 9 of Text [4], Chapter 4 of Text [3], Chapter 4 of Text [1].											
II		Descriptive Statistical Measures	20									
	2	Measures of central tendency (mean, median, mode),										
		measures of dispersion (range, quartile deviation, standard										
		deviation)- Practical using Python.										
	3	Correlation and regression: Fitting a simple linear regression										
		model, Karl Pearson's coefficient of correlation, Spearman's										
		rank correlation coefficient – Practical using Python										

Module	Unit	Contents	Hrs								
	Chapt	er 2, Chapter 6 of Text [3], Chapter 5 of Text [2] and Chapter	er 5 of								
	Text [1].									
III		Tests of Hypothesis	20								
	4	Parametric and non-parametric tests, Data assumptions									
		for parametric tests, checking normality and variance									
		assumptions, Parametric tests: one sample and two sample									
		tests for mean – Z-tests, t-tests, tests of proportions, test of									
		equality of variance- F-test, Analysis of variance- One-way.									
		– Practical using Python									
	Chapt	er 2 of Text [3], Chapter 3, Chapter 4 of Text [1]									
IV		Non-Parametric Tests	20								
	5	Need for non-parametric tests, Shapiro Wilk test for									
		normality, Levene test for equality of variance, Chi-square									
		test for goodness of fit, Kolmogorov-Smirnov test, Chi-									
		square test for independence of attributes, Mann-Whitney U									
		test for equality of means or medians of two independent									
		samples, Wilcoxon test for paired samples, Kruskal-Wallis H									
		test for equality of means of independent samples- Practical									
		using Python.									
	Chapt	er 2 of Text [3], Chapter 5 of Text [1]									

Textbooks

- 1. Huy Hoang Nguyen, Paul N Adams, Stuart J Miller, Building Statistical Models in Python, Packt Publishing, 2023.
- 2. Joel Grus, Data Science from Scratch: First Principles with Python, second edition, O'Reilly, 2019.
- 3. Samir Madhavan, Mastering Python for Data Science, Packt Publishing, 2015
- 4. Wes McKinney, Python for data analysis, third edition, O'Reilly, 2022.

References

- 1. Allen B. Downey, Think Stats: Probability and Statistics for Programmers; 2nd Edition, O'Reilly Media, 2014
- 2. Wes McKinney, Python for Data Analysis, 2nd Edition; O'Reilly Media, 2017.
- 3. William Mendenhall, Robert J. Beaver, and Barbara M. Beaver ; Introduction to Probability and Statistics, 15th Edition, Cengage Learning, 2016.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the basics of Python.	PSO2, PSO4, PO1	U, E	L	С	Р
CO 2	Able to present a data by suitable diagrams and graphs using Python.	PSO1, PSO2, PSO4, PO1, PO3	U	L	С	Р
CO 3	Describe relations between two variables using correlation and regression.	PSO3, PO3	Ap, E	L	Р	Р
CO 4	Check the validity of statistical hypothesis' by parametric and non-parametric tests.	PSO1, PSO2, PSO5, PO6	E, Ap, An	L	Р	Р

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

PSO1	PSO2	PSO3	PSO4	PSO5	90Sd	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
-	3	-	3	-	-	2	-	-	-	-	-	-	-
3	3	-	2	-	-	2	-	2	-	-	-	-	-
-	-	3	-	-	-	-	-	2	-	-	-	-	-
3	3	-	-	2	-	-	-	-	-	-	2	-	-
	- 3	SA SA - 3 3 3 - - 3 3 3 3	SA SA SA - 3 - 3 3 - - - 3 3 3 -	SA SA SA SA - 3 - 3 3 3 - 2 - - 3 - 3 3 - 2 3 3 - 2 - - 3 -	A A A A A A - 3 - 3 - 3 - 3 3 - 2 - - - - 3 - 2 - 3 3 - 2 - - 3 3 - 2 2 -	- 3 - 3 - - 3 3 - 2 - - - - 3 - 2 - - 3 3 - 3 - - - 3 3 - - 2 - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 3 - 3 - 2 - 3 3 - 2 - - 2 - - - 3 - 2 - - 2 - - - 3 - 2 - - 2 - 3 3 - 2 - - - - 3 3 - - 2 - - -	- 3 - 3 - 2 - - 3 3 - 2 - - 2 - - 3 3 - 2 - - 2 - 2 - - 3 - 2 - - 2 2 - - 3 - 2 - - 2 2 3 3 - - 2 - - 2 2	- 3 - 3 - 2 - - - 3 3 - 2 - 2 - - - 3 3 - 2 - 2 - 2 - - - 3 - 2 - - 2 - 3 3 - 2 - - 2 - 2 - 3 3 - 2 - - - - - -	- 3 - 3 - 2 - - - - 3 3 - 2 - 2 - 2 - - 3 3 - 2 - 2 - 2 - - - - 3 - 2 - - 2 - - 3 3 - 2 - - - 2 - - 3 3 - 2 - - - - - -	- 3 - 3 - 2 - - - - - 3 3 - 2 - 2 - - - - - 3 3 - 2 - 2 - 2 - - - - - 3 - 2 - - 2 - - - 3 3 - 2 - - 2 - - - 3 3 - 2 - - - 2 - - 2	- 3 - 3 - - 2 -

-Nill, I-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK4SE	UK4SECMAT200						
Course Title	Typeset	tting Docum	nents with E	T _E X				
Type of Course	SEC							
Semester	IV	IV						
Academic Level	200-29	200-299						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	3	2	-	2	4			
Pre-requisites	Basic c	Basic computer knowledge						
Course Summary	the stu	This course provides the basics of LATEX programs which enable the students to create good quality scientific documents and presentations						

Module	Unit	Contents	Hrs					
Ι		Basics of LATEX						
	1	i interis Eller, simple opposetning, i onis, ippe size (enupter						
		1 of Text [2])						
II		Typesetting Mathematics	20					
	2	Basics of typesetting (Section 8.1 complete) Single Equations (equation, equation*, split) Group of Equations (gather, gather*, align, align*, cases) Matrices and Determinants (matrix, pmatrix, bmatrix, vmatrix) Putting one over another (frac, dfrac, int, lim, sum, prod) The above topics can be found in 8.1, 8.3.1, 8.3.2, 8.4.2 and 8.4.4 of Text [2]. Basics of typesetting Theorems and amsthm package (9.1 to 9.2.1 of Text [2]) Do Exercise questions 4, 5, 6 and 7 of Chapter 9 of Text [1].						

Module	Unit	Contents	Hrs					
III		Tables and Figures	15					
	3	Typesetting basic tables. Merge cells using $multicolumn$						
		(7.2 of Text [2], except the portion using $\renew command$)						
		Inserting pictures using Graphicx package (12.1.1 to 12.1.3						
		of Text [2], except the portion on pstricks), Creating Floating						
		Figures (11.1.1 of Text [2])						
IV		Beamer Presentation:	15					
	4	What is Beamer. Thinking in terms of frames. Set up a						
		Beamer document. Enhance a Beamer presentation. (11.1						
		to 11.4 of Text [1], except the portion using pstricks)						

Textbooks

- 1. Donald Binder, Martin Erickson, A student's guide to the study, practice and tools of modern mathematics, CRC Press, 2010.
- 2. E. Krishnan, The LATEX Tutorial: A Primer, by The Tutorial Team, Indian TEX Users Group, Sayahna Foundation, http://www.sayahna.org, 2020.

References

- 1. Dilip Datta, LATEXin 24 Hours, A Practical Guide for Scientific Writing, Springer, 2017.
- 2. Hubert Partl, Irene Hyna and Elisabeth Schlegl, The Not So Short Introduction to $IaT_EX2\epsilon$, Tobias Oetiker, Version 6.4, 09 March 2021.

E- resources

1. https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the basics of LATEX programs	PSO1, PO7	U	F,C	L	Р
CO 2	Create good quality scientific documents	PSO5, PO3	Ap,C	Р	L	Р
CO 3	Create good quality presentations	PSO5, PO3, 4	Ap, C	Р	L	Р

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1												3	
CO2					3				2					
CO3			-	-	3				3	3				

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK4SE	UK4SECMAT201							
Course Title	Numeri	ical Method	S						
Type of Course	SEC								
Semester	III	Ш							
Academic Level	200-29	200-299							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	4	4	-	1	5				
Pre-requisites	1. Differentiation 2. Integration								
Course Summary	underst	This course enable the students to gain a thourough understanding of various numerical methods used for solving mathematical problems							

Module	Unit	Contents	Hrs					
Ι		Solution of Algebraic and Transcendental equations	15					
	1	Introduction, Bisection Method, Method of false position. Chapter 2: Section 2.1 to 2.3 of Text						
	2 Iteration Method, Newton-Raphson method. Chapter 2: section 2.4 to 2.5 of Text							
	3 Ramanujan's method, Secant method, Muller's method. Chapter 2: Section 2.6 to 2.8 of Text							
II		Interpolation	15					
	4	Finite differences. Chapter 3: Section 3.3 (excluding 3.3.4)						
	5	Newton's formulae for interpolation. Chapter 3: Section 3.6 of Text						
	6	Interpolation with unevenly spaced points. Chapter 3: Section 3.9 of Text						

Module	Unit	Contents	Hrs
	7	Divided differences and their properties. Chapter 3: Section	
		3.10 of Text	
III		Numerical Differentiation and Integration	15
	8	Numerical differentiation. Chapter 6: Section 6.2 (excluding	
		6.2.1 and 6.2.2) of Text	
	9	Maximum and Minimum values of a tabulated function.	
		Chapter 6: Section 6.3 of Text[1]	
	10	Numerical integration Chapter 6: Section 6.4.1 to 6.4.3 of	
		Text	
Practical	Practi	cal sessions can be given using suitable software like sagemath (not	15
	meant	t for examination purpose)	

Textbook

1. S.S. Sastry, *Introductory Methods of Numerical Analysis*, Fifth edition, PHI Learning Pvt. Ltd, 2012

References

- 1. A. C. Faul, A Concise Introduction to Numerical Analysis, CRC Press, 2016.
- 2. Richard L. Burden, J. Douglas Faires, *Numerical Analysis*, Ninth Edition, Cengage Learning, 2011.
- 3. Timo Heister, Leo G. Rebholz, Fei Xue, *Numerical Analysis- An Introduction*, De Gruyter, 2019.
- 4. Timothy Sauer, Numerical Analysis, Third Edition, Perason Education, 2018.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Find the solution of algebraic and transcendental equation using numerical methods	PO 2, PSO1, 2,3	U, Ap	F,C	L	
CO 2	Apply numerical techniques to interpolate data points effectively	PO1, PSO1, 2,3	U, Ap	F,C	L	
CO 3	Apply numerical techniques for differentiation	PO2, PSO1, 2,3	U, Ap	F,C	L	
CO 4	Apply numerical techniques for integration	PO2, PSO1, 2,3	U, Ap	F,C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	2					3						
CO2	3	3	2				3							
CO3	3	3	2					3						
CO4	3	3	2		• • •			3						

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK4VA	UK4VACMAT200						
Course Title	Introdu	ction to Ma	thematical M	Modeling				
Type of Course	VAC							
Semester	IV							
Academic Level	200-299	200-299						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	3	3	-	-	3			
Pre-requisites	Basic S	chool Math	ematics and	basic calcu	llus			
Course Summary	from th drawing	This course is designed for enhancing students to work with data from the real world by formulating mathematical questions and drawing conclusions based on the analysis of that data using different mathematical tools						

Module	Unit	Contents	Hrs						
Ι		Data and Functions							
	-	A basic introduction to data along with problems on mean,median and quartiles,Representing functions with graph,formulas and tables,Behaviour of functions such as increasing,decreasing,concavity:inflection points and periodicity, Domain and Range of a function with example, Mathematical models. er 1: Section 1.1 (Topics only prescribed above), Chapter 2: Se .2, 2.3, 2.4 of Text [1]	ections						

Module	Unit	Contents	Hrs				
II		Modeling with Linear functions	15				
	2	Fundamental concepts of Linear functions, Slope, Point- Slope Formula, Modeling with Linear functions, Linear Regression, Correlation Coefficient, Virtual Laboratory: Bradford Analysis for Protein Concentrations and Hooke's Law on the Elongation of a Spring.					
	-	er 3: Sections: 3.1 (not included for examination), 3.2, 3.3 (z- led), 3.4 of Text [1]	values				
III		Modeling with Logarithmic and Polynomial functions	18				
	3	Exponential growth functions, Applicatons, Domain and Range, Exponential decay functions, Half- Life, Radioactive decay, Fitting Exponential Functions to Data, Modeling with Logarithmic functions, Fitting Logarithmic functions to Data, Behaviour and Applications of Power function, Fitting Power functions to data. Polynomial functions, Zeros of a polynomial and Roots of an equation, Behaviour of Polynomial functions, Modeling with polynomial functions, Path of a Projectile, Fitting polynomials to data.					
	Chapter 5: Sections 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 (Topics from Pote problems when fitting power functions to data excluded for examinat 5.8 (not included for examination), 6.1, 6.2 (6.1 and 6.2 are not include examination), 6.3 (Deriving Regression Equations excluded)						

Textbook

1. Sheldon P. Gordon and Florence S. Gordon. Functions, Data and Models , The Mathematical Association of America, 2010.

References

- 1. Edward A Bender, An introduction to mathematical modeling, Dover Books, 1978.
- 2. Majid Jaberi, Douraki, Seyed M Moghadas, Mathematical modeling a graduate text book, Wiely, 2018.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understand the concept of mathematical modeling	PSO1,2, PO1	U	F,C	L,T	
CO 2	Analyse various data using mathemtical models	PSO2, PO3, 4	An	F	L,T	
CO 3	Apply various mathematical functions for modeling	PSO1,3, PO2, 3	Ар	С	L,T	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	1					3							
CO2		2							1	3				
CO3	2		3					2	2					

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK4VA	UK4VACMAT201						
Course Title	Mathen	natics in Na	ture					
Type of Course	VAC							
Semester	IV							
Academic Level	200-299	200-299						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	3	3			3			
Pre-requisites	Basic c	oncepts in N	Aathematics					
Course Summary	the gol in vario nature. deeper	This course explores two fascinating mathematical concepts: the golden ratio and fractals. Both concepts are prevalent in various fields, including mathematics, art, architecture, and nature. Through this course students will be able to gain a deeper appreciation for the beauty and complexity inherent in mathematical patterns and structures.						

Module	Unit	Contents	Hrs				
Ι		Introduction to Golden Ratio	10				
	1	Introduction - Chapter 1 of Text [1].					
	2	Basic Properties of Golden Ratio - Chapter 2 of Text [1]					
II		Golden Ratio and Fibonacci Numbers					
	3	Fibonacci Numbers - Chapter 5 of Text [1].					
	4	Lucas numbers and generalized Fibonacci numbers- Chapter 6 of Text [1].					
	5	Continued Fractions and Rational Approximations - Chapter 7 of Text [1].					

Module	Unit	Contents	Hrs
III		Fractals	10
	6	Introduction - Section 11.0 of Text [2]	
	7	Countable and Uncountable Sets - Section 11.1 of Text [2]	
	8	Cantor Sets - Section 11.2 of Text [2]	
IV		Different Dimensions	12
	9	Dimension of Self-similar Fractals - Section 11.3 of Text 2	
	10	Box Dimension - Section 11.4 of Text [2]	
	11	Pointwise and Correlation Dimension - Section 11.5 of Text	
		[2]	

Textbooks

- 1. Richard A, Dunlap, *The Golden Ratio and Fibonacci Numbers*, World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore, 2003.
- 2. Steven H. Strogatz, *Nonlinear Dynamics and Chaos With Applications to Physics, Chemistry, Biology and Engineering*, Second Edition, CRC Press Taylor and Francis Group 6000 Broken Sound Parkway, 2018.

References

- 1. Barnsley M F, Fractals Everywhere, Dover Publication, Newyork, 3rd Edition, 2012.
- 2. Coxetcr H.S.M., Introduction to Geometry, Witey, New York, 1961.
- 3. Falconer K.J, *The Geometry of Fractal Sets*, Cambridge University Press, Cambridge, 1986.
- 4. Holden, A. 1971 *Shapes, Space and Symmetry*, Columbia University Press, New York, 1971.
- 5. Kenneth Falconer, *Fractal Geometry Mathematical Foundation and Application*, Third edition, Wiley, 2014.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of Golden ratio	PSO1	U	F, C	L	
CO 2	Understand the concept of Fractals	PSO1	U	F,C	L	
CO 3	Identify instances of the Golden Ratio and fractals in natural and man-made phenomena	PSO3, PSO4, PSO6, PO6	Ap, An, E, C	F, C, M	L	
CO 4	Construct mathematical models of phenomena exhibiting the Golden Ratio and fractal patterns	PSO3, PSO4, PSO6, PO6	Ap, An, E, C	F, C, M	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	2	-	-	-	-	-	-	_	-	-	-	-	-	_
CO3	-	-	3	3	-	2	-	-	-	-	-	2	-	-
CO4	-	-	3	3	-	2	-	-	-	-	-	2	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark			\checkmark

Discipline	Mathen	natics						
Course Code	UK5DS	UK5DSCMAT300						
Course Title	Differen	ntial Equation	ons and Vec	tor Calculus	5			
Type of Course	DSC							
Semester	V							
Academic Level	300-399)						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	4	4 Hours	-	1	5			
Pre-requisites	1. Diffe	erential Calc	culus 2. In	ntegral Calc	ulus 3. Vector Calculus			
Course Summary	This co	urse will int	troduce the	fundamenta	l concepts of ODE,			
	differen	t technique	s for solving	g these ODE	S's and gives fundamental			
	concept	s of Vector	Calculus in	cluding Vec	tor Field, Line Integrals,			
	Surface	Integrals a	nd Volume l	Integrals. Al	so it explains the			
	physica	l interpretat	tion of Gree	n's Theoren	n, Stoke's Theorem			
	and Div	vergence Th	eorem.					

Module	Unit	Contents	Hrs						
Ι		First Order Ordinary Differential Equations	18						
	1	Basic Concepts, solution, Initial Value Problem, Modelling							
	2	2 Separable ODE, reduction to separable form, exact ODEs and integrating factors, reducing to exact form							
	3	Homogeneous and non homogeneous linear ODEs							
	4	4 Special equations like Bernoulli equation, orthogonal trajectories, understanding the existence and uniqueness of solutions theorem.							
		Chapter 1: Section 1.1, 1.3, 1.4, 1.5, 1.6, 1.7 of Text [1]							

Unit	Contents	Hrs
	Higher Order Ordinary Differential Equations	18
5	Homogeneous linear ODE of second order, initial value	
	•	
	× ·	
7	· · · · · · · · · · · · · · · · · · ·	
8		
	_	12
		12
9		
10		
10		
11		
11		
12		
12		
	· · · ·	
	Vector Calculus- II	12
13	Defining and evaluating surface integrals, their applications	
14		
15		
-	theorems.	
Chapt	er 15: Section 15.5, 15.6, 15.7, 15.8 of Text [2]	I
_	cal sessions can be given using suitable software like sagemath (not	15
Practi	cal sessions can be given using suitable software like sagematif (not	10
	5 6 7 8 9 10 11 12 13 14 15 16	Higher Order Ordinary Differential Equations5Homogeneous linear ODE of second order, initial value problem, basis, and general solutions, finding a basis if one solution is known, Reduction of order, homogeneous linear ODE with constant coefficients (various cases that arise depending on the characteristic equation)6Differential operators, Euler-Cauchy Equations7Existence and uniqueness of solutions w.r. to Wronskian, solving non-homogeneous ODE via the method of undetermined coefficients.8Applications of techniques, solution by variation of parameters.Vector Calculus 19Vector Fields, Inverse square field, Gradient field, Conservative fields and potential function, Divergence and Curl, ∇ -operator, The Laplacian ∇^2 10Integrating a function along a curve (line integrals), Integrating a vector field along a curve, defining work done as a line integral.11Line integrals along piece wise-smooth curves, integration of vector fields and independence of path,12Fundamental theorem of line integrals, line integrals along closed paths, test for conservative vector fields, (<i>excluding conservative vector fields in 3- Space, and conservation of Energy</i>) Green's theorem and applications(<i>without proof</i>).Chapter 15: Section 15.1, 15.2, 15.3, 15.4 of Text [2]Vector Calculus- II13Defining and evaluating surface integrals, their applications14Orientation of surfaces, evaluating flux integrals15The divergence theorem16Gauss' Law, Stoke's theorem, applications of these

Textbooks

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition Wiley, 2018.
- 2. Howard Anton, Irel Bivens, Stephens Davis, *Calculus* 10th Edition Wiley, 2012.

References

- 1. Ian Sneddon, Elements of Partial Differential Equations, Mc Graw-Hill, 2013.
- 2. Peter. V. O Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.
- 3. M. D. Raisinghaniya, Ordinary and Partial Differential Equations, S Chand 18th Edition, 2008.
- 4. G. F. Simmons, *Differential Equations with Applications and Historical Notes*, Tata McGraw-Hill, 2003.
- 5. G. B. Thomas, R. L. Finey, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Classify ordinary differential equations based on their order, linearity, and homogeneity.	PSO1, 2	U, Ap	F,C	L	
CO 2	Analyze the behavior of solutions to differential equations	PSO 2,3	U, An	C,P	L	
CO 3	Develop problem-solving skills through solving a variety of vector integration problems	PSO 1,2,3,4	An, E	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	3	3	3	3	3	2	1	-	-	1		
CO2	3	3	3	3	3	2	3	3	2	-	-	1		
CO3	3	3	3	3	2	3	3	3	2	-	-	1		

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK5DS	SCMAT301						
Course Title	Fundan	nentals of R	eal Analysis	s - I				
Type of Course	DSC							
Semester	V	V						
Academic Level	300-39	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	4	4 hours			4			
Pre-requisites	1. Func	1. Functions 2. sequences, 3. Convergence of sequences						
Course Summary	This co	This course provides basics of real analysis						

Module	Unit	Contents	Hrs
Ι		12	
	1	Introduction to Infinite Series	
	2	Absolute Convergence	
	3	Tests for Absolute Convergence	
	Chapt	ter 3: Section 3.7 of Text [1]	·
II		Limits	18
	4	Limits of Functions	
	5	Limit Theorems	
	6	Some Extensions of the Limit Concept	
	Chapt	ter 4 of Text [1]	·
III		Continuous Functions	18
	7	Continuous Functions	
	8	Combinations of Continuous Functions	

Module	Unit	Contents	Hrs								
	9	Continuous Functions on Intervals									
	10	Monotone and Inverse Functions									
	Chapt	Chapter 5: Section 5.1, 5.2, 5.3, 5.6(Sub-section 5.6.1-5.6.5) of Text [1]									
IV		Differentiation 12									
	11	The Derivative									
	12	The Mean Value Theorem									
	13	L'Hospital's Rule									
	14	Taylor's Theorem									
	Chapt	er 6: Section 6.1, 6.2, 6.3, 6.4 (Sub-section 6.4.1-6.4.4) of Text	:[1]								

Textbook

1. Robert G. Bartle, Donald R. Sherbert, Introduction to Real Analysis, Fourth Edition, John Wiley & Sons, Inc, 2011.

References

- 1. H Anton, I Bivens, S Davis, Calculus, 10th Edition, John Wiley & Sons, 2015.
- 2. W. Rudin, Principles of Mathematical Analysis, Second Edition, McGraw-Hill, 2017.
- 3. Stephen Abbot, Understanding Analysis, 2^{nd} Edition, Springer, 2015.
- 4. Terrence Tao, Analysis I, Hindustan Book Agency, 2015.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Define the theory of real series and apply the theory to check the convergence or divergence of series.	,6 PSO1, PSO2, PSO4, PSO5, PSO6, PO1	R, U, Ap, An, E, C	F, C	L	
CO 2	Describe the concepts related to the limit of functions.	PO 1,6 PSO1, PSO2, PSO4, PSO5, PSO6	R, U, Ap, An, E, C	F, C	L	
CO 3	Understand the concepts of continuity and differentiability more rigorously than what we have done in the previous courses.	PSO1, PSO2, PSO4, PSO5, PSO6, PO1, PO6	R, U, Ap, An, E, C	F, C	L	
CO 4	Understand the fundamental properties of continuous functions on intervals and monotone functions.	PSO1, PSO4, PSO5, PO1	R, U, An	F, C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3		2	2	1	3					2		
CO2	3	3		2	3	1	3					1		
CO3	3	3		3	2	2	3					2		
CO4	3			1	2		3							

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark			\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK5DS	UK5DSCMAT302						
Course Title	Abstrac	t Algebra						
Type of Course	DSC							
Semester	V							
Academic Level	300-399	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	4	4	-	1	5			
Pre-requisites	Groups	and Subgro	oups					
Course Summary	homom of Ring of quot factoriz							

Module	Unit	Contents	Hrs						
Ι		Homomorphisms and Factor Groups	10						
	1	Factor Groups, Factor Group Computations and Simple							
		Groups. (Proof of theorems in the sections 'Simple Groups							
		and Commutator Subgroups' can be excluded)							
	Chapt	er 3: Sections 12,13 of Text [1]							
II		Rings and Fields	20						
	2	Rings and Fields, Integral Domains, Fermat's and Euler's							
		Theorems							
	Chapt	er 5: Sections 22, 23, 24 of Text [1]	·						

Module	Unit	Contents	Hrs							
III		Constructing Rings and Fields	20							
	3	The field of quotients of an integral domain, Rings of								
		polynomials, factorization of polynomials over a Field. (The								
		part 'our basic goal' in section 27 and proof of theorem 28.16								
		in section 28 of Text [1] are excluded)								
	Chapt	Chapter 6: Sections 26, 27, 28 of Text [1]								
IV		Homomorphisms and Factor Rings								
	4	Homomorphisms and factor rings, Prime and Maximal								
		Ideals. (The part 'A preview of our basic goal' In section								
		31 can be excluded)								
	Chapt	er 6: Sections 30,31 of Text [1]								
Practical	Assig	nments can be given using Sagemath for finding the problems in	15							
	the at	ove modules. (Sections 10,11,16,17,18 of Text [2])(not meant for								
	exami	nation purpose)								

Textbooks

- 1. John B. Fraleigh, Neal.E.Brand A First Course in Abstract Algebra, Eighth Edition, Pearson Education, Inc., 2022.
- 2. Thomas.W. Judson, Stephen. F. Austin *Abstract Algebra Theory and Applications*, State University, Robert A Beezer, *Sage Exercises for Abstract Algebra*, University of Puget Sound, 2020.

References

- 1. I. N. Herstein, Topics in Algebra, Second Edition, Wiley, 2006.
- 2. Joseph. A. Gallian, *Contemporary Abstract Algebra*, Eighth Edition, Brroks/cole Cengage Learning, 2012.
- 3. Michael Artin, Algebra, Second Edition, Pearson Education, 2023.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the fundamental algebraic structures and their properties	PSO 1,2, PO1, 3, 6, 7, 8	U	F, C		
CO 2	Explore the relationship between different structures	PSO 4, 5, PO1, 2, 3, 6, 7, 8	Ap	С, Р		
CO 3	Develop new structures based on given structures	PSO 3, 4, PO1, 2, 3, 6, 7, 8	С	Р, М		
CO 4	Apply the concept of algebraic structures to solve problems	PSO 1, 3, 6, PO1, 2, 3, 6, 7, 8	Ap	Р, М		

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	1	2	2	3	3	3	-	1	-	-	2	1	1
CO2	1	3	1	2	1	1	1	1	3	-	-	2	1	1
CO3	1	3	2	3	2	3	1	3	3	-	-	3	1	1
CO4	1	1	3	3	2	1	1	3	3	-	_	3	1	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- End Semester Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mather	Mathematics						
Course Code	UK5DS	UK5DSCMAT303						
Course Title	Advanc	ed Mathem	atics for So	cial Science	s			
Type of Course	DSC							
Semester	V							
Academic Level	300-39	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	4	4	-	-	4			
Pre-requisites	Knowle	edge of Mat	rices, Calcu	lus and				
	Basics	of Linear Pr	ogramming					
Course Summary	integral	This course includes Determinants and Matrices, Differential and integral Calculus, Differential and Difference Equations, Linear Programming						

Module	Unit	Contents	Hrs							
Ι		Determinants and Matrices	15							
	1	Determinants and their properties, Evaluation of higher order								
		Determinant- Laplace method, Hessian determinant								
	2	2 Inverse of 3x3 matrix, rank of a matrix, Solution of simultaneous equations by Cramer's rule and inverse method								
	3	Uses of matrices- Input- output models(static and dynamic,								
		open and closed models)- Hawkin- Simon condition								
	Topic	s of this section can be found in Chapter 11: Sections 11.1, 11.2	, 11.3,							
	11.4,	11.5, 11.6, 11.7, 11.8 and 11.9. Chapter 12: Sections 12.2 and 1	2.6 of							
	Text [2], Section 5.7 of Text [1]								
II		Differential and integral Calculus	15							
	4	Derivatives of multivariable functions, unconstrained								
		optimization, constrained optimization by Lagrange method								

Module	Unit	Contents	Hrs					
	5	Uses of derivatives in economics- slope, concavity and						
		convexity of economic functions, elasticity of demand,						
		equilibrium of the consumer and the firm, monopoly and						
		discriminating monopoly.						
	6	Rules of integration, definite integrals and their properties.						
		Uses of integrals in Economics- the stock of capital, consumer's and producer's surplus						
	Tonics	s of this section can be found in Chapter 5: Sections 5.1, 5.2, 5.	3 5 4					
	-	Chapter 4: Sections 4.1,4.2,4.3, Chapter 14: Sections 14.1, 14.2						
		14.6, Chapter 15: Sections 15.1, 15.2, 15.3, 15.4, and 15.8 of T						
III		Differential and Difference Equations	15					
	7	Concept of differential equations , First order linear						
	,	differential equations and their solutions						
	8	Concept of difference equations, solution of first order linear						
		difference equations						
	9	Uses of these equations in economics-dynamic stability,						
		lagged income determination model, Harrod and Cobweb						
		models.						
	Topics of this section can be found in Chapter 16: Sections 16.1, 16.2,							
	16.4, 16.5, 16.6, Chapter 17: Sections 17.1, 17.2, 17.3, 17.4, 17.5, 1							
	Text [2]							
IV		Linear Programming	15					
	10	Basic concepts, Formulation of a linear programming problem, basic LP theorem						
	11	Solution of linear programming problems by graphical and simplex methods, degenerate problem						
	12	Duality theorem and its interpretation, shadow prices and their uses						
	Topics	s of this section can be found in Chapter 2: Sections 2.1, 2.2, C	hapter					
	3: Sec	ctions 3.1, 3.3, 3.4 (Subsection 3.4.1 and 3.5.1), Chapter 4: Se	ections					
	4.1, 4.2 (Subsection 4.2.2, 4.2.3, 4.2.4), 4.3 (Subsection 4.3.1, 4.3.2) of							
	[3]							

Textbooks

- 1. Chiang, A.C., Fundamental Methods of Mathematical Economics, McGraw Hill, NewYork, 2008.
- 2. Dowling, E.T., Introduction to mathematical Economics, Schaum's Outline Series, McGraw Hill, 2007.
- 3. Taha, H.A., Operations Research- An introduction, Prentice hall of India, New Delhi, 2008

References

- 1. Allen, R.G.D., Mathematical Analysis for Economists. New Delhi: AITBS Publishers, 2008.
- 2. Archibald, G.C and Lipsey, R.G (), Introduction to mathematical Treatment of Economics, Wiedenfeld Nicholson, London, 1984.
- 3. Baumol, W.J., Economic Theory and Operations Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 2003.
- 4. Michael Hoy and L. John, Mathematics for Economics, PHI, New Delhi, 2004.
- 5. Musthafi, C.K., Operations Research: Methods and Practice, Wiley Eastern, New Delhi, 2011.
- 6. Taro Yamane, Mathematics for Economists : An Elementary Survey: Prentice Hall of India Pvt. Ltd., New Delhi, 2001.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concepts of determinanats and matrices	PSO1, PO1, 4	U	F,C	L	
CO 2	Analyse and solve Different types of differential equations and difference equations	PSO2, 3, PO2	An, U	C,P	L	
CO 3	Applications of matrices, determinanats, differential and integral calculus	PSO5, PO2, 3	Ap	C,M	L	
CO 4	Solving LPP graphically	PSO3, PO3	Е	C, P	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	3	2	2	3	1	-	1	2
CO2	-	3	3	-	-	-	2	3	2	-	-	1	-	2
CO3	-	-	-	-	3	-	2	3	3	-	-	-	1	1
CO4	-	-	3	-	-	-	2	2	3	2	_	1	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Descipline	Mathen	Mathematics							
Cours Code	UK5DS	UK5DSEMAT300							
Course Title	Interme	Intermediate Graph Theory							
Type of Course	DSE	DSE							
Semester	V	V							
Academic Level	300-39	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	4	4	0	1	5				
Pre-requisites	Basic c	oncepts in C	Graph Theor	у					
Course Summary	This co	urse is deve	loped to pre	pare the stu	dents studying graph				
	theory t	to develop a	clear under	standing of	Graph Theoretic concepts				

Module	Unit	Contents	Hrs							
Ι		Trees	16							
	1	Trees								
	2	Cut Edges and Bonds								
	3	Cut Vertices								
	4	Cayley's Formulae - Applications (Chapter 2: Section 2.1,								
		2.2, 2.3, 2.4 of Text [1])								
II		Connectivity								
	5	Connectivity								
	6	Blocks - Applications								
	7	Construction of Reliable Communication Networks								
		(Chapter 3: Section 3.1, 3.2, 3.3 of Text [1])								
III		Matching	16							
	8	Matchings								
	9	Matchings and Coverings in Bipartite Graph								

Module	Unit	Contents	Hrs					
	10	Perfect Matchings - Applications (Chapter 5: Section 5.1,						
		5.2, 5.3 of Text [1])						
IV		Edge Coloring	12					
	11	Edge Chromatic Number						
	12	Vizing's Theorem, Application						
	13	The Time Tabling Problem (Chapter 6: Section 6.1, 6.2, 6.3						
		of Text [1])						
Practical	Using	Using suitable software familiarize the students with the concepts studied in						
	this co	Durse						

Textbook

1. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, London, McMillan Press, 1976.

References

- 1. V. K. Balakrishnan, Schaum's Outline of Graph Theory, McGraw Hill, 1997
- 2. Douglas Brent West, Introduction to Graph Theory, Pearson, 2018
- 3. John Clark, Derek Allan Holton, A First Look at Graph Theory, World Scientific, 1995
- 4. Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Dover Publications Inc. Mineola, New York, 2017

E- resources

1. https://www.sagemath.org/help.html

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Students get motivated to study the concept of trees, connectivity, matching and edge coloring	PSO 1, 2	R,U	F,C	L	
CO 2	Students develop basic understanding of the concept of trees, connectivity, matching and edge coloring	PSO 1, 2, 3	R,U	F,C	L, T	
CO 3	Students develop skill in solving various problems containing the concept of trees, connectivity, matching and edge coloring	PSO 3, 4, 5	Ap, An, E	F,C, P, M	Т	
CO 4	Students apply the acquired knowledge and skills in new situations	PSO 3, 4, 5, 6	Ap, An, E	F,C, P, M	Т	Р

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	2	1	0	1	1	1	1	2	2	3	0	1
CO2	2	3	3	2	2	1	2	2	2	3	3	2	1	2
CO3	1	3	3	3	3	3	3	3	2	2	2	2	1	1
CO4	1	1	3	3	3	3	3	3	3	3	3	3	2	2

(0 - Nill, 1 - Slightly/Low, 2 - Moderate/Medium, 3 - Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathem	Mathematics							
Course Code	UK5DS	UK5DSEMAT301							
Course Title	Advanc	Advanced Python Programming							
Type of Course	DSE								
Semester	V								
Academic Level	300 - 3	300 - 399							
Course Details	Credit	Credit Lecture Tutorial Practical Total							
		per week	per week		Hours per week				
	4	3		2	5				
Pre-requisites	calculu	s. 2. Famili nming lang	arity with p	rogrammin	including algebra and g concepts and Python re in signal processing				
Course Summary	and to will ga coverin signal j visualiz projects problem	ols for da in practica g modules processing, cation technology, learners ns, analyzir	ta analysis l skills to on SciPy fo Pandas for niques. T will develop	and visu tackle real or mathema data manip hrough ha proficience latasets, an	-world challenges by tical problem-solving, ulation, and advanced nds-on exercises and cy in solving complex d creating compelling				

Module	Unit	Contents	Hrs
Ι		Introduction to SciPy	15
	1	SciPy Introduction	
	2	SciPy for solving Linear Algebraic problems	
	3	SciPy differentiation and integration (including numerical	
		integration)	

Module	Unit	Contents	Hrs					
	4	Interpolation						
	5 SciPy Clustering- including Vector quantization, k-mean							
		and Hierarchical clustering.						
	Chapter 1: SciPy Introduction, Chapter 3: SciPy for linear algebra, Chap							
		4 SciPy for Data Mining (Interpolation, integration and Ordinary differential						
	-	equations only) Chapter 6 SciPy for Data Mining (Clustering section only),						
	of Tex		•					
II		SciPy for Signal Processing	20					
	6	Discrete Fourier Transforms						
	7	Signal construction						
	8	Filters.						
	Chapter 5: SciPy for Signal Processing of Text [1]							
III	I	andas data frame and data-frame related operations						
	9	Reading and writing csv and Excel files						
	10	Exploratory data analysis						
	11	Data preparation and preprocessing.						
	Chapter 1: Empowering data analysis with pandas, Data cleansing, and Data							
	operations of Text [2]							
IV		Advanced Visualization	20					
	12	Controlling the properties of a plot						
	13	Combining multiple plots						
	14	Styling your plots						
	15	Creating various advanced visualizations.						
	Chapt	Chapter 4: Making Sense of Data through Advanced Visualization of Text						
	[2]	-						

Textbooks

- 1. Blanco-Silva, F. J., Learning SciPy for numerical and scientific computing, Packt Pub, 2013
- 2. Madhavan, S., Mastering python for data science. Packt Publishing Ltd, 2015

References

- 1. David Beazley, Brian K. Jones, Python Cookbook, O'Reilly, 2013.
- 2. Wes McKinney, Python for data Analysis, O'Reilly, 2013.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the basics of SciPy	PSO1, PO7	U	F,C	L	Р
CO 2	Create useful application programs	PSO5, PO3	Ap,C	Р	L	Р
CO 3	Create different plots for data visualisations	PSO2, PO7	Ap,An		L	Р

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1												3	
CO2					3				3					
CO3		3	-	-										

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam (Theory and Practicals)

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3		\checkmark		

Discipline	Mathen	Mathematics							
Course Code	UK5DSEMAT302								
Course Title	Special	Special Functions							
Type of Course	DSE	DSE							
Semester	V	V							
Academic Level	300-399	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week per week per week Hours per weel							
	4 4 Hours 4								
Pre-requisites	1.Derivatives 2. Integral Calculus								
	3. Linear Differential Equations								
Course Summary	This course will enable the students to understand the properties of								
	special	special functions like Legendre Function, Bessel's Function etc.							

Module	Unit Contents							
Ι	Beta and Gamma Functions							
	1	Factorial function, Gamma Function, Recursion relation						
	2	Gamma function of negative numbers, some important formulas involving gamma functions						
	3	Beta functions, Beta functions in terms of Gamma functions						
	Chapter 11: Sections 1, 2, 3, 4, 5, 6, 7 of Text [2]							
II		Series Solutions of Ordinary Differential Equations	18					
	4	Power series method						
	5 Legendre's Equation, Legendre Polynomials							
	6 Frobenius Method, Indicial equation, Indicating the form o							
	solutions, Typical applications							
	Chapter 5: Sections 5.1, 5.3, 5.4 of Text [1]							

Module	Unit	Contents	Hrs						
III		Bessel's Function- I	18						
	7	Bessel's Equation, Bessel's Function, Bessel's functions for							
		any $v \ge 0$, General Solution for non-integer v							
	8	Discovery of properties from series							
		Chapter 5: Sections 5.5 of Text [1]							
IV		Bessel's Function- II	12						
	9	Bessel Functions of the second kind							
	10	Sturm-Liouville Problems, Orthogonal Functions							
		Chapter 5: Sections 5.6, 5.7 of Text [1]							

Textbooks

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition Wiley, 2014.
- 2. Mary L Boas, *Mathematical Methods in the Physical Sciences*, 3rd Edition, Wiley, 2006.

References

- 1. M. D. Raisinghaniya, Ordinary and Partial Differential Equations, S Chand 18th Edition, 2008.
- 2. G. F. Simmons, *Differential Equations with Applications and Historical Notes*, Tata McGraw-Hill, 2003.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Explain the concepts behind Beta Gamma Function, Bessel's Differential Equations and Legendre Differential equations.	PSO1, 2	U, Ap	F,C	L	
CO 2	Interpret the physical significance of Bessel Functions and Legendre polynomials.	PSO 2,3,4	Ap, An	C,P	L	
CO 3	Analyse the properties of special functions	PSO 3,4	An, E	P	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create)

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	3	3	3	2	2	3	3	2	-	-	1		
CO2	2	3	3	3	2	2	3	3	1	-	-	-		
CO3	1	3	3	3	2	2	3	3	3	-	-	-		

Mapping of CO with PSOs and POs

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK5DS	UK5DSEMAT303							
Course Title	Optimiz	Optimization Techniques							
Type of Course	DSE	DSE							
Semester	V	V							
Academic Level	300-39	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	4	4			4				
Pre-requisites	Probabi	ility Distrib	utions (Poiss	son and Exp	ponential)				
Course Summary	followin such as and so malfund in line, in a wa to waiti will be sequend	ng, minimiz the total c on, how li- ction. He ca including th iting line, a ing jobs the processed a	ing some m completion nes form, h an also exan a arrival pro a systematic reby determ and decomp	easure of pe time for the low they fu nines every ocess and the procedure nining the se osing a mul	he clear ideas of the erformance of a system e project, overall cost nction, and why they component of waiting e number of customers in assigning priorities equence in which jobs distage problem into a as and hence finding an				

Module	Unit	Contents	Hrs					
Ι		Network Scheduling by PERT/CPM						
	1	Network and Basic Components						
	2	Logical Sequencing						
	3	Rules of Network Construction						

Module	Unit	Contents	Hrs						
	4	Critical Path Analysis							
	5	Probability Consideration in PERT							
	Chapt	er 21: Sections 21.1, 21.2, 21.3, 21.4, 21.5 and 21.6 of Text [1]							
II		Queueing Theory	15						
	6	Queueing system							
	7	Elements of queueing system-characteristics of queueing							
		system							
	8	Probability distributions in queueing system							
	9	Pure Birth death process							
	10 Pure Birth death process								
	11Poisson queueing system								
	Chapt	er 20: Sections 20.2,20.3,20.5,20.6 to 21.6 and 20.8 of Text [1]							
III		Sequencing Problem	15						
	12	Problem of Sequencing							
	13	Basic terms							
	14	Processing n jobs through two machines							
	15	Processing 2 jobs through k machines							
	16	Maintenance crew scheduling							
	Chapt	er 12: Sections 12.2, 12.3, 12.4, 12.5, 12.6 and 12.7 of Text [1]							
IV		Dynamic Programming	15						
	17	Minimum path problem							
	18	Single additive constraint additively separable return							
	19	Single multiplicative constraint additively separable return							
	20	Single additive constraint multiplicatively separable return							
	Chapt	er 10: Sections 2, 3, 4 and 5 of Text [2]							

Textbooks

- 1. Manmohan, PK Gupta and Kanti Swarup Operations research 11th Edition, Sultan Chand & Sons, 2007
- 2. K V Mital and C Mohan, Optimization methods in Operations research and system analysis 3rd edition, New Age International, 1996.

- 1. Humdy A Taha, Operations Research an Introduction, 10th edition -Pearson, 2021.
- 2. J K Sharma, Operations Research Theory and Applications, 6th Edition, 2016.
- 3. G Srinivasan, Operations Research Principle and Applications, 2nd Edition, PHI Learning, 2010.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Evaluate project completion time in different Network problems	PSO1, 2	U,E	F,P		
CO 2	Distinguish between various models in Queues	PSO3 ,4	U,An	F,P		
CO 3	To find optimal sequences in various sequencing problems	PSO4	U,E	F,P		
CO 4	Apply Techniques of D.P to solve problems	PSO3	R,An	F,P		

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1			2				2		1				
CO2	2				3	3				2				
CO3		3	-	1							3			
CO4			2				2					3		

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark			\checkmark

Discipline	Mathen	natics							
Course Code	UK5DS	UK5DSEMAT304							
Course Title	Differen	Difference Equations and Z-Transforms							
Type of Course	DSE	DSE							
Semester	V	V							
Academic Level	300-399	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	4	4			4				
Pre-requisites	Sequen	ces, Series a	and their Li	nits					
Course Summary	This pa	per explore	s the relation	nship betwe	en difference equations				
	and Z ti	ransforms, t	wo fundame	ental concep	ots in discrete-time signal				
	process	ing and syst	tem analysis	s. Difference	e equations are				
	recurren	nce relation	s that descri	be the behav	vior of				
	discrete	e-time system	ms, recurren	ce relations	that describe the behavior				
	of discr	ete-time sys	stems, while	Z transform	ns provide a powerful tool				
	for anal	yzing such	systems in t	he frequenc	y domain.				

Module	Unit	nit Contents Hr								
Ι		The Difference Calculus								
	1	Definitions								
	2	Operators Δ and E								
	3	3 Elementary Difference Operators								
	Chapt	Chapter 1: Section 1.2, 1.5, 1.6 of Text								

Module	Unit	Contents	Hrs						
II	S	Solution of Linear Homogeneous Difference Equations	15						
	4	Introduction							
	5	Homogeneous Equations							
	6	Construction of a Difference Equation having Specified							
		Solutions							
	7	Relationship Between Linear Difference and Differential							
		Equations							
	Chapt	er 4: Section 4.1, 4.2, 4.3, 4.4 of Text							
III		Inhomogeneous Equations	15						
	8	Methods of Undetermined Coefficients							
	9	Operator Methods							
	Chapt	er 4: Section 4.5, 4.6 of Text							
IV		Z-transforms	15						
	10	Z-transforms Method							
	Chapt	er 4: Section 4.7 of Text							

Textbook

1. Ronald E Mickens, *Difference Equations, Theory, Applications and Advanced Topics*, Third Edition, CRC Press, New York, 2015.

- 1. S Goldberg, Introduction to Difference Equations, Firs, Dover Publications, 1986.
- 2. V Lakshmikantham, Donato Trigiante, *Theory of Difference Equations: Numerical Methods and Applications*, Second Edition, Marcel Dekker, Inc, New York, 2002.
- 3. Saber N Elaydi, An Introduction to Difference Equations, Third Edition, Springer International Edition, New Delhi, 2008.
- 4. Sudhir K Pundir, Rimple Pundir, *Difference Equations*, Pragati Prakashan, First Edition, Meerut, 2006.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of difference calculus	PSO1, 2, PO1	U	F,C	L	
CO 2	Know to classify difference equations	PSO3, PO2	R, U	Е	L	
CO 3	Learn to solve linear difference equations with constant coefficients	PSO4, 5, 6, PO6	Ap	С, Р, Е	L	
CO 4	Understand the concept of Z- transform	PSO1, 2, PO6	R, U	C, E	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	2					2							
CO2			2					2						
CO3				3	3	2						2		
CO4	2	2										2		

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK5SE	UK5SECMAT300						
Course Title	Program	nming with	Python					
Type of Course	SEC							
Semester	V	V						
Academic Level	300-39	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	3	2	-	2	4			
Pre-requisites	Basic c	Basic computer programming skill						
Course Summary	This co	urse offers l	pasics of py	thon progra	mming			

Module	Unit	Contents	Hrs				
Ι		Introduction to Python	10				
	1	Installing Python - Basic Interactive Mode - IDLE - Quick Python Review (Chapter 2,3 of Text 2)					
II		The Essentials of Python					
	2	Absolute Basics - Lists, tuples and sets - Strings - Control Flow - Functions - Reading and writing files (Chapter 4,5 (except 5.6, 5.8),6 (except 6.5-6.9),8, 9.1-9.5 (except 9.3) and 13.1-13.4 of Text 2)					
III		Working with numbers	15				
	3	Basic Mathematical Operations - Working with different kinds of numbers - Getting user input - Math Programmes - The Programming challenges mentioned in Chapter 1 of Text 1					

Module	Unit	nit Contents							
IV		Visualising Data with Graphs:	15						
	4	Working with Lists and Tuples - Creating Graphs with Matplotlib (Chapter 2 of Text 1 except "Plotting with Formula")							

Textbooks

- 1. Amit Saha, Doing Math with Python, No Starch Press, 2015.
- 2. Naomi Ceder, The Quick Python Book, Manning, 2018.

References

- 1. E Balagurusamy, Introduction to computing and problem solving using Python, Mc Graw Hill Education, 2017.
- 2. Kenneth A Lambert, Fundamentals of Python, First Programs, 2nd Edition, Cengage, 2019.

E- resources

1. https://www.python.org/

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the basics of python programming	PSO1, PO7	U	F,C	L	Р
CO 2	Create useful python programs	PSO5, PO3	Ap,C	Р	L	Р
CO 3	Apply to the subject and get more insight to the mathematical concepts	PSO2	Ар	М	L	Р

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1												3	
CO2					3				2					
CO3		3	-	-								• • • • • •		

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam (Theory and Practical)

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3		\checkmark		

Descipline	Mathen	Mathematics							
Cours Code	UK5SE	UK5SECMAT301							
Course Title	Program	Programming with Scilab							
Type of Course	SEC								
Semester	V	V							
Academic Level	300-39	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	3	2	0	2	4				
Pre-requisites	Basic c	omputer kn	owledge						
Course Summary	in Scil	This course provides an introduction to programming in Scilab, focusing on data manipulation, analysis, and visualization.							

Module	Unit	Contents	Hrs					
Ι		Matrices and Vectors	15					
	1	Creating matrices, type of matrices, matrix operations (Section 1.1 to 1.5 of Text [1])						
	2	multiplication, dot product and cross product (Section 1.5 of Text 1)						
	3	Applications: Changing Cartesian to cylindrical and spherical, Orthogonal vectors, center of mass of a system (Sub sections 1.6.1 to 1.6.4 of Text [1])						
II		Creating plots	15					
	4	Formatting the plot: axes, lines and markers, Legend, (Sections 2.1 to 2.6 of Text [1])						
	5	Applications: Trajectory of a projectile, Superposition of collinear harmonic oscillations, Beats (Subsections 2.7.1 to 2.7.3 of Text [1])						

Module	Unit	Contents	Hrs						
III		Least square curve fitting	15						
	6	Fitting Linear data (Section 3.2 of Text [1])							
	7	7 Fitting Non-linear data (Section 3.3 of Text [1])							
	8	The datafit function (Section 3.5 of Text [1])							
	9	Applications: Refractive index and spring constant							
		(Subsections 3.6.1 and 3.6.2 of Text [1])							
IV		Integration and differentiation	15						
	10	The scilab functions intg and integrate, Trapezoidal rule							
		(Section 5.2 of Text [1])							
	11	Simpson's 1/3 and 3/8 rule (Section 5.4 and 5.5 of Text [1])							
	12	Applications: Integration in cylindrical coordinates (Sub section 5.7.1 of Text [1])							

Textbook

1. Jain, Chetana, Computing in Scilab. Cambridge University Press, 2023.

- 1. Bunks, Carey, Chancelier, J. P., Delebecque, F., Goursat, M., Nikoukhah, R., and Steer, S. Engineering and scientific computing with Scilab. Springer Science & Business Media, 2012.
- 2. Nagar, Sandeep, and Sandeep Nagar. Introduction to Scilab. Apress, 2017.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the syntax and use of scilab.	PSO2, PSO4 PO7	U	F,C	L	Р
CO 2	Create charts and plots using scilab.	PSO2, PSO5	R, U	Р	L	Р
CO 3	Apply scilab for curve fitting	PSO3 PO6	С	Р	L	Р
CO 4	Apply scilab for integration and differentiation.	PSO1	А	М	L	Р

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1		3		2									3
CO2		3			3								
CO3			3									3	
CO4	3							4					

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam (Theory and Practical)

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK6DS	UK6DSCMAT300							
Course Title	Real A	nalysis - II							
Type of Course	DSC	DSC							
Semester	VI	VI							
Academic Level	300-39	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	4	4 hours			4				
Pre-requisites	1. Limi	ts 2. Con	tinuity 3.	Differentia	tion				
Course Summary	This co	urse include	es Reimann	Integral, Fu	ndamental Theorems,				
	Metric	spaces and	the concepts	Interior, cl	osure and boundary of sets				

Module	Unit	Contents	Hrs
Ι		Riemann Integral	18
	1	Riemann Integral	
	2	Riemann Integrable Functions	
	3	The Additivity Theorem	
	Chapt	ter 7: Sections 7.1, 7.2 of Text [1]	
II		12	
	4	Fundamental Theorem of Calculus (First Form)	
	5	Fundamental Theorem of Calculus (Second Form)	
	6	Lebesgue's Integrability Criterion	
	Chapt	ter 7: Section 7.3 of Text [1]	
III		Metric Space	18
	7	The Definition and Some Examples	
	8	Open Sets in Metric Spaces	

Module	Unit	Contents	Hrs									
	9	Closed Sets in Metric Spaces										
	Chapt	er 3: Sections 3.1, 3.2 of Text [2]. More examples can be fo	und in									
	Refere	Reference Text [4]										
IV		Interior, Closure and Boundary										
	10	Interior of a Set										
	11	Closure of a Set										
	12	Boundary of a Set										
	Chapt	er 3: Sections 3.3 of Text [2]. More examples can be for	und in									
	Refere	ence Text [4]										

Textbooks

- 1. R. G. Bartle, Donald R. Sherbert, Introduction to Real Analysis, Fourth Edition, John Wiley & Sons, Inc., 2011
- 2. Fred H. Croom, Principles of Topology, Dover Publication, 2016

- 1. James R. Munkres, Topology, PHI Learning Private Limited, Second Edition, 2009.
- 2. K. D. Joshi, Introduction to general topology, New Age International (P) Limited, First Edition, 1983.
- 3. S. Kumaresan, Topology of Metric Spaces, Alpha Science International Ltd., 2005.
- 4. W. Rudin, Principles of Mathematical Analysis, Third Edition, McGraw-Hill, 2017.
- 5. Sheldon W. Davis, Topology, Tata Mc Graw-Hill Edition, 2006.
- 6. G.F. Simmons, Topology and Modern Analysis, Mc Graw-Hill, New York, 13th reprint, 2010.
- 7. Stephen Abbot, Understanding Analysis, 2nd Edition, Springer, 2015
- 8. Terrence Tao, Analysis I, Hindustan Book Agency, 2015.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of integrability deeper than what we done in the previous courses.	PO 1,6 PSO 1,2,4,5, 6	R, U, Ap, An, E, C	F, C	L	
CO 2	Get an exposure to the fundamental theorem of calculus.	PO 1,6 PSO 1,4,5	R, U, An	F, C	L	
CO 3	Understand the concept of metric space as an extension of real analysis.	PO 1,6 PSO 1,2,4,5 6	R, U, Ap, An, E, C	F, C	L	
CO 4	To develop the student's ability to handle abstract ideas of mathematics and mathematical proofs.	PO 1,6 PSO 1,4,5	U, An, C	F, C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3		2	2	1	3					2		
CO2	3			2	1		3					1		
CO3	3	3		3	3	2	3					2		
CO4	3		NISH	3	3		3			2 C		3		

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark	\checkmark	\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK6DS	UK6DSCMAT301						
Course Title	Comple	Complex Analysis I						
Type of Course	DSC	DSC						
Semester	VI	VI						
Academic Level	300-39	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	4	4	0	0	4			
Pre-requisites	1. Com	plex Numbe	ers 2. Differ	rentiation 3.	Integration			
Course Summary		This course deals with the study of analytic functions and helps the students to evaluate complex integrals						

Module	Unit	Contents	Hrs							
Ι	Cor	nplex numbers, Complex planes and Complex functions	14							
	1	Complex numbers, their properties, Complex planes (Chapter 1: Section 1.1, 1.2 of Text [1])								
	2	Polar form of complex numbers, Powers and roots, Set of points in the complex plane (Chapter 1: Section 1.3, 1.4 and 1.5 of Text [1])								
	3	Complex functions, Limits and continuity (Chapter 2: Section 2.1, 2.2 (upto common parametric curves in the complex plane line, line segment, ray and circle), 2.6.1, 2.6.2 – upto bounding property of Text [1]								
II		Analytic and Harmonic functions	14							
	4	Differentiability and analyticity (Chapter 3: Section 3.1)								
	5	Cauchy Riemann Equations (Chapter 3: Section 3.2)								

Module	Unit	Contents	Hrs
	6	Harmonic functions (Chapter 3: Section 3.3)	
III		Elementary functions	12
	7	Exponential and Logarithmic functions (Chapter 4: Section	
		4.1), (Exponential mapping, logarithmic mapping and other branches of $\ln z$ are not included)	
	8	Complex powers (Chapter 4: Section 4.2)	
	9	Trigonometric and Hyperbolic functions (Chapter 4: Section 4.3)excluding the subsection trigonometric mapping, analyticity and algebraic properties (mapping is not included)	
IV		Complex integration	20
	10	Real integrals (Chapter 5: Section 5.1),Complex integrals (Chapter 5: Section 5.2 (excluding the proof theorem 5.3)	
	11	Cauchy Goursat Theorem (5.3 (proof Cauchy's theorem is not included)	
	12	Independence of path (Chapter 5: Section 5.4 upto theorem 5.7 including examples)	
	13	Cauchy's integral formulae and their consequences (Chapter 5: Section 5.5 proof of theorems 5.9, 5.10 are not included)	

Textbook

1. Dennis G Zill, Patric D Shanahan, A First Course in Complex Analysis with Applications, Jones and Bartnett Publishers, 2003.

- 1. Anant R Shastri, Basic Complex Analysis of One Variable, Macmillan, 2010.
- 2. Edward B. Saff, Arthur David Snider, *Fundamentals of Complex Analysis with applications to Engineering and Science*, 3rd Edition, Pearson Education India, 2017.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics 10th Edition, Wiley-India, 2018.
- 4. James Ward Brown and Ruel V Churchill, *Complex Variables and Applications*, 8th Edition, McGraw Hill International Edition, 2008.
- 5. John H Mathews and Russel W Howell, *Complex Analysis for Mathematics and Engineering* Sixth Edition, Jones and Bartlett Publishers, 2011.
- 6. B.S Tyagi, Functions of a Complex Variable, Kedar Nath Ram Nath, 2021.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand algebraic operations of complex numbers and complex functions	PSO1, PO1	U,R	С	L	
CO 2	Understand limits, continuity and differentiability of complex functions	PSO1,2, PO1, 2	U,R	С	L	
CO 3	Analyse analytic functions and other elementary functions	PSO 1,2, PO2	U,R, An	Р	L	
CO 4	Apply contour integration, Cauchy's theorem and Cauch's Integral formula to calculate integrals	PSO 3, PO2	Ap, E	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1						2							
CO2	2	2					2	2						
CO3	3	3	-	-				2						
CO4			3					2						

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics						
Course Code	UK6DS	UK6DSCMAT302						
Course Title	Linear .	Algebra						
Type of Course	DSC							
Semester	VI							
Academic Level	300-399	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	4	4	-	-	4			
Pre-requisites	1. Matr	ix operatior	ns & its alge	braic prope	rties			
	2. Sing	ular and No	n-singular N	Aatrices				
	3. Matr	ix inverses	and their pro	operties				
Course Summary	of vect	or spaces,	linear trans	formation of	to explore the concepts on vector spaces and the and matrices.			

Module	Unit	Contents	Hrs							
Ι		Vector Space Properties of \mathbb{R}^n	15							
	1	Vector space properties of \mathbb{R}^n and examples of subspaces								
	2	2 Bases for Subspaces and dimension								
	3	3 Orthogonal Bases for Subspaces.								
	The to	The topics to be discussed in the module can be found in Chapter 3: Sections								
	3.1, 3	.2, 3.3, 3.4, 3.5, 3.6 of Text [2]								
II		Eigenvalues and Eigenvectors	15							
	4	The Eigenvalue Problem for matrices, Determinants and the								
		Eigenvalue								
	5	Eigenvalues and the Characteristic Polynomial, Eigenvectors								
		and Eigenspaces								

Module	Unit	Contents	Hrs									
	6	Complex Eigenvalues and Eigenvectors										
	7	Similarity Transformations and Diagonalization.										
	The to	pics to be discussed in the module can be found in Chapter 4: Se	ections									
	4.1, 4	4.1, 4.2, 4.4, 4.5, 4.6, 4.7 of Text [2]										
III		Linear Transformation										
	8	Linear Transformations from \mathbb{R}^n to \mathbb{R}^m										
	9	Operations with Linear Transformations										
	10	Matrix Representations for Linear Transformations, Change										
		of Basis.										
	The to	ppics to be discussed in the module can be found in Chapter 3: S	ection									
	3.7 an	d Chapter 5: Sections 5.7, 5.8, 5.9, 5.10 of Text [2]										
IV		Generalised Vector Spaces	15									
	11	Definition and Examples, Subspaces										
	12	Bases and Dimension, Co-ordinates.										
	The to	ppics to be discussed in the module can be found in Chapter 2: Se	ections									
	2.1, 2.	2, 2.3, 2.4 Text [1]										

Textbooks

- 1. K. Hoffman & R. Kunze, Linear Algebra, Second Edition, Pearson Education, 2005.
- 2. Lee W. Johnson et.al., Introduction to Linear Algebra, 5th Edition, Addition Wesley, 2001.

- 1. T S Blyth, E F Robertson, Linear Algebra, Springer, Second edition, 2013.
- 2. David C. Lay, Linear Algebra, Addison Wesley, 2012.
- 3. Gilbert Strang, Introduction to Linear Algebra, Fifth edition, Pearson, 2005
- 4. Seymour Lipschutz, Marc Lars Lipson, Linear Algebra, Schaums outlines, McGraw Hill, 2018.
- 5. Thamban Nair, Arindama Singh, Linear Algebra, Springer, 2018.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understand the concepts of vector spaces, subspaces and their properties	PSO1, 2, PO1, 2	U	F,C	L, T	As
CO 2	Realise the concepts of eigenvalues, eigenvectors and diagonalization of matrices	PSO2, 3, PO1, 2, 3	R, U	C, P	L, T	As
CO 3	Create a comprehensive idea about linear transformation on finite dimensional vector spaces and its matrix representation	PSO2, 3, PO1, 2, 3	An, E	C, P	L, T	As
CO 4	Develop a concrete idea about generalised vector spaces, subspaces and its properties	PSO2, 3, PO1	Ap, An	C, P	L, T	As
CO 5	Apply the knowledge to many fields in engineering, statistics, computer science, etc.	PSO4, 5, 6 PO2	Ар	М		As

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	2					2	1						
CO2		2	2				2	1	1					
CO3		2	3				2	2	2					
CO4		2	2				2	1						
CO5				3	2	2		2		um 3_S				

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark			\checkmark
CO5		\checkmark		

Descipline	Mather	natics							
Cours Code	UK6DS	UK6DSEMAT300							
Course Title	Advanc	Advanced Linear Programming							
Type of Course	DSE								
Semester	VI								
Academic Level	300-39	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	4	4			4				
Pre-requisites	Linear	Programmir	ng Problems						
Course Summary	assign dual co of the a transp transpo solution , types	Linear Programming Problems At the end of the course student get a clear picture of following: assign a dual variable for each primal constraint, construct a dual constraint for each primal variable, finding the solution of the primal from the dual,locate a basic feasible solution of a transportation problem by various methods and a minimum transportation schedule by MODI method, determine the optimal solutions of assignment problems using the Hungarian method; , types of game theory, Mathematics required for solving game theory, Techniques of solving for different types of games.							

Module	Unit	Contents	Hrs
Ι		Duality in Linear Programming	15
	1	Formulation of dual linear programming problem	
	2		
	3	Advantages of Duality	
	Chapt	er 5: Sections 5.1,5.2 and 5.5 of Text [1]	
II		Transportation Problem	15
	4	Mathematical Model of Transportation Problem	
	5	Transportation Problem Algorithm	

Module	Unit	Contents	Hrs								
	6	Methods of finding initial solution									
	7 Test for optimality										
	Chapter 9: Sections 9.2,9.3,9.4 and 9.5 of Text [1]										
III	Assignment Problem										
	8	8 Mathematical Model of Assignment Problem									
	9 Solution methods of Assignment problem10 Travelling salesman problem										
	Chapt	er 10: Sections 10.2,10.3 and 10.6 of Text [1]									
IV		Theory of Games	15								
	11	Introduction									
	12	Two person zero sum games									
	13	Games with saddle points									
	14	Games without saddle points									
	15	Rules of dominance									
	16 Solution methods of Games without saddle points (algebraic										
	method, arithmetic method, matrix method, graphical										
		method)									
	Chapt	er 12: Sections 12.1, 12.2, 12.3, 12.4, 12.5 and 12.6 of Text [1]									

Textbook

1. J K Sharma, Operations Research, Theory and Applications, Sixth Edition, 2016

- 1. Hamdy A Taha, Operations Research an Introduction, Tenth edition, Pearson, 2021.
- 2. Kanti Swarup, P.K.Gupta, Man Mohan, Operations Research, Sultan Chand and Sons, 2005.
- 3. G Srinivasan, Operations Research Principle and Applications, Second Edition, PHI Learning, 2010.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understant concepts in various Mathematical modelling	PSO1, 2, PO2	U	F,C		
CO 2	Apply techniques in transportation model to solve problems	PSO3, PO2, 6	R, Ap	F,P		
CO 3	Distinguish between transportation model and Assignment model	PSO4, PO3	U,An,	F,P		
CO 4	To find solutions of problems in Game theory	PSO3, PO3, 5	Ap,E	F,P		

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1							2						
CO2	2		3	2		1		1				2		
CO3		3	2	3							3			
CO4									2		2			

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			
CO2	\checkmark			\checkmark
CO3	\checkmark			
CO4	\checkmark			

Discipline	Mathen	Mathematics								
Course Code	UK6DS	UK6DSEMAT301								
Course Title	Partial	Partial Differential Equations								
Type of Course	DSE	DSE								
Semester	VI	VI								
Academic Level	300-39	300-399								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	4	4 Hours	-	-	4					
Pre-requisites	1. Diffe	erential Calc	culus 2. Int	egral Calcu	lus 3. Differential equations					
Course Summary	This co	urse will int	troduce the	fundamenta	l concepts of PDE					
	and diff	and different techniques for solving these PDE's.								

Module	Unit	Contents	Hrs							
Ι		Partial Differential Equations of First Order	12							
	1	Formation of Partial Differential Equations, Solutions of a PDE								
	2 Equations solvable by direct integration, Linear Equations of first order									
	Chapter 17: 17.1, 17.2, 17.3, 17.4, 17.5 of Text [1]									
II	Non-Linear Partial Differential Equations									
	3	Non-linear Equations of first order								
	4	Charpit's Method								
	Chapter 17: 17.6, 17.7 of Text [1]									
III		Homogeneous and Non Homogeneous PDE	24							
	5	Homogeneous Linear Equations with constant coefficient.								
	6 Rules for finding complementary function									

Module	Unit	Contents	Hrs									
	7	Rules for finding particular integral, working procedure to										
		solve the equation										
	8	Non Homogeneous Linear Equations, Non- Linear										
		Equations of Second order.										
	Chapt	Chapter 17: 17.8, 17.9, 17.10, 17.11, 17.12, 17.13 of Text [1]										
IV	Application of PDE											
	9 Method of separation of Variables											
	10 Vibration of a Stretched String - Wave Equation											
	11	One Dimensional Heat Flow										
	Chapt	Chapter 18: 18.1, 18.2, 18.4 of Text [1]										

Textbook

1. B. S. Grewal, *Higher Engineering Mathematics*, 42nd Edition, Khanna Publishers, 2012.

- 1. Ian Sneddon, Elements of Partial Differential Equations ,Mc Graw-Hill, 2013.
- 2. Phoolan Prasad, Renuka Raveendran: *Partial Differential Equations*, Wiley Eastern, 1985.
- 3. M. D. Raisinghaniya, Ordinary and Partial Differential Equations, S Chand 18th Edition, 2008.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Solve PDE using different solution techniques	PSO1, 2, PO1, 2, 3, 6	U, Ap	Р	L	
CO 2	Develop a mathematical model using Partial Differential Equations	PSO 3,4, PO1, 2, 3, 4, 6	E, C	Р	L	
CO 3	Utilize the boundary condition to reflect real world constraint in the modelled system.	PSO 3, 4, PO1, 2, 3, 6	U, E, C	C, P	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	3	3	3	3	3	3	3	1	-	-	1		
CO2	3	3	3	3	3	3	3	3	3	2	-	1		
CO3	3	3	3	3	3	3	3	3	3	-	-	2		

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics									
Course Code	UK6DS	UK6DSEMAT302									
Course Title	Stochas	Stochastic Processes									
Type of Course	DSE	DSE									
Semester	VI	VI									
Academic Level	300-39	300-399									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week		Hours per week						
	4	4	-	-	4						
Pre-requisites	1. Prob	ability distr	ibutions 2	2. Matrix al	gebra						
Course Summary	deep un fields,	This course on stochastic processes provides students with a deep understanding of randomness and its applications in various fields, equipping them with valuable tools for analyzing and modeling uncertain systems.									

Module	Unit	Contents	Hrs									
Ι		Probability and Stochastic process	15									
	1	Definition of Stochastic Processes, specification of										
		Stochastic processes										
	2	2 Stationary processes, Markov Chains: definition and examples, higher transition probabilities,										
	3	3 Generalization of Independent Bernoulli trails, classification										
		of states and chains.										
	Chapt	rer 2: Sections 2.1, 2.2, 2.3, Chapter 3: Sections 3.1, 3.2, 3.3,	3.4 of									
	Text [1]										
II		Markov Processes with Discrete State Space:	15									
	4	Poisson process, Poisson process and related distributions										
	5	Properties of Poisson process, Generalizations of Poisson										
		Processes										

Module	Unit	Contents	Hrs						
	6	Birth and death processes, Continuous time Markov Chains.							
	Chapt	er 4: Sections 4.1, 4.2, 4.3, 4.4, 4.5 of Text [1]							
III		Markov Processes with continuous state space:	15						
	7	Brownian motion Wiener Process							
	8 Differential equations for a Wiener process, Kolmogoro								
		equations first passage time distribution for Wiener process,							
	9	Ornstein-Uhlenbech process.							
	Chapt	er 5: Sections 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 of Text [1]							
IV		Stochastic process in queueing and reliability	15						
	10	Queueing Process, Notations, Steady state distribution							
	11	Littles formula, M/M/1 queueing model and steady state							
		solution							
	12	Waiting time distribution, Queue with limited waiting space.							
	Chapt	er 10: Sections 10.1, 10.2, 10.3 of Text [1]							

Textbook

1. Jyotiprasad Medhi, Stochastic Processes, New Age International, 1994.

- 1. Erhan Cinlar, Introduction to Stochastic Processess, Dover Publications, Inc, 2013.
- 2. Robert G. Gallager, Stochastic Processess, Cambridge University Press, 2013.
- 3. Sheldon Ross, Introduction to Probability Models, Cambridge University Press, 2003.
- 4. Sheldon Ross, Stochastic Processess, John Wiely, 1996.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the basic definitions of stochastic process	PSO1	U	F,C	L	Р
CO 2	Understand the basics of queueing theory	PSO1, PO1	U	F, C	L	Р
CO 3	Modelling a real life situation as a queueing model	PSO2, 3, PO1, 2	Ар	Р	L	Р
CO 4	Solving a queueing model	PSO3, PO2	Ap, An	Р	L	Р

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	90Sd	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	3												
CO2	2	3					2							
CO3		3	3	-			3	3						
CO4			3					3						

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark

Descipline	Mathem	natics								
Cours Code	UK6D8	UK6DSEMAT303								
Course Title	Founda	Foundations of Computational Mathematics with SageMath								
Type of Course	DSE	DSE								
Semester	VI									
Academic Level	300-39	300-399								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	4	3		2	5					
Pre-requisites	concept derivati	ts, Familiar ves, integra nming fund	rity with m als, and nur	athematical nber theory	d basic programming topics like matrices, , Basic knowledge of les, loops, and control					
Course Summary	comput ranging matrix a to leven explora	ational mat from basic algebra, and rage the por tion, proble	thematics u c arithmetic l programmi wer of com m-solving,	sing SageN operations ng techniqu putational t and visualiz	ive introduction to Math, covering topics to advanced calculus, es. Students will learn ools for mathematical cation, equipping them ysis in various fields.					

Module	Unit	Contents										
Ι	Intro	duction to SageMath Cloud, Calculations and Visualization	15									
	1	Starting SageMath using a browser, how to use the sage cell server https://sagecell. sagemath.org/, how to use SageMathCloud, creating and saving a sage worksheet, saving the worksheet, moving it and re-opening it in another computer system;										

Module	Unit	Contents	Hrs								
	2	Using SageMath as a calculator, basic functions (square									
		root, logarithm, numeric value, exponential, trigonometric,									
		conversion between degrees and radians, etc.), integrating									
		functions, definite and indefinite integrals									
	3	Plotting: simple plots of known functions, controlling range									
		of plots, controlling axes, labels, gridlines, drawing multiple									
		plots on a single picture, adding plots, polar plotting, plotting									
		implicit functions, contour plots, level sets, parametric 2D									
		plotting, vector fields plotting, gradients;									
		Unit 1: The SageMathCloud, https://cloud.sagemath.com/ Unit 2: Ch									
	1 of T	ext [1] (excluding section 1.5)Unit 3: Chapter 3 of Text [1]]								
II		Matrix algebra and solving polynomial equations	20								
	4	Matrix Algebra: Adding, multiplying two matrices,									
		row reduced echelon forms to solve linear system of									
		equations, finding inverses of square matrices, determinants,									
		exponentiation of matrices, computing the kernel of a matrix.									
	5	Defining own functions and using it, composing functions,									
		multivariate functions; Polynomials: Defining polynomials,									
		operations on them like multiplication and division,									
		expanding a product, factorizing a polynomial, finding gcd.									
	6	6 Solving single-variable equations, Bisection Method, Newton Bankson's Method FixedPoint Iteration									
		Newton–Raphson's Method, FixedPoint Iteration.									
		4: Chapter 1, section 1.5, Chapter 4. sections 4.4 and 4.16 U									
	Chapter 1.6, 1.7, 1.8, 1.9, Chapter 4, section 4.1. Unit 6: Chapter 2 sec										
	2.1, 2.2 and 2.4 of Text [2]										
III	_	Numerical Differentiation and Integration	20								
	7	Numerical Differentiation-Derivative Formulae Using Taylor Series									
	8	Numerical Integration-Trapezoidal Rule, Simpson's Rule									
	Unit 7	: Chapter 4 of Text 2 Unit 8: Chapter 5 section 5.1, 5.2 of Text	[2]								
IV		Introduction to Programming in Sage	20								
	9	Repetition without Boredom: The for Loop									
	10	Writing Subroutines									
	11	Styling your plots									
	12	Loops and Newton's Method									
	13	An Introduction to Control Flow									
	14	while Loops versus for Loops									
	Chapt	er 5 of Text [1]	<u> </u>								
	1										

Textbooks

- 1. The SageMathCloud, https://cloud.sagemath.com/
- 2. Bard, G. V., Sage for undergraduates (Vol. 87). American Mathematical Soc., 2015

References

1. Anastassiou, G. A., Mezei, R. A. Numerical analysis using sage, Springer, 2015.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Solve both definite and indefinite integrals efficiently.	PSO1, 2, PO1	U, E	L	С	Р
CO 2	Evaluate various plotting methods in SageMath for effective data visualization and analysis.	PSO5, 6, PO1, 3	U	L	С	Р
CO 3	Analyse matrix algebra operations such as addition, multiplication, and inversion for solving linear equations.	PSO2, 3, PO3	Ap, E	L	Р	Р
CO 4	Compare and contrast different numerical methods for solving mathematical problems, such as polynomial equations and differential equations.	PSO1, 2, 5, PO5, 6	E, Ap, An	L	Р	Р
CO 5	Develop proficiency in programming with SageMath by writing loops, control flow statements, and implementing numerical algorithms.	PSO1, 2, 5, PO5, 6	E, Ap, An	L	Р	Р
CO 6	Apply numerical differentiation techniques, such as Taylor Series expansions, for approximating derivatives in mathematical calculations.	PSO1, 2, 5, PO5, 6	E, Ap, An	L	Р	Р

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	-	3	-	3	-	-	2	-	-	-	-	-	-	
CO2	3	3	-	2	-	-	2	-	2	-	-	-	-	
CO3	-	-	3	-	-	-	-	-	2	-	-	-	-	
CO4	3	3	-	-	2	-	-	-	-	-	2	-	-	
CO5	3	3	-	-	2	-	-	-	-	-	2	-	-	
CO6	3	3	-	-	2	-	-	-	-	-	2	-	-	
		(-	-Nill	, 1-S	light	ly/Lo	ow, 2-M	oderat	e/Mediu	ım, 3-S	ubstant	ial/Hig	h)	

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam (Theory and Practical)

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark		\checkmark
CO6	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics									
Course Code	UK6DS	UK6DSEMAT304									
Course Title	Integral	Integral Transforms									
Type of Course	DSE										
Semester	VI	VI									
Academic Level	300-39	300-399									
Course Details	Credit	Credit Lecture Tutorial Practical Total									
		per week	per week	per week	Hours per week						
	4	4 Hours	-	-	4						
Pre-requisites	Integral	l Calculus	-	-							
Course Summary		place transfo		e	d techniques to utilize sis for solving various						

Module	Unit	Contents	Hrs								
Ι		Laplace Transform	18								
	1	Definition, Transforms of Elementary function									
	2	2 Properties of Laplace Transform, Transform of Periodic									
		Functions									
	3 Transforms of Derivatives, Transforms of Integrals,										
	Multiplication by t^n , Division by t										
	4	Evaluation of Integrals by Laplace Transform.									
		Chapter 21: Section 21.2, 21.3, 21.4, 21.5, 21.7,									
		21.8, 21.9, 21.10, 21.11 of Text [1]									
II		Inverse Laplace Transform	12								
	5	Method of Partial Fractions, Other Methods of finding									
		Inverse transforms, Convolution Theorem									
	6	Application to Differential Equation									

Module	Unit	Contents	Hrs								
	7	Unit Step Function, Unit Impulse Function.									
	Chap	ter 21: Sections 21.12, 21.13, 21.14, 21.15, 21.17, 21.18 of Tex	t [1]								
III		Fourier Series	12								
	8	Basic Examples, Derivation of Euler Formulas, Convergence and Sum of a Fourier Series									
	9	Arbitrary Period, Even and Odd Functions, Half Range expansions from period 2π to any period $P = 2L$									
	10 Simplifications, Even and Odd functions, half range expansions.										
		Chapter 11: Sections 11.1, 11.2, 11.3 of Text [2]									
IV		Fourier Integral and Transform	18								
	11	Fourier Integral, From Fourier series to Fourier Integral									
	12	Applications of Fourier Integrals, Fourier Cosine Integral and Fourier Sine Integral									
	13	Fourier Cosine and sine transforms, Linearity, Transforms of Derivatives,									
	14Fourier Transform, Complex form of Fourier integral, Fourier transform and its inverse, linearity, Fourier transform of derivatives, convolution.										
	Chap	pter 11: Sections 11.7, 11.8, 11.9(excluding Physical interpreta of spectrum, DFT and FFT) of Text [2]	tion								

Textbooks

- 1. B. S. Grewal, *Higher Engineering Mathematics*, 42nd Edition, Khanna Publishers, 2012
- 2. E. Kreyszig, Advanced Engineering Mathematics, 10th Edition Wiley, 2018.

- 1. M Greenberg, Advanced Engineering Mathematics, 2nd Edition, Prentice Hall, 1998.
- 2. Peter. V. O Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand integral transforms and distinguish between different types of integral transforms, including Fourier transforms, Laplace transforms	PSO1, 2	U, Ap	F,C	L	
CO 2	Solve differential equation using Laplace Transform	PSO 2,3	Ap, An	C,P	L	
CO 3	Analyse the properties of certain functions using Fourier Series	PSO 2,3	An, E	Р	L	
CO 4	Equip students with a valuable mathematical tool that can be applied to analyze and solve problems arising in engineering, science and other disciplines	PSO 3,4	An, E	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	2	3	2	1	-	-	1
CO2	2	2	3	3	2	2	3	3	1	-	-	1
CO3	3	3	3	3	3	3	3	3	3	1	1	3
CO4	2	2	3	3	3	3	3	3	3	3	3	3

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments

• Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics								
Course Code	UK6DS	UK6DSEMAT305								
Course Title	Fuzzy M	Fuzzy Mathematics								
Type of Course	DSE									
Semester	VI									
Academic Level	300-39	300-399								
Course Details	Credit	Lecture	Practical	Total						
		per week	per week		Hours per week					
	4	4	-	-	4					
Pre-requisites	Sets, O	perations an	d Functions	5						
Course Summary	fuzzy s relation these co	This course will introduce the fundamental concepts of fuzzy set theory, fuzzy logic, fuzzy arithmetic and fuzzy relations. Through this course students will be able to apply these concepts to model real-world problems where there is inherent uncertainty in data or decision making.								

Module	Unit	Contents	Hrs									
Ι		Fuzzy sets										
	1	Crisp Sets and Fuzzy sets										
	2	2 α cuts and properties										
	3	3 Representation of Fuzzy sets.										
	Chapt	er 1: Sections 1.1, 1.2, 1.3, 1.4, Chapter 2: Sections 2.1 and	2.2 of									
	Text [1]										
II		Operations on Fuzzy sets	15									
	4	Fuzzy complement										
	5	Fuzzy intersection										
	6	Fuzzy Union										

Module	Unit	Contents	Hrs
	Chapt	ter 3: Sections 3.1, 3.2, 3.3, 3.4 of Text [1]	
III		Fuzzy Arithmetic	15
	7	Fuzzy Numbers	
	8	Linguistic variables	
	9		
	10	Arithmetic Operations on Fuzzy Numbers	
	Chapt	ter 4: Sections 4.1, 4.2, 4.3, 4.4 of Text [1]	
IV		Fuzzy Relations	15
	11	Crisp and Fuzzy Relations	
	12	Projections and Cylindric Extensions	
	13	Binary Fuzzy Relations	
	14	Fuzzy Equivalence Relations	
	Chapt	ter 5: Sections 5.1, 5.2, 5.3, 5.4, 5.5 of Text [1]	

Textbook

1. George J Klir and Yuan: Fuzzy sets and fuzzy logic: Theory and applications, Prentice Hall of India Pvt. Ltd., New Delhi, 2000.

- 1. Dubois D and Prade H: Fuzzy Sets and Systems: Theory and Applications, Ac.Press, NY, 1988.
- 2. Klir G J and T Folger: Fuzzy sets, Uncertainty and Information, PHI Pvt.Ltd., New Delhi, 1998
- 3. H J Zimmerman: Fuzzy Set Theory and its Applications, Allied Publishers, 1996.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the basic concepts of fuzzy set theory and fuzzy logic.	PSO1 PSO2	R,U	F,C	L	
CO 2	Apply membership functions to represent uncertainty in data.	PSO2 PSO3	U,Ap	F, C	L	
CO 3	Apply fuzzy arithmetic techniques to solve problems with imprecise data.	PSO2 PSO3	U,Ap	F, C	L	
CO 4	Analyze real-world scenarios where fuzzy mathematics can be beneficial.	PSO2 PSO4 PSO5	U, An, C,E	С, М	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	3	-	-	-	-	-	-	-	-			-
CO3	-	3	3	-	-	-	-	-	-	-	-			-
CO4	-	3	- Nill	3	2	-	-	-	- Madir	-	-			-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics									
Course Code	UK6SE	UK6SECMAT300									
Course Title	Program	Programming with R									
Type of Course	SEC										
Semester	VI	VI									
Academic Level	300-399	300-399									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours per week						
	3	2	0	2	4						
Pre-requisites	Basic P	rogramming	g skill								
Course Summary	focusin Student data str perform	Basic Programming skill This course provides an introduction to programming in R, focusing on data manipulation, analysis, and visualization. Students will learn how to write R scripts, understand basic data structures like vectors, lists, and data frames, and perform data analysis, graphical data representation and solve some statistical problems.									

Module	Unit	Contents	Hrs							
Ι		Introduction to R	15							
	1	Basic arithmetic operations, and data types such as vectors,								
		matrices, data frames etc (Chapter2: Section 2.1 and 2.2 of Text [1])								
	2	Built-in functions, logical vectors and relational operations								
		(Chapter2: Section 2.3 and 2.4 or Text [1])								
	3	Data input and output, dump() and source(), saving and								
		retrieving image files, Data frames and read.table function								
		and lists (Chapter2: Sections 2.5 of Text [1])								

Module	Unit	Contents	Hrs							
II		Creating charts and plots	15							
	4	Creating bar, dot chars, pie chars, histograms, box plots, scatter plots and QQ plots (Chapter3: Section 3.1 of Text [1])								
III		Control statements	15							
	5	5 Control statements and loops, repeat, break and next statements (Chapter4: Section 4.1 of Text [1])								
IV		Simulation of random numbers	15							
	6	Monte Carlo simulation, Generation of psudorandom numbers (Chapter5: Section 5.1 and 5.2 of Text [1])								
	7	Generation of Bernoulli, Binomial, Poisson, Exponential and Normal random variables (Chapter5: Section 5.3 or Text [1])								
	8	Monte Carlo integration (Chapter5: Section 5.4) of Text [1]								

Textbook

1. Braun, W. John, and Duncan J. Murdoch. A first course in statistical programming with R. Cambridge University Press, 2021.

- 1. Cotton, Richard, *Learning R: A step-by-step function guide to data analysis*, O'Reilly Media, Inc., 2013.
- 2. Matloff, Norman, *The art of R programming: A tour of statistical software design*. No Starch Press, 2011.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the syntax and use of R.	PSO2, PSO4 PO7	U	F,C	L	Р
CO 2	Create charts and plots using R.	PSO2, PSO5	R, U	Р	L	Р
CO 3	Write complex R programs using control statements.	PSO3 PO6	С	Р	L	Р
CO 4	Apply Monte Carlo method for integration.	PSO1	А	М	L	Р

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1		3		2									3	
CO2		3			3									
CO3			3									3		
CO4	3		NI:II								ubstant			

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark	\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark

Discipline	Mathen	natics									
Course Code	UK7DS	UK7DSCMAT400									
Course Title	Topolog	Гороlogy									
Type of Course	DSC	DSC									
Semester	VII	VII									
Academic Level	400-49	400-499									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week		Hours per week						
	4	4	-	-	4						
Pre-requisites	Metric	Space : Def	inition and o	examples							
Course Summary	set topo spaces. propert	Metric Space : Definition and examples This course provides important concepts in metric spaces and point set topology. We begin the course by continuous functions on metric spaces. Then we introduce the concept of topological spaces and its properties. Also the topological properties such as connectedness, compactness and related concepts are also discussed.									

Module	Unit	Contents	Hrs										
Ι		Continuous Functions & Metric Spaces	15										
	1	Continuous Functions											
	2	2 Equivalence of metric spaces											
	3 Complete metric spaces.												
	The to	The topics to be discussed in the module can be found in Chapter 3: Section											
	3.4, 3	.5, 3.7, $C(X, \mathbb{R})$ is a complete metric space and Cantor's Inter	section										
	Theor	em											
II		Topological Spaces	20										
	4	Definition and examples											
	5	Interior, Closure and Boundary											
	6	Basis and sub-basis											
	7	Continuity and topological equivalence, Subspaces.											

Module	Unit	Contents	Hrs										
	The to	ppics to be discussed in the module can be found in Chapter 4: S	Section										
	4.1, 4	.2 (Theorem 4.5 Statement only), Section 4.3, Section 4.4 (Th	leorem										
	4.11 \$	Statement only), Section 4.5 (Theorem 4.16 Statement only, Ex	ample										
	4.5.4	4.5.4 need not be discussed)											
III		Connectedness 12											
	8	8 Connected and disconnected spaces											
	9	9 Connected subsets of the real line											
	10	10 Applications of Connectedness.											
	The to	ppics to be discussed in the module can be found in Chapter 5: S	Section										
	5.1, 5	2 (Theorem 5.2, 5.3 proof is not required), 5.3, 5.4											
IV		Compactness	13										
	11	Compact spaces and subspaces											
	12	Compactness and continuity											
	13	Properties related to compactness.											
	The to	ppics to be discussed in the module can be found in Chapter 6: S	Section										
	6.1, 6	.2, 6.3 (the proof of the first Lemma in this section is not rec	uired)										
	The to	opics in Section 6.3 will be covered upto Example 6.31											

Textbook

1. Fred. H. Croom, Principles of Topology, Dover Publications, 2002

- 1. K D Joshi, Introduction To General Topology, New Age Publishers, 2017.
- 2. S Lipschutz, General Topology, Tata Mc Graw Hill, 1998.
- 3. J Munkers, Topology: A First Course, PHI, 2002.
- 4. G F Simmons, Introduction to Topology and Modern Analysis, 8th Edition, Mc Graw Hill, 1983.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understand the concepts of continuous functions on metric spaces, topological equivalence, complete metrics spaces	PSO1, 2, PO1, 3	U	F,C	L, T	As
CO 2	Realise the structure of topological spaces using continuous functions and homeomorphisms	PSO2, 3, PO1, 3	U, Ap	C, P	L, T	As
CO 3	Develop the concepts of connectedness and related properties	PSO1, 2, PO1, 3	U, An	F, C	L, T	As
CO 4	Realise the concepts of compactness and related properties	PSO1, 2, PO1, 3	U, An	F, C	L, T	As
CO 5	Enable the students to apply the knowledge of topology to solve real world problems	PSO4, 5, 6, PO3, 4	С	М		As

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	2	1				2		1					
CO2	2	2	1				2		2					
CO3	2	2	1				2		1					
CO4	2	2	1				2		1					
CO5	3	3	3	3	2	2			3	2				

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Examination Assignment Project Evaluation				
CO1	\checkmark	\checkmark		\checkmark		
CO2	\checkmark	\checkmark		\checkmark		
CO3	\checkmark	\checkmark		\checkmark		
CO4	\checkmark	\checkmark		\checkmark		
CO5			\checkmark			

Discipline	Mathen	natics								
Course Code	UK7DS	UK7DSCMAT401								
Course Title	Comple	Complex Analysis - II								
Type of Course	DSC									
Semester	VII	VII								
Academic Level	400-49	400-499								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	4	4	-	-	4					
Pre-requisites	1. Anal	ytic Functio	ons 2. Inte	egration						
Course Summary	mappin			• •	ver series, conformal uate certain real and					

Module	Unit	Contents	Hrs									
Ι		Power Series	16									
	1	Sequences and series										
	2	Taylor Series										
	3 Laurent Series 4 Zeroes and poles											
	Chapt	Chapter 6: Sections 6.1, 6.2, 6.3, 6.4 of Text [1]										
II		16										
	5	Residues										
	6	Cauchy's Residue Theorem										
	7	Argument Principle and Rouche's theorem										
	Chapter 6: Sections 6.5, 6.6 (subsection 6.6.4) of Text [1]											
III		16										
	8	Evaluation of Real Trigonometric Integrals										

Module	Unit	Contents	Hrs									
	9	Evaluation of Real Improper Integrals										
	Chapt	: Section 6.6(subsections 6.6.1, 6.6.2) of Text [1]										
IV	Co	onformal Mapping and Linear fractional Transformation 12										
	10	Conformal mapping , Mapping $z^2, z^n, z + \frac{1}{z}, e^z$										
	11	Linear fractional transformation										
	12	Special linear fractional transformation										
	Chapt	er 17: Sections 17.1, 17.2, 17.3 of Text [2]										

Textbooks

- 1. Dennis G Zill, Patric D Shanahan, A First Course in Complex Analysis with Applications, Jones and Bartnett Publishers, 2003.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th edition, Wiley-India, 2011.

- 1. Anant R Shastri, Basic Complex Variables of One Variable, Macmillan, 2010.
- 2. Edward B.Saff, Arthur David Snider, *Fundamentals of Complex Analysis with applications to Engineering and Science*, 3rd Edition, Pearson Education India, 2017.
- 3. James Ward Brown and Ruel V Churchill, *Complex Variables and Applications*, 8th Edition, McGraw Hill International Edition, 2013.
- 4. John H Mathews and Russel W Howell, *Complex Analysis for Mathematics and Engineering* Sixth Edition, Jones and Bartlett Publishers, 2012.
- 5. B.S Tyagi, Functions of a Complex Variable, Kedar Nath Ram Nath, 2021.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand sequence, series and represent a given complex function as a power series	PSO1, 2, PO1	U, Ap	F,C	L	
CO 2	Understand the concept of residue and evaluate integrals along the given contour using Residue theorem	PSO1, 2, PO2	U,R,Ap	F,C	L	
CO 3	Evaluate real integrals	PSO 2, PO2	Ар	F,C	L	
CO 4	Understand conformal mapping and linear fractional transformation	PSO1, 3, PO1	U,Ap	F,C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (E. Factual, C. Canaentual, P. Procedural, M. Matagagnitiva)

(F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3					2							
CO2	3	3						3						
CO3		3	-	-				3						
CO4			2				2							

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			
CO2	\checkmark			\checkmark
CO3	\checkmark			
CO4	\checkmark			

Descipline	Mather	natics								
Cours Code	UK7DS	UK7DSEMAT400								
Course Title	Advanc	Advanced Graph Theory								
Type of Course	DSE	DSE								
Semester	VII	/II								
Academic Level	400-49	400-499								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	4	4	-	-	4					
Pre-requisites	Basic o	f concepts i	n Graph Th	eory						
Course Summary	This co	urse is inter	nded to prep	are the stude	ents for more advanced					
	level le	ading to res	earch in Gra	aph Theory						

Module	Unit	Contents	Hrs
Ι		Vertex Coloring	16
	1	Chromatic Number	
	2	Brook's Theorem	
	3	Hajo's Conjecture	
	4	Chromatic Polynomial	
	Chapt	er 8: Sections 8.1, 8.2, 8.3, 8.4 of Text [1]	
II		Planar Graphs	16
	5	Plane and Planar Graphs	
	6	9Dual Graphs	
	7	Euler's Formula	
	8	Bridges	
	9	Kuratowski's Theorem (Statement Only)	

Module	Unit	Contents	Hrs										
	Chapt	er 9: Sections 9.1, 9.2, 9.3, 9.4, 9.5 of Text [1]											
III		Directed Graphs	16										
	10	Directed Graph											
	11	Directed Path											
	12	12Directed Cycles13Applications - Job Scheduling Problem											
	13												
	Chapt	er 10: Sections 10.1, 10.2, 10.3, 10.4 of text [1]											
IV		Networks	12										
	14	Flows											
	15	Cuts											
	16	The Max - Flow Min - Cut Theorem											
	Chapt	er 11: Sections 11.1, 11.2, 11.3 of Text [1]											
	Using	suitable software familiarize the students with the concepts st	udied in										
	this co	Durse											

Textbook

1. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, London, McMillan Press, 1976.

- 1. V. K. Balakrishnan, Schaum's Outline of Graph Theory, McGraw Hill, 1997.
- 2. Douglas Brent West, Introduction to Graph Theory, Pearson, 2018.
- 3. John Clark, Derek Allan Holton, A First Look at Graph Theory, World Scientific, 1995.
- 4. Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Dover Publications Inc. Mineola, New York, 2017.
- 5. Reinhard Diestel, Graph Theory, 5th edition, Springer-Verlag, 2017.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Students get motivated to study the concept of trees, connectivity, matching and edge coloring	PSO1, 2, PO1, 2, 3, 4, 5, 6, 7, 8	R,U	F,C	L	
CO 2	Students develop basic understanding of the concept of trees, connectivity, matching and edge coloring	PSO 1, 2, 3, PO1, 2, 3, 4, 5, 6, 7, 8	R,U	F,C	L, T	
CO 3	Students develop skill in solving various problems containing the concept of trees, connectivity, matching and edge coloring	PSO 3, 4, 5, PO1, 2, 3, 4, 5, 6, 7, 8	Ap, An, E	F,C, P, M	Т	
CO 4	Students apply the acquired knowledge and skills in new situations	PSO 3, 4, 5, 6, PO1, 2, 3, 4, 5, 6, 7, 8	Ap, An, E	F,C, P, M	Τ	Р

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2			0		1	1	1	2	2	3	0	1
CO2	2	3	3				2	2	2	3	3	2	1	2
CO3			3	3	3		3	3	2	2	2	2	1	1
CO4				3	3	3	3	3	3	3	3	3	2	2

(0 - Nill, 1 - Slightly/Low, 2 - Moderate/Medium, 3 - Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark

Discipline	Mathen	Mathematics								
Course Code	UK7DSEMAT401									
Course Title	Functional Analysis									
Type of Course	DSE	SE								
Semester	VII									
Academic Level	400-499									
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week		Hours per week					
	4	4	-	-	4					
Pre-requisites	A quick review on : Metric spaces and continuous functions									
Course Summary	distance	This course explores the interplay between algebraic structures and distance structures. Students will gain a comprehensive idea on Banach and Hilbert spaces and bounded operators on them.								

Module	Unit Contents									
Ι	Normed Spaces and continuous linear map									
	1	Normed space, examples, finite dimensional normed spaces, subspaces, quotient space, Riesz lemma								
	2 Continuity of linear maps, bounded linear maps on normed spaces.									
	The topics to be discussed in this module can be found in Chapter II :									
	Section 5(All results in Section 5 except 5.1(c), 5.1(d) and Section 6(6.1,									
	6.2, 6.3, 6.4, 6.5(a), 6.5(b), 6.6, 6.7(a)) of Text [1]									
	3 Examples of continuous linear maps.									
II	Banach spaces, Bounded linear maps and its spectrum									
	4	4 Hahn-Banach theorems, Banach spaces, examples and related results.								

Module	e Unit Contents								
	5	Closed graph and Open mapping theorems, Bounded inverse							
	theorem, Invertibility of a bounded linear operator, spectrum								
		of a bounded linear operator, classification of spectrum.							
	The topics to be discussed in this module can be found in Cha								
	II : Section 7(Statements only), Section 8(8.1, 8.2 Statement only,								
	Statement only, 8.4, Chapter III : Section 10(10.1, 10.2, 10.3 Statement								
	only,	10.4 Statement only, 10.5 Statement only, 10.6), Section 11.1, S	ection						
	12(12.1, 12.2, 12.3, 12.5, 12.6, 12.7(a), 12.8 (Statement only) of Text								
III		Geometry of Hilbert space	15						
	6	Definition and examples, Polarization identity, Schwarz							
	inequality, parallelogram law.								
	7 Pythagoras theorem, Gram-Schmidt orthonormalization and								
		its examples, Bessel's inequality, Riesz-Fischer theorem,							
		Fourier expansion, parseval formula, examples, separability							
	of Hilbert space.								
	The topics to be discussed in this module can be found in Chapter VI :								
	Section 21(21.1, 21.2, 21.3(a), 21.3(b), Section 22 (22.1, 22.2, 22.3(a),								
	22.3(b), 22.4, 22.5, 22.6 Statement only, 22.7 Statement only, 22.8(a), 22.9)								
	of Text [1]								
IV		Approximation and Riesz Representation theorem	15						
	8	Best approximation- Definition and properties, Projection							
		Theorem and Riesz Representation theorem.							
	9	Adjoint of an operator, Normal, unitary, self-adjoint							
		operators.							
	The topics to be discussed in this module can be found in Chapter Chapter								
		ection 23(Theorem 23.1, Theorem 23.5), Section 24(24.1, 24.2							
		24.5, 24.6 Statement only), Section 25(25.2, 25.3), Section 26	6(26.1,						
	26.2, 26.3) of Text [1]								

Textbooks

1. B. V. Limaye, Functional Analysis, Third Edition, New Age International Publishers, New Delhi, 2009

- 1. E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, 1978.
- 2. V. K. Krishnan, Textbook of Functional Analysis, PHI, Second Edition, 2004.
- 3. S. Kumaresan & D Sukumar, Functional Analysis: A First Course, Narosa, India, 2020.
- 4. W. Rudin, Functional Analysis Mc Graw Hill.Inc., Second edition, 1991.
- 5. M. Thamban Nair, Functional Analysis, A first course: PHI, 2022.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understand the concept of normed spaces and inner product spaces and their properties	PSO1, 2, PO1	U	F,C	L, T	As
CO 2	Realise different types of convergences in normed spaces	PSO1, 2, 3, PO1, 2	R, An	С	L, T	As
CO 3	Develop basic concepts of bounded operators and their spectrum	PSO1, 2, PO1, 2, 3	Ap, An	F, C	L, T	As
CO 4	Create an idea about geometric structure to a linear space	PSO3, PO1, 2, 3	Ap, E	C, P	Т	As
CO 5	Apply the knowledge of functional analysis to solve mathematical problems	PSO5, 6, PO3	Ap, C	M		

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M - Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2					2							
CO2	2	3	2				2	1						
CO3	3	3					2	1	2					
CO4			3				3	3	2					
CO5					2	2			3			3		

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark			\checkmark
CO4		\checkmark		\checkmark
CO5			\checkmark	

Descipline	Mathen	natics										
Cours Code	UK7DS	UK7DSEMAT402										
Course Title	Advanc	Advanced Linear Algebra										
Type of Course	DSE	DSE										
Semester	VII	VII										
Academic Level	400 - 49	400 - 499										
Course Details	Credit	Lecture	Total									
		per week	per week	per week	Hours per week							
	4	4			4							
Pre-requisites	1. Vecto	or spaces	2. Subspace	es 3. Base	es and dimension							
Course Summary		This course provides a comprehensive idea about the mathematical concepts of linear algebra in an advanced level										

Module	Unit	Contents	Hrs										
Ι		Linear Transformations	15										
	1	Linear transformations, Algebra of linear transformations											
	2	Isomorphism and representation of transformations by											
		matrices											
		The topics to be discussed in the module can be found in Chapter 3, Sections											
	3.1, 3.	3.1, 3.2, 3.3, 3.4 of Text[1]											
II		Diagonalizable operators											
	3	Introduction, characteristic values											
	4	Annihilating polynomials, Invariant subspaces											
	The to	ppics to be discussed in the module can be found in Chapter 6, Se	ections										
	6.1, 6	2, 6.3, 6.4 of Text[1]											
III		The Primary Decomposition Theorem	15										
	5	Simultaneous diagonalization, Direct-sum decompositions											
	6	Invariant direct sums, Primary decomposition theorem											

Module	Unit	Contents	Hrs										
	The to	ppics to be discussed in the module can be found in Chapter 6, Se	ections										
	6.5, 6	.6, 6.7, 6.8 of Text[1]											
IV		Rational and Jordan Forms15											
	7	Cyclic subspaces and annihilators											
	8	Cyclic decompositions and the rational form											
	9	The Jordan form											
	The to	ppics to be discussed in the module can be found in Chapter 7, Se	ections										
	7.1, 7	2, 7.3 of Text[1]											

Textbook

1. K. Hoffman, R. Kunze, Linear Algebra, Second Edition, Pearson Education, 2005

- 1. K. B. Datta, Matrix and Linear Algebra, Prentice Hall of India, 2004.
- 2. I. N. Herstein, Topics in Algebra, Wiley Eastern, 2006.
- 3. S. Kumaresan, Linear Algebra, Prentice Hal, 2000.
- 4. S. Roman, Advanced Linear Algebra, Second Edition, Springer, 2008.
- 5. Sheldon Axler, Linear Algebra Done Right 2nd Edition, Springer, 1997.
- 6. M. Thamban Nair & A. Singh, Linear Algebra, Springer, 2018.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understand the properties of linear transformation and its matrix representation	PSO1, 2, PO1, 3	U	F,C	L, T	As
CO 2	Develop the idea of computing characteristic values and minimal polynomial of a linear operator and their properties	PSO2, 3, PO2, 3	R, U	C, P	L, T	As
CO 3	Realise the concept of diagonalizable linear operator and its various properties	PSO3, 4, , PO3, 4	Ap, An	C, P	L, T	As
CO 4	Solve the applied problems using the ideas discussed in the course	PSO5, 6, , PO4, 6	С	М		As

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
2	2					2		2					
	2	2					1	2					
	3		3					3	1				
					2				3		2		
		2 2 2 3	2 2 2 2 3 	2 2	2 2	2 2	2 2	2 2 2 2 2 1 2 2 2 1 1 3 3 2 1	2 2	2 2 2 2 2 1 .2 3 3 2 2 3 3 3	2 2	2 2 2 2 2 2 2 1 2 3 3 3 1 1 2 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 2 1 3 3 3 3 1 1

-Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4		\checkmark	\checkmark	

Descipline	Mathen	natics									
Cours Code	UK7DS	UK7DSEMAT403									
Course Title	Advanc	Advanced Abstract Algebra									
Type of Course	DSE	DSE									
Semester	VII	VII									
Academic Level	400-49	400-499									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week		Hours per week						
	4	4	-	1	5						
Pre-requisites	1. Grou	ips 2. Rin	igs and Field	ds							
Course Summary	The Co	urse covers	advanced to	pics in grou	up theory like Sylow theorems,						
	Isomor	phism theor	ems and Ser	ries of group	os. Commutative algebra delves						
	into Un	ique factori	zation doma	uns, Euclid	ean domains. Finally, explore the						
	topics I	Extension Fi	elds, Algeb	raic Extensi	ons and Finite Fields						

Module	Unit	Contents	Hrs								
Ι		Advanced Group Theory - I	10								
	1	Isomorphism Theorems (Chapter IV - Sections 16 of Text									
		[1])									
II		Advanced Group Theory - II									
	2	Sylow Theorems, Series of Groups (Chapter IV - Sections									
		17, 18 of Text [1])									
III		Commutative Algebra	18								
	3	Unique factorization domains, Euclidean domains, Number									
		theory (Chapter VII - Sections 34, 35, 36 of Text [1])									

Module	Unit	Contents									
IV		Extension Fields									
	4	Introduction to Extension Fields, Algebraic Extensions, Finite Fields (Chapter VIII - Sections 39, 40, 42 of Text [1])									
Practical	proble	cal and assignments can be given using Sagemath for solving the ems in the above modules. (Chapter 15, 18, 21, 22 of Text [2]) (not t for examination purpose)	15								

Textbooks

- 1. John B. Fraleigh, Neal.E.Brand *A First Course in Abstract Algebra*, Eighth Edition, Pearson Education, Inc, 2022.
- 2. Thomas.W.Judson, Stephen.F.Austin *Abstract Algebra Theory and Applications*, State University, Robert A Beezer, *Sage Exercises for Abstract Algebra*, University of Puget Sound, 2020.

- 1. I. N. Herstein, Topics in Algebra, Second Edition, Wiley, 2006.
- 2. Joseph. A. Gallian, *Contemporary Abstract Algebra*, Eighth Edition, Brooks/Cole Cengage Learning, 2012.
- 3. Michael Artin, Algebra, Second Edition, Pearson Education, 2023.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the fundamental properties of different algebraic structures	PSO 1,2, , PO1, 6, 7, 8	U	F, C		
CO 2	Investigate the connection between different structures	PSO 4, 5, PO1, 2, 3, 6, 7, 8	An	С, Р		
CO 3	Develop Proficiency in constructing proofs	PSO 3, 4, PO1, 2, 3, 6, 7, 8	С	Р, М		
CO 4	Apply techniques to solve problems	PSO 1,3,6, PO1, 2, 3, 6, 7, 8	Ар	С, Р		

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	1	2	2	3	3	3	-	1	-	-	2	1	1
CO2	1	3	1	2	1	1	1	1	3	-	-	2	1	1
CO3	1	3	2	3	2	3	1	3	3	-	-	3	1	1
CO4	1	1	3	3	2	1	1	3	3	-	-	3	1	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- End Semester Exam

	Internal Examination	Assignment	End Semester Exam	
CO1	\checkmark		\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics								
Course Code	UK7DS	UK7DSEMAT404								
Course Title	Semigr	Semigroups								
Type of Course	DSE									
Semester	VII									
Academic Level	400-499)								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	week per week per week Hours per week							
	4	4	-		4					
Pre-requisites		-	n elementar actor groups		ory such as the definition phism.					
Course Summary	We beg such a homom Then w semigro	in the court s generator orphisms, s ye give the pups. After	se by eleme rs, subsem sub-direct p green's rela	entary conce igroups, bi products, ac ations to un through reg	about semigroup theory. epts on semigroup theory inary relations, lattices, etions and Cayley graph. derstand the structure of gular semigroups, inverse					

Module	Unit	Contents	Hrs									
Ι		Elementary concepts on semigroup theory										
	1	Basic concepts and examples, Generators and subsemigroups, Binary relations, Orders and lattices										
	2	Homomorphisms, Congruences and quotients, Generating equivalences and congruences										
	3	Subdirect products, Actions, Cayley graphs										
	The to Text	ppics to be discussed in the module can be found in Chapter 1	of the									

Module	Unit	Contents	Hrs								
II		Structure of semigroups	15								
	4 Green's relations, Simple and 0-simple semigroups										
	5	D-class structure, Inverses and D-classes									
	6	Schützenberger groups									
	The topics to be discussed in the module can be found in Chapter 3 or Text										
III		Regular semigroups	15								
	7	Completely 0-simple semigroups, Ideals and completely 0-									
		simple semigroups									
	8	Completely simple semigroups, Completely regular									
		semigroups									
	9	Left and right groups, Homomorphisms									
	The to	opics to be discussed in the module can be found in Chapter 4	of the								
	Text										
IV		Inverse semigroups	15								
	10	Equivalent characterizations, Vagner-Preston theorem									
	11	The natural partial order									
	12	Clifford semigroups									
	The to	ppics to be discussed in the module can be found in Chapter 5	of the								
	Text,	except free inverse semigroup									

Textbook

1. Alan J. Cain, Nine Chapters on Semigroup Art, Porto & Lisbon, 2020.

- 1. P. A. Grillet, *Semigroups: An Introduction to the Structure Theory*, Marcel Dekker, New York, 1995.
- 2. J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understand the basic concepts on semigroup theory	PSO1, 2	U	F,C	L, T	As
CO 2	Create an idea about structure of semigroups	PSO2, 3	U, Ap	C, P	L, T	As
CO 3	Develop the idea about regular semigroups and inverse semigroups	PSO2, 3	Ap, An	С, Р	L, T	As
CO 4	Apply the knowledge in the advanced level of semigroup theory	PSO4, 5, 6	Е	М	L, T	As

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2					2		2			
CO2		2	2				2	1	2			
CO3		2	2				2	2	2	1		
CO4				2	2	2	2	2	2	2	2	2

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4		\checkmark		

Discipline	Mathen	natics								
Course Code	UK7DS	UK7DSEMAT405								
Course Title	Ordina	Ordinary and Partial Differential Equations								
Type of Course	DSE									
Semester	VII									
Academic Level	400-49	400-499								
Course Details	Credit Lecture		Tutorial	Practical	Total					
		per week per week per week Hours per w								
	4	4 Hours	-	-	4					
Pre-requisites	1. Diffe	erential Equ	ations							
Course Summary	This co	urse aims to	teach the b	asic concep	ts of ODE and PDE,					
	and diff	ferent techni	iques for sol	lving these (ODE's and PDE's.					
	Also th	is will discu	ss the physi	cal applicat	ions in Physics and					
	Engine	ering fields.								

Module	Unit	Contents	Hrs									
Ι		Ordinary Differential Equations - I	15									
	1	Solving Second Order Linear Equations.										
	2	2 Method of Undetermined Coefficients										
	3	3 Method of Variation of Parameters										
	4	Method of Successive Approximations and Picard's										
		Theorem										
		Chapter 3: Section 18, 19										
		Chapter 11: Section 55, 56, 57 of Text [2]										
II		Ordinary Differential Equations - II	15									
	5	Series solution of First order equations.										
	6	Ordinary point, Regular singular point										

Module	Unit	Contents	Hrs						
	7	Gauss Hypergeometric Equations							
	8	Point at Infinity, Chebychev Polynomials.							
		Chapter 5: Section 25, 26, 27, 28, 29, 30, 31 and							
		Appendix: D excluding min max property of Text [2].							
III	First order Partial Differential Equations								
	9	First order PDE, curves and surfaces							
	10	Genesis of First order							
	11	Classification of Integrals							
	12	Linear Equation of First order							
	13	Charpits Equations, Jacobi's Method							
		Chapter 1: Sections 1.1, 1.2, 1.3, 1.4, 1.7, 1.8 of Text [1]							
IV		Second order Partial Differential Equations	12						
	14	Second order PDE, Classification of Second order PDE							
	15	One Dimensional Wave Equation, Vibration of Infinite							
		String							
	16	Laplace Equations, Boundary value Problem, Maximum							
		Minimum principles.							
		Chapter 2: Sections 2.1, 2.2, 2.3.1, 2.4.1, 2.4.2 of Text [1]							

Textbooks

- 1. T. Amarnath, An Elementary Course in Partial Differential Equations, Narosa, 2009.
- 2. G. F. Simmons, *Differential Equations with Applications and Historical Notes*, Tata McGraw-Hill, 2003.

- 1. G. Birkhoff and G. C. Rota, *Ordinary Differential Equations Wiley and Sons*, Third Edition, 1978.
- 2. Earl A Coddington, Noeman Levinson, *Theory of Ordinary Differential Equations*, Tata Mc Graw-Hil, 1955.
- 3. Ian Sneddon: *Elements of Partial Differential Equations* Mc Graw-Hill, 2013.
- 4. Phoolan Prasad, Renuka Raveendran: *Partial Differential Equations*, Wiley Eastern, 1985.
- 5. M Rama Mohana Rao, Ordinary Differential Equations and Theory and Applications, E Arnold, 1981.
- 6. Zahir Ahsan, Differential Equations and their Applications, Prentice Hall, 1999.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Analyze the behavior of solutions to differential equations	PSO2, 4	Ap, An	C	L	
CO 2	Interpret mathematical relationship between a PDE and its solutions.	PSO 2,5	U, Ap	C,P	L	
CO 3	Assess the physical implication of different boundary conditions on heat transfers or wave propogation.	PSO 3,4,5	An, E	С, Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	2	3	3	3	3	2	2	-	-	1		
CO2	2	3	3	3	3	3	3	3	1	-	-	2		
CO3	2	2	3	3	3	3	3	3	3	_	_	1		

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	nination Assignment Project Evaluation		End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics								
Course Code	UK7DS	UK7DSEMAT406								
Course Title	Coding	Coding Theory								
Type of Course	DSE	DSE								
Semester	VII	VII								
Academic Level	400-499	400-499								
Course Details	Credit	redit Lecture Tutorial Practical		Total						
		per week	per week		Hours per week					
	4	4	-	-	4					
Pre-requisites	Basic L	inear Algeb	ora							
Course Summary	bits usi transmi	Linear codes involve encoding data into a sequence of bits using mathematical operations to correct errors during transmission. Cyclic codes are special type of linear codes facilitating efficient encoding and decoding.								

Module	Unit	Contents	Hrs								
Ι		Introduction to Coding theory	13								
	1	Error Detection and Correction									
	2	Maximum likelihood decoding and Nearest neighbour decoding									
	3	3 Basics of Finite Fields and Vectorspace									
	Chapt	rers 1, 2 and 3 (Sections 3.1, 3.2, 3.3) of Text									
II		Linear codes	20								
	4	Linear codes and Hamming weight									
	5	Generator matrix and parity-check matrix									
	6	Equivalence of linear codes									
	7 Decoding of linear codes										
	Chapt	er 4 of Text									

Module	Unit	Contents	Hrs									
III		Cyclic codes	14									
	8	Generator polynomials										
	9	Decoding of cyclic codes										
	10	Burst-error-correcting codes										
	Chapt	Chapter 7 of Text										
IV		Some special codes										
	11	q-ary Hamming codes										
	12	Golay codes										
	13	Reed-Solomon codes										
	14	Reed-Muller codes										
	Chapt	er 5: Sections 5.3.1, 5.3.2, 5.3.3, Chapter 6: Section 6.2, Cha	pter 8:									
	Section	on 8.2 of Text										

Textbook

1. San Ling and Chaoping Xing, Coding Theory, A First Course, Cambridge University Press, 2004.

- 1. R. Lidl and H.Neiderreiter, Introduction to Finite Fields and their Applications, Cambridge University Press, 1983.
- 2. F.J.MacWilliams and N.J.A.Sloane, The Theory of Error Correcting Codes, North Holland, Amsterdam, 1998.
- 3. Shu Lin and Daniel J.Costello, Error Control Coding -Fundamentals and Applications, Pearson Education India, 2011.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand error detection in Coding Theory	PSO1, PSO2	R, U	F,C	L	
CO 2	Able to build linear codes	PO 3 PSO1 PSO2 PSO3, PSO4, PSO6	R, U, An, Ap,C	F ,C , P	L	
CO 3	Able to design cyclic codes	PO 3 PSO1 PSO2 PSO3, PSO4, PSO6	R, U, An, Ap,C	F, C, P	L	
CO 4	Compare different types of linear and cyclic codes	PO 2 PSO2, PSO3, PSO4	R,U,A _I		L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	-	-	-	-	-	-	-	-	-	-
CO2	3	3	3	3	3	-	-	2	-	_	_	-
CO3	3	3	3	3	3	-	-	2	-	-	-	-
CO4	_	3	3	3	-	-	-	2	-	-	_	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics								
Course Code	UK7DS	UK7DSEMAT407								
Course Title	Measur	Measure Theory								
Type of Course	DSE	DSE								
Semester	VII	VII								
Academic Level	400-499	400-499								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	4	4			4					
Pre-requisites	function	ns, Continui	ty and unifo	orm continui	nd their limits, Limit of ty of functions, Sequence emann Integration.					
Course Summary		-	-		about Lebesgue measure, easurable functions.					

Module	Unit	Contents	Hrs										
Ι		Lebesgue Measure	15										
	1	1 Lebesgue outer measure, Lebesgue Measurable sets											
	The to	The topics to be discussed in the module can be found in Chapter 2, Section											
	2.1, S	ection 2.2 of the text book											
II		Measure on arbitrary σ -algebra											
	2 The tr	Lebesgue Measure on \mathbb{R}^k , Generated σ -algebra and Borel σ - algebra, Restrictions of σ -algebras and measures, Complete measure space and the completion, General outer measure and the induced measure, Some properties of measure	action										
		opics to be discussed in the module can be found in Chapter 3, S ection 3.2 of the text book	ection										

Module	Unit	Contents	Hrs
III		Measurable Functions	15
	3	Probability space and probability distribution, Further properties of measurable functions, Sequence and limits of measurable functions, Almost everywhere properties, Simple measurable functions, Measurability using simple measurable function, Incompleteness of Borel σ -algebra.	
		opics to be discussed in the module can be found in Chapter 3, S	ection
	3.3, S	ection 3.4	
IV		Integral of Measurable Functions	15
	4	Integral of simple measurable functions, Integral of positive measurable functions, Riemann integral as Lebesgue integral, Monotone convergence theorem, Radon-Nikodym Theorem.	
		opics to be discussed in the module can be found in Chapter 4, S ection 4.2	Section

Textbook

1. M. Thamban Nair, Measure and Integration, A first Course, CRC Press 2023

- 1. P R Halmos, Measure Theory, Springer, 2016.
- 2. G de Barra, Measure Theory and Integration, New Age International Publishers, Second Edition 2013.
- 3. H L Royden, P M Fitzpatrik, Real Analysis, Fourth Edition, Pearson, 2017.
- 4. Terence Tao, An Introduction to Measure Theory, AMS, 2016.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understand the basic concepts Lebesgue measurable and Lebesgue measure sets	PSO1, 2	U	F, C	L	As
CO 2	Realise the concepts of measurable and simple measurable functions	PSO2, 3	R, U	F, C	L	As
CO 3	Create a concrete idea on integrable functions and realising the importance of convergence theorems	PSO3, 4	Ap, An	C, P	L, T	As
CO 4	Applying the concepts of measure and integration in various branches of analysis	PSO4, 5, 6	С	М		As

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	2					2		1					
CO2		2	2				2		2					
CO3			2	2			3	1	2	4				
CO4				2	2	2	3	2	3	2		6		

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4		\checkmark		

Discipline	Mathen	natics								
Course Code	UK7DS	UK7DSEMAT408								
Course Title	Queuei	Queueing Theory								
Type of Course	DSE	DSE								
Semester	VII	VII								
Academic Level	400-499	400-499								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week		Hours per week					
	4	3	-	2	5					
Pre-requisites	1. Prob	ability distr	ibutions 2	2. Matrix al	gebra					
Course Summary	deep un fields,	This course on stochastic processes provides students with a deep understanding of randomness and its applications in various fields, equipping them with valuable tools for analyzing and modeling uncertain systems.								

Module	Unit	Contents	Hrs							
Ι		ElementaryQueueingTheory	15							
	1	Introduction and Basic definitions								
	2	Arrivals and service								
	3	Poisson Arrivals and Exporential service								
	4	4 Scheduling desciplines								
	5	Kendall's Notation								
	6	Performance measures								
	Chapt	er 11: Section 11.1, Subsections 11.1.1, 11.1.2, 11.1.3, 11.1.5 of Text								
	[1]									
II		Birth-Death Processes: The M/M/1 Queue	20							
	7	Description and Steady-State Solution								
	8	Various Performance Measures								

Module	Unit	Contents	Hrs								
	9	Transient Behavior									
	Chapt	er 11: Section 11.2, Subsections 11.2.1, 11.2.2, 11.2.3 of Text [1]									
III		General Birth-Death Processes	20								
	10	Derivation of the State Equations									
	11	Steady-State Solution									
	12	12 Matrix formulation of Birth Death Process									
	13 Multi Server System										
	Chapt	er 11: Section 11.3, Subsections 11.3.1, 11.3.2, Section 11.4,									
	Subse	ction 11.4.1 of Text [1]									
IV		Matrix Geometric Method	20								
	14	Quasi-Birth-Death case									
	15	Algorithm for solving QBD Process									
	Chapt	er 10: Section 10.6, Subsection 10.6.1 of Text [1].									
Practical	Use a	ny programming software to perform the solving method. It is not									
	meant	for examination. A sample matlab code is given in Example 10.27 of									
	Text [1]									

Textbook

1. William J. Stewart, Probability, Markov chains, queues and simulation: the mathematical basis of performance modeling, Princeton University Press, 2009.

- 1. D. Gross and C. M. Harris. Fundamentals of Queueing Theory, John Wiley and Sons, New York, 1974.
- 2. L. Kleinrock, Queueing Systems, Vol. 1: Theory. John Wiley and Sons, New York, 1975.
- 3. M. F. Neuts. Matrix Geometric Solutions in Stochastic Models—An Algorithmic Approach. Johns, Hopkins University Press, Baltimore, MD, 1981. 2003

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand basic definitions of Queueing Theory	PSO1	U	F,C	L	Р
CO 2	Understand the basics of Birth Death Processes	PSO1, PO1	U	F, C	L	Р
CO 3	Modelling a real life situation as a queueing model	PSO2, 3, PO1, 2	Ар	Р	L	Р
CO 4	Solving a queueing model	PSO3, PO2	Ap, An	Р	L	Р

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	3												
CO2	2	3					2							
CO3		3	3	-			3	3						
CO4			3					3						

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics									
Course Code	UK7DS	UK7DSEMAT409									
Course Title	Machin	Machine Learning using Python									
Type of Course	DSE	DSE									
Semester	VII	/II									
Academic Level	400-499	400-499									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours per week						
	4	3		2	5						
Pre-requisites	Basics	of Python									
Course Summary		An introduction to supervised and unsupervised machine learning algorithms using python.									

Module	Unit	Contents	Hrs
Ι		Introduction to Machine Learning	15
	1 Chapt	Machine learning, basic concepts of supervised learning, unsupervised learning and reinforcement learning, Machine learning applications- classification, regression, clustering, association rule mining, reinforcement learning, Essential libraries and tools in python for machine learning, training data and testing data for supervised learning, splitting data into training and test sets using python. er 1 of Text[1] and Chapter 1 of Text[2]	

Module	Unit	Contents	Hrs								
II		Basic concepts for Supervised Learning	15								
	2	Overview of classification and regression, generalization,									
		overfitting and underfitting, Evaluation metrics and scoring,									
		Metrics for binary classification, metrics for multiclass									
		classification and regression metrics, Preprocessing and									
		scaling, different kinds of preprocessing, applying data									
		transformations, scaling training and test data the same way,									
		the effect of preprocessing on supervised learning, Encoding									
		categorical variables.									
	Chapt	er 2, 3, 5 of Text[2]									
III		Supervised Machine Learning									
	3	Supervised machine learning algorithms: k- Nearest									
		neighbors, Naïve Bayes classifiers, Linear models,									
		Kernelized Support vector machines, decision tree,									
		ensembles of decision trees, neural networks (deep									
		learning)- Practical using python for obtaining models and									
		corresponding evaluation metrics using the algorithms.									
	Chapt	er 2 of Text[2]									
IV		Unsupervised Machine Learning	20								
	4	Unsupervised learning: Types of unsupervised learning,									
		dimensionality reduction, feature extraction and manifold									
		learning, clustering: k-Means clustering, agglomerative									
		clustering, DBSCAN- practical using Python.									
	Chapt	er 3 of Text[2]									

Textbooks

- 1. Alpaydin E, Introduction to machine learning, MIT press, 2009.
- 2. Andreas C. Muller and Sarah Guido, Introduction to machine learning with Python: A guide for data scientists, O'Reilly, 2017.

- 1. Daniel T. Larose, Data Mining: Methods and Models, John Wiley and sons, 2006
- 2. Jerome, F., Trevor, H. and Robert, T. ,The elements of statistical learning: Data mining, inference and prediction, second edition, Springer, 2008.

CO No.	Upon completion of the course the graduate will be able to	DS4/04	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Describe the applications and basic concepts of machine learning	PSO3, PSO6	R, U	F, C	L, T	
CO 2	Apply and evaluate supervised machine learning algorithms for classification	PSO2, PSO4	E, Ap	Р	Т	
CO 3	Apply clustering algorithms to find clusters in a data	PSO2, PSO4	Ар	Р	Т	
CO 4	Apply and evaluate supervised machine learning algorithms for regression	PSO2, PSO4	Ap	Р	Т	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	1	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	3	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	1	2	-	-	-	-	-	-	-	-	-	-
CO4	-	-	3	-	-	-	-	-	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam (Theory and Practical)

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

0

University of Kerala

May 2024

0