

Four Year Under Graduate Programme (UoK FYUGP)

Syllabus

Major Discipline Biochemistry

May 2024

CONTENT

- 1. About the Discipline
- 2. Graduate Attributes
- 3. Programme outcomes
- 4. Programme Specific outcomes
- 5. Members of the Board of studies in Biochemistry and teachers participated in the syllabus preparation in FYUGP 2024
- 6. Course Content
- 7. Detailed Syllabus
- 8. Online Courses

About Discipline

B. Sc. – Honours in Biochemistry/ B. Sc. Honours with Research in Biochemistry

Introduction

Biochemistry is one of the most fascinating subjects as it deals with the chemical language of Life, be it human, animal, plant or microorganism. Biochemistry is one of the most upcoming and highly in demand subject in the Indian as well as the foreign universities. The basic foundation in Biochemistry is a necessary pre-requisite for any kind of life science, biotechnological, medical, paramedical and biological research activity. In the vibrant academic landscape of Kerala, a four-year undergraduate program (FYUGP) in Biochemistry field, encompassing a wide scope, defined aims, and abundant job opportunities.

Scope:

The scope of Biochemistry is expansive, touching upon various facets of life sciences and industry. From understanding the intricate workings of cells and organisms to elucidating the molecular basis of diseases, Biochemistry plays a pivotal role. In FYUGP, students delve into diverse areas such as nutrition, enzymology, immunology, metabolism, nanobiotechnology, forensics genetics, and molecular biology. They explore how biomolecules function, interact, and regulate biological processes, paving the way for innovations in healthcare, agriculture, biotechnology, and environmental sciences.

Aim:

The aim of a FYUGP in Biochemistry in Kerala University is to equip students with a strong foundation in theoretical knowledge and practical skills essential for a career in this dynamic field. Through rigorous coursework, laboratory experiments, and research projects, students develop critical thinking abilities, analytical skills, and a deep understanding of biochemical principles. They are prepared to tackle real-world challenges, contribute to scientific advancements, and make meaningful contributions to society.

Job Opportunities:

The FYUGP in Biochemistry opens doors to diverse and rewarding career opportunities. Graduates are sought after in both academic and industrial sectors. They can pursue roles in research institutions, universities, government agencies, and biotechnology companies. Moreover, the program lays a solid foundation for further education and specialization in fields such as medicine, biotechnology, pharmacology, and bioinformatics.

Biochemistry is a career oriented, high demand fundamental course with applications in all biological research, be it plants, animal, human and microbes. It provides opportunity to students to develop their career in the following areas:

- Biochemical research
- pharmaceuticals
- Healthcare industry
- Diagnostics research
- Food and packaging industries
- Food and beverage industries,
- Medical Instrument companies
- Research Companies and Laboratories
- Drug manufacturing industries
- Public Health Entities
- Blood research and Services
- Industrial Laboratories
- Cancer research institutes
- Research Departments
- Educational Institutes
- Environmental Pollution Control
- Agriculture and fisheries
- Forensic Science
- Hospitals
- Public Health Laboratories
- Cosmetic Industries etc.
- Genomics Industries
- Diagnostics and testing Industries

Students passionate about their job to study structures and functions of proteins, carbohydrates, fats, lipids, process of metabolism, molecular basis of the action of genes, biochemical pathways, and diagnosis of different ailments can make a career in the Biochemistry field after pursuing this course.

Graduate Attributes

Graduate attributes bridge the gap between academia and the real world, fostering lifelong learning and meaningful contributions. They denote the skills, competencies and high-level qualities that a student should acquire during their university education. Apart from gathering content knowledge, these attributes go beyond the assimilation of information to its application in various contexts throughout a graduate's life. It aims in inculcating the art of critical thinking, problem solving, professionalism, leadership readiness, teamwork, communication skills and intellectual breadth of knowledge. The University of Kerala envisages to pave the path in guiding the student's journey to shape these attributes uniquely, making them integral to personal growth and success in various spheres of life. The University strives to ensure that these graduate attributes are not just checkboxes, but they play a pivotal role in shaping the students into capable, compassionate and responsible individuals with a high degree of social responsibility.

Programme Outcomes (PO)

No.	Programme Outcomes (POs)
PO-1	 Critical thinking analyze information objectively and make a reasoned judgment draw reasonable conclusions from a set of information, and discriminate between useful and less useful details to solve problems or make decisions identify logical flaws in the arguments of others evaluate data, facts, observable phenomena, and research findings to draw valid and relevant results that are domain-specific
PO-2	 Complex problem-solving solve different kinds of problems in familiar and no-familiar contexts and apply the learning to real-life situations analyze a problem, generate and implement a solution and to assess the success of the plan understand how the solution will affect both the people involved and the surrounding environment
PO-3	 Creativity produce or develop original work, theories and techniques think in multiple ways for making connections between seemingly unrelated concepts or phenomena add a unique perspective or improve existing ideas or solutions generate, develop and express original ideas that are useful or have values
PO-4	 Communication skills convey or share ideas or feelings effectively use words in delivering the intended message with utmost clarity engage the audience effectively be a good listener who are able to understand, respond and empathize with the speaker confidently share views and express himself/herself
PO-5	 Leadership qualities work effectively and lead respectfully with diverse teams build a team working towards a common goal motivate a group of people and make them achieve the best possible solution. help and support others in their difficult times to tide over the adverse situations with courage

PO-6	 Learning 'how to learn' skills acquire new knowledge and skills, including 'learning how to learn skills, that are necessary for pursuing learning activities throughout life, through self-paced and self-directed learning work independently, identify appropriate resources required for further learning acquire organizational skills and time management to set self-defined goals and targets with timelines inculcate a healthy attitude to be a lifelong learner
PO-7	 Digital and technological skills use ICT in a variety of learning and work situations, access, evaluate, and use a variety of relevant information sources use appropriate software for analysis of data understand the pitfalls in the digital world and keep safe from them
PO-8	 Value inculcation embrace and practice constitutional, humanistic, ethical, and moral values in life including universal human values of truth, righteous conduct, peace, love, nonviolence, scientific temper, citizenship values formulate a position/argument about an ethical issue from multiple perspectives identify ethical issues related to work, and follow ethical practices, including avoiding unethical behaviour such as fabrication, falsification or misrepresentation of data, or committing plagiarism, and adhering to intellectual property rights adopt an objective, unbiased, and truthful actions in all aspects of work

Programme Specific Outcomes (PSO)

No.	Upon completion of the programme the graduate will be able to	PO No.
PSO-1	Students will demonstrate a comprehensive understanding of fundamental biochemical principles, including the structure and function of biomolecules, enzymes, metabolic pathways, and the molecular basis of cellular processes.	2

PSO-2	Students will possess advanced laboratory skills necessary for employability, analysis, biochemical research and application of clinical biochemistry in disease diagnosis.	6
PSO-3	Students will be able to communicate and critically evaluate scientific literature and apply biochemical principles to solve real- world problems in areas such as medicine, nutrition and dietetics, forensics, nanobiotechnology, agriculture and environmental science.	
PSO-4	Students will acquire core knowledge in the basic areas of biochemistry, as well as horizontal knowledge in related life science fields to pursue either higher education or employment in various fields, or entrepreneurship.	2,4

Members of the Board of studies in Biochemistry and teachers participated in the syllabus preparation in FYUGP 2024

- 1. Prof. A. Helen. Chairperson, Department of Biochemistry, University of Kerala
- 2. Prof. Annie Abraham, Rtd. Professor, University of Kerala
- 3. Prof. Ganga Prasad A, Rtd. Professor, University of Kerala
- 4. Prof. Padmakumaran Nair KG, Professor, NSS College, Panthalam
- 5. Dr. Sindhu Rani JA, Associate Professor, NSS College, Nilamel
- 6. Dr. Arun A Rauf, Associate Professor, University of Kerala
- 7. Dr. Biju PG, Assistant Professor, University of Kerala
- 8. Dr. Radhika A, Associate Professor, Govt. College, Kariavattom
- 9. Dr. Arun U, Assistant Professor, Govt. Arts & Science College, Kulathoor
- 10. Mr. Vishnu SL, Assistant Professor, SN College for Women, Kollam
- 11. Dr. Rejiya CS, Academic Council Member, Assistant Professor, Sree Ayyappa College, Eramallikkara
- 12. Dr. C. R. Dhanya, Associate Professor, Govt. College, Kariavattom
- 13. Dr. Chithra V, Assistant Professor, NSS College, Panthalam
- 14. Dr. Anila L, Associate Professor, NSS College, Nilamel
- 15. Dr. Sini H, Associate Professor, Govt. College, Kariavattom
- 16. Dr. Boban PT, Associate Professor, Govt. College, Kariavattom
- 17. Dr. Hari Sankar HS, Assistant Professor, TKM College of Arts & Science, Kollam
- 18. M.S. Soumya, Assistant Professor, TKM College of Arts & Scinece, Kollam
- 19. Dr. Vinod BS, Assistant Professor, S.N. College, Kollam
- 20. Dr. Ambili S, Assistant Professor, S.N. College, Kollam
- 21. Dr. Sheena Philip, Assistant Professor, University College, Palayam

- 22. Dr. Reji Susan Biju AS, A J College of Science & Technology, Thonnakkal
- 23. Dr. Joicy Abraham, A J College of Science & Technology, Thonnakkal
- 24. Dr. Swathy SS, A J College of Science & Technology, Thonnakkal
- 25. Dr. Manju L, Assistant Professor, St. Xaviers College, Thumba
- 26. Dr. Jisha S, Assistant Professor, Bishopmore College, Mavelikara, Alappuzha
- 27. Dr. Lekshmi Vijayanath, Assistant Professor & HOD, Emmanuel College, Vazhichal
- 28. Ms. Bijila V.X, Assistant Professor, Emmanuel College, Vazhichal
- 29. Ms. Reni Christabel HP, Assistant Professor, Emmanuel College, Vazhichal
- 30. Ajitha Nair VA, Assistant Professor, Emmanuel College, Vazhichal
- 31. Dr. Nisha V R, Assistant Professor, Emmanuel College, Vazhichal
- 32. Ms. Anupama SS, Assistant Professor, Women's College, Thiruvananthapuram
- 33. Dr. Remya, Assistant Professor, Assistant Professor, SN College for Women, Kollam
- 34. Dr. Manju C.S, Assistant Professor, Govt. Arts & Science College, Kulathoor

COURSE CONTENT

Year of Admission: 2024Discipline: FYUGP Biochemistry

Sl No	Semester	Course code	Course Title	L: T: P : HOURS
1.	Ι	UK1DSCBCH100	Basic elements of biochemistry	3: 0: 1, 75 hrs
2.	I	UK1DSCBCH101	Foundations of biochemistry	3: 0: 1, 75 hrs
3.	Ι	UK1DSCBCH102	Origin of life	3: 0: 1, 75 hrs
4.	Ι	UK1DSCBCH103	Biochemical and biophysical aspects of life	3: 0: 1, 75 hrs
5.	Ι	UK1DSCBCH104	Physical aspects of biochemistry	3: 0: 1, 75 hrs
6.	Ι	UK1DSCBCH105	Cellular biochemistry	3: 0: 1, 75 hrs
7.	Ι	UK1MDCBCH100	Biochemistry of contagious diseases: current scenario	3: 0: 0, 45 hrs
8.	Ι	UK1MDCBCH101	Nutritional biochemistry for health & fitness	3: 0: 0, 45 hrs
9.	Ι	UK1MDCBCH102	Biochemical applications in forensics	3: 0: 0, 45 hrs
10.	II	UK2DSCBCH100	Introduction to biomolecules	3: 0: 1, 75 hrs
11.	II	UK2DSCBCH101	Structure of biomolecules	3: 0: 1, 75 hrs
12.	II	UK2DSCBCH102	Biomolecules in living organisms	3: 0: 1, 75 hrs
13.	II	UK2DSCBCH103	Biochemistry of health and diseases	3: 0: 1, 75 hrs
14.	II	UK2DSCBCH104	Biochemical aspects of metabolic regulators	3: 0: 1, 75 hrs
15.	II	UK2DSCBCH105	Molecules of life	3: 0: 1, 75 hrs
16.	II	UK2MDCBCH100	Biochemistry of lifestyle diseases	3: 0: 0, 45 hrs
17.	II	UK2MDCBCH101	Biochemistry of food adulteration	3: 0: 0, 45 hrs

18.	II	UK2MDCBCH102	Application of Artificial intelligence in Biomedical science	3: 0: 0, 45 hrs
19.	II	UK2MDCBCH103	Biochemical aspects of emerging and remerging diseases	3: 0: 0, 45 hrs
20.	III	UK3DSCBCH200	Properties of biomolecules	3: 0: 1, 75 hrs
21.	III	UK3DSCBCH201	Enzymes and enzyme kinetics	3: 0: 1, 75 hrs
22.	III	UK3DSCBCH202	Sports Nutrition	4: 0: 0, 60 hrs
23.	III	UK3DSCBCH203	Biosafety, bioethics and IPR	4: 0: 0, 60 hrs
24.	Ш	UK3DSCBCH204	Functional foods and nutraceuticals	3: 0: 1, 75 hrs
25.	III	UK3DSCBCH205	Phytochemistry	3: 0: 1, 75 hrs
26.	III	UK3DSCBCH206	Properties of Biomolecules and Enzymology	3: 0: 1, 75 hrs
27.	III	UK3DSEBCH200	Nutrition for Human Health	4: 0: 0, 60 hrs
28.	III	UK3DSEBCH201	Introduction to nanobiotechnology	4: 0: 0, 60 hrs
29.	III	UK3DSEBCH202	Nanobiotechnology	4: 0: 0, 60 hrs
30.	III	UK3VACBCH200	Basic dietetics	3: 0: 0, 45 hrs
31.	III	UK3VACBCH201	Drug Abuse and Prevention	3: 0: 0, 45 hrs
32.	III	UK3VACBCH202	Fermentation technology	2: 0: 1, 60 hrs
33.	IV	UK4DSCBCH200	Enzymology	3: 0: 1, 75 hrs
34.	IV	UK4DSCBCH201	Cell Biology	4: 0: 0, 60 hrs
35.	IV	UK4DSCBCH202	Specialized tissues and membranes	4: 0: 0, 60 hrs
36.	IV	UK4DSCBCH203	Plant Biochemistry	3: 0: 1, 75 hrs
37.	IV	UK4DSCBCH204	Techniques in Biochemistry	3: 0: 1, 75 hrs
38.	IV	UK4DSEBCH200	Lifestyle diseases and dietary management	4: 0: 0, 60 hrs
39.	IV	UK4DSEBCH201	Industrial enzymes	3: 0: 1, 75 hrs

40.	IV	UK4SECBCH200	Enzyme: Isolation and analysis	2:0:1, 60 hrs
41.	IV	UK4SECBCH201	Diagnostic Biochemistry	2:0:1, 60 hrs
42.	IV	UK4VACBCH200	Play of hormones	3: 0: 0, 45 hrs
43.	IV	UK4VACBCH201	Science journalism	3: 0: 0, 45 hrs
44.	IV	UK4VACBCH202	Ecology and environmental studies	3: 0: 0, 45 hrs
45.	IV	UK4INTBCH200	Internship	1/2 months
46.	V	UK5DSCBCH300	Bioenergetics and carbohydrate metabolism	3: 0: 1, 75 hrs
47.	V	UK5DSCBCH301	Nucleic acid, lipid and amino acid metabolism	3: 0: 1, 75 hrs
48.	V	UK5DSCBCH302	Human physiology and immunology	3: 0: 1, 75 hrs
49.	V	UK5DSCBCH303	Molecular Biology	3: 0: 1, 75 hrs
50.	V	UK5DSCBCH304	Environmental Biochemistry	4: 0: 0, 60 hrs
51.	V	UK5DSCBCH305	Cancer biology	4: 0: 0, 60 hrs
52.	V	UK5DSEBCH300	Inborn errors of metabolism	3: 0: 1, 75 hrs
53.	V	UK5DSEBCH301	Food and Diary Science	3: 0: 1, 75 hrs
54.	V	UK5DSEBCH302	Intermediary Metabolism and Bioenergetics	3: 0: 1, 75 hrs
55.	V	UK5SECBCH300	Basic Techniques in Biochemistry	2: 0: 1, 60 hrs
56.	V	UK5SECBCH301	QAQC	2: 0: 1, 60 hrs
57.	VI	UK6DSCBCH300	Classical and molecular genetics	3: 0: 1, 75 hrs
58.	VI	UK6DSCBCH301	Clinical biochemistry and molecular diagnostics	3: 0: 1, 75 hrs
59.	VI	UK6DSCBCH302	Endocrinology	4: 0: 0, 60 hrs

60.	VI	UK6DSCBCH303	Clinical biochemistry	3: 0: 1, 75 hrs
61.	VI	UK6DSCBCH304	Advanced biochemistry	4: 0: 0, 60 hrs
62.	VI	UK6DSCBCH305	General Informatics and Bioinformatics	3: 0: 1, 75 hrs
63.	VI	UK6DSEBCH300	Microbial Biochemistry	3: 0: 1, 75 hrs
64.	VI	UK6DSEBCH301	Molecular Immunology	3: 0: 1, 75 hrs
65.	VI	UK6DSEBCH302	Physiology, Nutrition and Endocrinology	3: 0: 1, 75 hrs
66.	VI	UK6SECBCH300	Analytical biochemistry	2: 0: 1, 60 hrs
67.	VI	UK6SECBCH301	Cell culture techniques	2: 0: 1, 60 hrs
68.	VII	UK7DSCBCH400	Cell Signalling	4: 0: 0, 60 hrs
69.	VII	UK7DSCBCH401	Advanced techniques in biochemistry	3: 0: 1, 75 hrs
70.	VII	UK7DSCBCH402	Research Methodology	4: 0: 0, 60 hrs
71.	VII	UK7DSCBCH403	Genetic Engineering	3: 0: 1, 75 hrs
72.	VII	UK7DSCBCH405	Neurobiochemistry and Sensory Physiology	4: 0: 0, 60 hrs
73.	VII	UK7DSCBCH406	Omics	4: 0: 0, 60 hrs
74.	VII	UK7DSEBCH400	Tissue Engineering and 3D printing	4: 0: 0, 60 hrs
75.	VII	UK7DSEBCH401	Plant tissue culture	4: 0: 0, 60 hrs
76.	VIII	UK8DSCBCH400	Developmental Biology	4: 0: 0, 60 hrs
77.	VIII	UK8DSCBCH401	Pharmacology	3: 0: 1, 75 hrs
78.	VIII	UK8DSCBCH402	Nanomaterials for Biomedical Applications	3: 0: 1, 75 hrs
79.	VIII	UK8RPHBCH400	Research Project	6 MONTHS
79.	VIII	UK8RPHBCH400	Research Project	6 MON

University of Kerala

Discipline	BIOCHEMISTRY				
Course Code	UK1DSCBCH100				
Course Title	BASIC ELEMENT	IS OF BIOC	HEMISTRY	Y	
Type of Course	DSC1 (Major)				
Semester	Ι				
Academic	100-199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	Basic knowledge in	biology and	chemistry		
Course	The course provides an overview of the biochemical and biophysical aspects				
Summary	within living organisms. It also delivers concepts of laboratory procedures &				
	practices to document, implement and maintain good laboratory practice.				

Detailed Syllabus:

Module	Unit	Content	Hrs			
Ι		FUNDAMENTAL UNITS OF LIFE				
	1	Basic experiments- Miller Urey Experiment, Joseph Priestley experiment				
	2	Discovery of Cell, Cell theory (elementary ideas)				
	3	General Structure of Virus, Bacteria, Plant and Animal cell				
	4	Characteristics that distinguish prokaryotic and eukaryotic cell (diagrammatic illustration)				
II		FOUNDATIONS OF LIFE				
	5	Properties of water, water as a universal solvent, chemistry of water.Bronsted theory of acids and bases, concepts of pH, pOH, and calculations based on pH and pOH.				
	6	Buffer (mention biological buffers). Henderson Hasselbalch equation (derivation and significance only)				
	7	Macroelements - C, H, O, N, S, Na, Mg, Ca, P, K, Cl (Occurence in biomolecules with an example each)				
	8	Microelements - Cu, I, Fe, Zn, Se (Occurence in biomolecules with an example each)				
III		CHEMICAL LINKAGES	6			
	9	Biological significance of non-covalent- ionic, electrostatic, van der Waals force, hydrogen and hydrophobic interaction				

	10	Biological significance of covalent bonds- Peptide, glycosidic, ester, phosphodiester and disulfide linkages	
IV		COLLOIDS AND SOLUTIONS	7
	11	Properties and types of colloids (lyophobic and lyophilic colloids)	
	12	Diffusion, osmosis and types of solutions-hypotonic, hypertonic and	
	13	isotonic solutions (definition only) Donan membrane equilibrium	
	15	Biological significance of osmosis, diffusion, colloids and emulsifying agents	
V		GENETIC MATERIAL	12
	14	Nature of genetic material (DNA and RNA)	
	15	Basic types and functions of DNA and RNA	
	16	Classical experiments to prove DNA as genetic material (Griffith's Experiment, Avery-MacLeod-McCarty experiment, Hershey Chase experiment)	
	17	Experiment in Tobacco mosaic virus to prove RNA as genetic material	
	18	Examples of microorganisms containing DNA & RNA as genetic material	
		PRACTICALS	30
	19	Introduction to Lab Safety	15
		• Awareness of good laboratory practice	
		• General lab safety rules	
		 Laboratory safety and management of hazards in the laboratory Familiarization with glassware/equipment (light microscope, pH, electronic balance, distillation unit, thermostatic & boiling water bath) 	
	20	Activities	15
		Logbook/register maintenance	
		• Labeling of chemicals/glasswares	
		 Preparing SOP of equipments 	
		• Preparation of solutions (percentage, normal, molar solutions)	
		Preparation of dilute solutions from stock solutions	
		• Determination of pH	
		• Laboratory visit to a recognized institute	
		*Lab records to be maintained	

Course Outcomes

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe the basic aspects of cells and distinguish different types of cell	R, U	1
CO-2	Explain the significance of water and buffers and calculate acidity and basicity of buffers and solutions	R, U, Ap	1,2

CO-3	Illustrate the importance of macro- and micro- elements, chemical linkages, diffusion, osmosis and colloids in the biological system	R, U	2,3
CO-4	Compare and contrast the different genetic materials in living organisms	R, U	2.3.4
CO-5	Restate good laboratory practices, carry out safe laboratory experiments and prepare solutions & buffers.	R,U, Ap	3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: BASIC ELEMENTS OF BIOCHEMISTRY

Credits: 3:0:1 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1	R, U	F,C	L,T	
2	2	1,2	R, U, Ap	F,C	L,T	
3	3	2,3	R, U	F,C	L,T	
4	4	2,3,4	R, U	F,C	L,T	
5	5	3,4	R,U, Ap	C,P	L,T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PS O6	PO 1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-			2	2				
CO 2	2	3	-	-			2	2		2		3
CO 3	-	2	3				2	2		2		
CO 4		1	2	3			2	2				2
CO 5			2	3			2	2		2		

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		

REFERENCES

- Nelson D. L., Cox M. M. (2021) Lehninger Principles of Biochemistry, (8th ed.) W.H. Freeman &. Co Ltd.
- Biochemistry (2004) by Donald Voet, Judith G. Voet Publisher: John Wiley & Sons Inc ISBN: 047119350X ISBN-13: 9780471193500, 978-0471193500.
- Biochemistry by Lubert Stryer, 4th Edition, W.H Freeman and Company ISBN 0-7167-2009-4.2.
- J L Jain, Sunjay Jain, Nitin Jain, Fundamentals of Biochemistry Paperback 1 January 2016; ISBN : 9788121924535
- Jonathan B. Losos, Peter H. Raven, Susan R. Singer, Kenneth A. Mason, Biology, 2022, ISBN 9781260169614
- Introductory Practical biochemistry, S. K. Sawhney & Randhir Singh (eds) Narosa Publishing House, New Delhi, ISBN 81-7319-302-9.
- Experimental Biochemistry: A Student Companion, Beedu Sasidhar Rao & Vijay Despande(ed). I.K International Pvt. LTD, NewDelhi. ISBN 81-88237-41-8.

University of Kerala

Discipline	BIOCHEMISTRY								
Course Code	UK1DSCBCH101	UK1DSCBCH101							
Course Title	FOUNDATIONS O	F BIOCHEM	1ISTRY						
Type of Course	DSC2	DSC2							
Semester	Ι	Ι							
Academic	100 - 199	100 - 199							
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	_	2 hours	5				
Pre-requisites	Basic knowledge in biology and chemistry								

Course	Students will be able to investigate the chemical reactions and molecular
Summary	interactions that take place within living things after completing the course. It looks at the minute aspects of the molecules that comprise life,
	particularly nucleic acids. Additionally, they will be able to comprehend and interpret good laboratory practice (GLP) and advance their knowledge and abilities in the areas of documenting, putting into practice, and maintaining a technical and quality management system for laboratories that is based on GLP.

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		FUNDAMENTAL UNITS OF LIFE	15
	1	Definition of Biochemistry and how it explores the molecular logic	
		of life.	
	2	Cell as the structural and functional unit of living organisms,	
	3	Differences between prokaryotic and eukaryotic cell	
	4	Outline of the different prokaryotic and eukaryotic cells' organelles	
Π		CHEMICAL BONDS & FOUNDATIONS OF LIFE	15
	5	Definition & Types of molecular bonds	
	6	Bonds common in biomolecules- Characteristics of ester,	
		hydrogen, ionic, van der Waals, and covalent bonds	
	7	Water's special qualities, its use as a universal solvent, Water's	
		chemical composition	
	8	Bronsted theory of acids and bases,	
		pH and pOH principles, computations based on pH and pOH, and	
		the	
	9	Elements in various combinations comprise all matter on Earth,	
		including living things (carbon, hydrogen, nitrogen, oxygen,	
		sulfur, and phosphorus).	
		GENETIC FOUNDATION	15
III	10	Definition of genetic material, the central dogma	
	11	Properties, Types (DNA & RNA)	
	12	General introduction without structure	
	13	Classical experiments to prove DNA as genetic material (Griffith's	
		Experiment, Meselson-Stahl experiment, Hershey Chase Blender	
		experiment.	
	14	Examples of microorganism containing DNA & RNA as genetic	
		material	
IV	I	NTRODUCTION TO LABORATORY AND LAB EQUIPMENT	15
	15	Awareness of good laboratory practices.	
	16	Familiarization with glassware and equipment used in biochemistry	
	_	student's laboratory, (study the functions of light microscope)	
	17	Use of balances-common, analytical, and electronic balances-	
		Preparation of standard solutions	
V		GENERAL LABORATORY PRACTICES	15
	18	General lab safety rules	
	1	· · ·	1

19	Laboratory safety and management of hazards in the laboratory.							
-		ł						
20		20						
		30						
21								
pH, electronic balance, distillation unit, thermostatic & boiling								
22								
	Activities							
	Logbook/register maintenance							
	Labeling of chemicals/glasswares							
	• Preparing SOP of equipments							
	• Preparation of solutions (percentage, normal, molar solutions)							
	• Preparation of dilute solutions from stock solutions							
	• Determination of pH							
	• Laboratory visit to a recognized institute							
	*Lab records to be maintained							
	20 21 21 22	20 Laboratory visit to a recognized institute PRACTICALS 21 Introduction to Lab Safety • Awareness of good laboratory practice • General lab safety rules • Laboratory safety and management of hazards in the laboratory • Familiarization with glassware/equipment (light microscope, pH, electronic balance, distillation unit, thermostatic & boiling water bath) 22 ACTIVITIES Activities • • Labeling of chemicals/glasswares • Preparing SOP of equipments • Preparation of solutions (percentage, normal, molar solutions) • Preparation of pH • Laboratory visit to a recognized institute						

Course Outcomes

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe cell organelles and describe their structure and function.	U	1,2
CO-2	Describe the basic chemical and biological foundations that lead to origin of life on Earth	R, U	1,2
CO-3	Identify the genetic and evolutionary foundations of Biochemistry	U,	3
CO-4	Know appropriate methods in the laboratory	Ар	3
CO-5	Develop the knowledge necessary to conduct accurate and secure laboratory experiments.	U, Ap	4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Fundamentals of Biochemistry

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1,2	U	F, C	LT	
2	2	1,2	R U	F, C	LT	
3	3	3	U	F, C	LT	
4	4	3	Ар	Р	LT	Р
5	5	4	U,Ap	F, C	LT	Р

Credits: 3:0:1 (Lecture: Tutorial: Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	-	-	-	-		2				
CO 2	2	3	-	-	-	-		2				
CO 3	_	_	1	-	_	_	2					
CO 4	_	_	2	3	_	_	1	2				
CO 5	-	1	-	-	-	-						3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

			Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- Nelson D. L., Cox M. M. (2021) Lehninger Principles of Biochemistry, (8th ed.) W.H. Freeman &. Co Ltd.
- Biochemistry (2004) by Donald Voet, Judith G. Voet Publisher: John Wiley & Sons Inc ISBN: 047119350X ISBN-13: 9780471193500, 978-0471193500.
- Biochemistry by Lubert Stryer, 4th Edition, W.H Freeman and Company ISBN 0-7167-2009-4.2.
- J L Jain, Sunjay Jain, Nitin Jain, Fundamentals of Biochemistry Paperback 1 January 2016; ISBN : 9788121924535
- Jonathan B. Losos, Peter H. Raven, Susan R. Singer, Kenneth A. Mason, Biology, 2022, ISBN 9781260169614.

University of Kerala

Discipline	BIOCHEMISTRY							
Course Code	UK1DSCBCH102							
Course Title	Origin of Life							
Type of Course	DSC3							
Semester	Ι							
Academic	100-199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	Basic knowledge in biology and chemistry							
Course	The course provides a brief overview of the molecular logic & evolution							
Summary	of life. The course outlines fundamentals of cell, genetic material and							
	chemical interaction	s in the livin	g system.					

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		MOLECULAR LOGIC OF LIFE	10
	1	Oparin-Haldane hypothesis, Miller-Urey experiment	
	2	Priestley's experiment on photosynthesis	
	3	Basic aspects of biochemistry as the molecular logic of living	
		organisms (Elementary concept)	
	4	Characteristics of living matter	
II		EVOLUTION	9
	5	Brief overview of Lamarckism and Darwin's theory	
	6	Natural selection- examples: DDT resistant mosquitoes, Metal tolerance	
		in grasses, Industrial melanism	
	7	Phylogenetic tree (basic concept)	
III		CELL	10
	8	Fundamentals of cell theory	
	9	Basic structure of virus, bacteria, plant and animal cell	
	10	Function of cell organelles (Mitochondria, chloroplast, nucleus). Basic	
		concept of endosymbiosis	
IV		BIOLOGICAL INTERACTIONS	6
	11	Covalent interactions: Peptide bond, glycosidic bond, ester bonds	
	12	Non-covalent interactions: Ionic, van der Waals, hydrogen and	

12	Non-covalent interactions: Ionic, van der Waals, hydrogen and	
	hydrophobic interaction	

V		GENETIC MATERIAL	10
	13	RNA world, types and functions of RNA	
	14	Types and functions of DNA	
	15	RNA and DNA viruses in emerging infections (brief overview)	
		PRACTICAL	30
	16	Introduction to Lab Safety	
		 Awareness of good laboratory practice General lab safety rules Laboratory safety and management of hazards in the laboratory Familiarization with glassware/equipment (light microscope, pH, electronic balance, distillation unit, thermostatic & boiling water bath) 	
	17	 Activity Logbook/register maintenance Spot test-Identification and brief explanation of different subcellular organelles Book review of Darwins 'Origin of Life' Laboratory visit to a recognized lab Visit to Natural History Museum Preparation of charts/models of cell, DNA, RNA, virus *Lab records to be maintained 	

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe the chemical and molecular logic of life	R, U	1
CO-2	Summarize the basic concepts of origin of life and evolution	R, U	1,3
CO-3	Compare the structural and functional aspects of different types of cells and cellular organelles	R, U	1
CO-4	Explain the significance of chemical interactions and genetic material in the living system.	R, U	3,4
CO-5	Discuss good laboratory practices	Ар	3.4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-C	Create
---	--------

Name of the Course: Origin of Life Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
	1	1	R, U	F, C	LT	
	2	1,3	R, U	F, C	LT	
	3	1	R, U	F, C	LT	
	4	3,4	R, U	F, C	LT	
	5	3,4	Ар	р	L	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-	-	-		2				
CO 2	2		3	-	-	-	2	3				
CO 3	2	-	-	-	-	-		2				
CO 4	-	-	2	3	-	-	3	2		2		
CO 5	-	-	2	3	-	-		2		3		3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low

2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- Lehninger Principles of Biochemistry, Fourth Edition by David L. Nelson, Michael M.Cox. Publisher: W. H. Freeman; Fourth Edition (April 23, 2004).
- Priciples of Biochemistry by Albert Lehninger, David L. Nelson, Michael M.Cox. Second edition
- Cell and Molecular Biology-Gerald Karp, John Wiley & Son, Inc. New York ISBN 978 0470-16961-2, 5th Edition.
- Biochemistry by Lubert Stryer, 4th Edition, W.H Freeman and Company ISBN 0-7167-2009-4.
- A textbook of practical physiology Eighth Edition CL Ghai MBBS MD

University of Kerala

Discipline	BIOCHEMISTRY							
Course Code	UK1DSCBCH103							
Course Title	Biochemical and B	iophysical A	spects of Li	fe				
Type of Course	DSC 4							
Semester	Ι	Ι						
Academic	100-199	100-199						
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	Basic knowledge in	biology and	chemistry					
Course	The course gives an	outline of t	he biochemi	cal and biopl	hysical aspects			
Summary	within the living syst	tem. It also d	elivers conce	pts of laborat	ory procedures			
	& practices to doc	cument, imp	lement and	maintain go	ood laboratory			
	practice.							

Detailed Syllabus:

Module	Unit	Content	Hrs	
Ι	ACIDS, BASES AND BUFFERS			
	1	Definition of acids and bases (Arrhenius, Bronsted-Lowry and Lewis		
		concept		
	2	Concept of pH and pOH, pH scale		
	3	Buffers- Definition and biologically important buffers		
		COLLOIDS AND SOLUTIONS	12	
	4	Colloids- Definition and properties-kinetic, electric, optical and physical,		
		Types of colloids- lyophobic and lyophilic, Emulsions and emulsifying		
		agents, Biological applications of colloids		
	5	Methods of expressing concentration-Normality, Molarity, Molality and		
		percentage solution		
	6	Osmosis- Definition and biological significance		
	7	Diffusion- Definition and biological significance		
	8	Types of solutions- hypotonic, hypertonic and isotonic solutions		
		(definition only)		
III		CHEMICAL INTERACTIONS	7	

9	Intra and inter-molecular interactions in biological system- Non-	
	covalent- ionic, electrostatic, Van der Waals force, hydrogen and	
	hydrophobic interaction (Biological significance)	

	10	Covalent bonds- Peptide, glycosidic, ester, phosphodiester and disulfide	
		linkages (Biological significance)	
IV		CELL	10
	11	Discovery of Cell, Cell theory (elementary ideas)	
	12	Structural organization of virus, bacteria, plant and animal cell (basics only)	
	13	Characteristics that distinguish prokaryotic and eukaryotic cell	
		(diagrammatic illustration)	10
V		BIOCHEMICAL SPLENDORS	10
	14	Bioluminescence- firefly, marine organisms and glow worm (basic aspects only)	
	15	Biopigments- Pigments in skin, hair, eye and blood, plant pigments- photosynthetic pigments & accessory pigments, algal bloom (basic aspects only)	
	16	Green fluorescent protein (elementary aspects only)	
		PRACTICAL	30
	17	Introduction to Lab Safety	
		 Awareness of good laboratory practice 	
		• General lab safety rules	
		• Laboratory safety and management of hazards in the laboratory	
		• Familiarization with glassware/equipment (light microscope, pH, electronic balance, distillation unit, thermostatic & boiling water bath)	
	18	Activities	
		Logbook/register maintenance	
		• Labeling of chemicals/glasswares	
		• Preparation of solutions (percentage, normal, molar solutions)	
		 Preparation of dilute solutions from stock solutions 	
		 Laboratory visits to a recognized institute 	
		*Lab records to be maintained	

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Summarize the significance of pH and buffers in biological system	R, U	1
CO-2	Illustrate the importance of chemical linkages, diffusion, osmosis and colloids in the biological system	R, U	1,2

CO-3	Review the basic aspects of cells and distinguish different types of cell	R, U	1,2
CO-4	Discuss the interesting biochemical phenomenon in the living world	R, U	3
CO-5	Illustrate good laboratory practices, carry out safe laboratory experiments and prepare solutions & buffers.	R, U, Ap	2,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Biochemical and Biophysical Aspects of Life

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1	R, U	F, C	LT	
2	2	1,2	R, U	F, C	LT	
3	3	1,2	R, U	F, C	LT	
4	4	3	R, U	F, C	LT	
5	5	2,3	R, U, Ap	Р	LT	Р

Credits: 3:0:1 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PSO 2	PSO 3	PSO 4	PSO 5	PS O6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	-	-	-	-		2				
CO 2	2	3	-	-	-	-		2				3
CO 3	1	2	-	-	-	-		3				3
CO 4	-	-	3	-	-	-	2	2				
CO 5	-	-	2	3	-	-	2	2		3		3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		

References

- 1. Essentials of Physical Chemistry by Arun Bahl, and BS Bahl and GD Tuli.S. Chand & Company Ltd.ISBN-81-219-2978-4.
- 2. Fundamentals of Biochemistry by J. L. Jain, Sunjay Jain and Nitin Jain (2008) Publishers: S. Chand & Co Ltd ISBN: 81-219-2453-7.
- 3. Lehninger Principles of Biochemistry, Fourth Edition by David L. Nelson, Michael M.Cox.Publisher: W. H. Freeman; Fourth Edition (April 23, 2004).
- 4. Handbook of medical laboratory technique

University of Kerala

Discipline	BIOCHEMISTRY							
Course Code	UK1DSCBCH104							
Course Title	PHYSICAL ASPE	CTS OF BIO	OCHEMIST	'RY				
Type of Course	DSC 5	DSC 5						
Semester	Ι	Ι						
Academic	100 - 199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	Basic knowledge in	biology and	chemistry					
Course	The course lays a	foundation (of basic bio	chemistry and	d outlines the			
Summary	concepts of water, b	uffer system	s, colloids, b	asic separatio	n methods and			
	radiation biology.							

Detailed Syllabus:

Module	Unit	Content	Hrs
		Colloids and solutions	10
	1	Classification and biological significance of colloids	
I 2		Osmosis and diffusion (Definition and biological significance) Basics of Donnan Membrane Equilibrium	
	3	Isotonic, hypotonic, hypertonic and Iso-osmotic solutions, surface tension and viscosity	
	4	Structure and properties of water, Ionization of water, Concepts of acids and bases. pH & pOH	
	5	Buffers, Henderson Hasselbalch equation, Buffers in biological system and its biomedical importance	
		Bio-organic chemistry	8
	6	Introduction to major biomolecules and classification	
	7	Major types of Covalent bonds in biomolecules: Disulphide bonds, Peptide Bonds, Glycosidic bonds, Phosphodiester bonds	
II	8	Non covalent bonds and its biological significance: Hydrogen bond, Ionic bond, Hydrophobic bond, van der Waals forces)	
	9	Common Functional groups in biomolecules and their significance, Isomerism in biomolecules	

III		Biochemical Separation techniques	9
	10	Dialysis: Principle and procedure	

	11	Chromatography : Principle and procedure (Paper and TLC)	
	12	Electrophoresis: Principle and procedure (Agarose gel electrophoresis	
		and SDS PAGE)	
	13	Centrifugation: Principle and applications of Differential and density	
		gradient, Svedberg constant.	
IV		Colorimetry and spectrophotometry	9
	14	Beer Lambert's law, Molar extinction coefficient and absorption spectra.	
	15	Principle and instrumentation of Colorimetry and Spectrophotometry.	
	16	Applications of colorimetry and spectrophotometry in the field of	
		biochemistry	
		Basics of radiobiology	9
V	17	Radioactive isotopes- half life, important stable isotopes used in	
		biochemical research (³² P, ¹²⁵ I, ¹³¹ I, ⁶⁰ Co, ¹⁴ C, etc)	
	18	Classification of radiation damage, Effects of radiation in humans	
	19	Harmful effects of radiation, Stochastic and deterministic (non-	
		stochastic) effects	
			30
		Practical	30
	20	Practical	30
	20	Practical Basic laboratory practices	30
	20	 Practical Basic laboratory practices Weighing in chemical balance 	30
	20	 Practical Basic laboratory practices Weighing in chemical balance Preparation of solutions (Molar, Normal and Percentage 	30
	20	 Practical Basic laboratory practices Weighing in chemical balance Preparation of solutions (Molar, Normal and Percentage solutions) 	30
	20	 Practical Basic laboratory practices Weighing in chemical balance Preparation of solutions (Molar, Normal and Percentage solutions) Dilution from stock solution 	30
	20	 Practical Basic laboratory practices Weighing in chemical balance Preparation of solutions (Molar, Normal and Percentage solutions) Dilution from stock solution Preparation of Buffers and determination of pH. 	30
	20	 Practical Basic laboratory practices Weighing in chemical balance Preparation of solutions (Molar, Normal and Percentage solutions) Dilution from stock solution Preparation of Buffers and determination of pH. Demonstration of paper chromatography 	30
	20	 Practical Basic laboratory practices Weighing in chemical balance Preparation of solutions (Molar, Normal and Percentage solutions) Dilution from stock solution Preparation of Buffers and determination of pH. Demonstration of paper chromatography Verification of Beer Lambert's law and colorimetric estimation 	30
	20	 Practical Basic laboratory practices Weighing in chemical balance Preparation of solutions (Molar, Normal and Percentage solutions) Dilution from stock solution Preparation of Buffers and determination of pH. Demonstration of paper chromatography Verification of Beer Lambert's law and colorimetric estimation of concentration of unknown solution. 	30
	20	 Practical Basic laboratory practices Weighing in chemical balance Preparation of solutions (Molar, Normal and Percentage solutions) Dilution from stock solution Preparation of Buffers and determination of pH. Demonstration of paper chromatography Verification of Beer Lambert's law and colorimetric estimation 	30
	20	 Practical Basic laboratory practices Weighing in chemical balance Preparation of solutions (Molar, Normal and Percentage solutions) Dilution from stock solution Preparation of Buffers and determination of pH. Demonstration of paper chromatography Verification of Beer Lambert's law and colorimetric estimation of concentration of unknown solution. 	30

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Discuss the basics aspects and biological significance colloids and solutions	R, U	1
CO-2	Describe the concepts of important linkages in biomolecules	R, U	2
CO-3	Demonstrate and explain the basic techniques used in the field of biochemistry	R, U, Ap	3,4

CO-4	Explain the concepts of radiation biology	R, U	3,4
CO-5	Restate good laboratory practices, carry out safe laboratory experiments and prepare solutions & buffers.		3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Physical Aspects of Biochemistry

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1	R, U	F, C	LT	
2	2	2	R, U	F, C	LT	
3	3	3,4	R, U, Ap	F, C	LT	
4	4	3,4	R, U	F, C	LT	
5	5	3,4	R, U, Ap	F, C, P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	-	-	-	-		2				
CO 2	3	-	-	-	-	-		2				
CO 3	-	-	2	3	-	-	2	2		2		3
CO 4	-	-	1	3	-	-	2	2		2		3
CO 5	-		2	3	-	-		2		3		3

Correalation Levels:

Level	Correlation
	Nil
1	Slightly/Low
2	Moderate/Medium
3	Substantial/High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		

University of Kerala

Discipline	BIOCHEMISTRY					
Course Code	UK1DSCBCH105					
Course Title	Cellular Biochemis	try				
Type of Course	DSC 6					
Semester	Ι					
Academic	100-199					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3 hours	-	2 hours	5	
Pre-requisites	Basic knowledge in	biology and	chemistry			
Course	The course is design	ned to provid	le fundamen	tal ideas abou	it the structure	
Summary	and functions of cel	and functions of cells and their components. The course covers the basic				
	aspects of membra	ine transpor	t, cell cycle	e, cancer and	d cell culture	
	techniques.					

Detailed Syllabus:

Module	Unit	Content	Hrs	
Ι		Introduction to Cell	7	
	1	Discovery of cell, Cell theory (elementary ideas)		
	2	Structural organization of virus, bacteria, plant and animal cell (basics only)		
	3	Basic structure and function of cell organelles - nucleus, mitochondria, chloroplast, lysosome and Golgi complex.		
II	Transport across Membrane			
	4	Basic structure of cell membrane-Fluid Mosaic Model		
	5	Functions of plasma membrane		
	6	Composition of plasma membrane (elementary ideas)		
	7	Passive transport (diffusion, facilitated diffusion), Active transport, Exocytosis and endocytosis. (Definition and basic concepts only)		
III		Cell Cycle	12	
	8	Cell cycle events		

	9	Significance of cell division	
	10	Mitosis: Phases involved	
	11	Meiosis: Phases involved	
		Cell Biology of Cancer	10
	12	Hallmarks of cancer	
	13	Different between normal cells and cancer cells	
	14	Benign tumor vs malignant tumor	
	15	Types and stages of cancers (basic ideas only)	
		Basics of Cell Culture	9
	16	Basic requirements in a cell culture lab	
V	17	Aseptic conditions, basic sterilization methods and common cell culture contaminants	
	18	Cell culture media and supplements (basic ideas only)	
	19	Primary cell culture (definition) and example	
	20	Brief concept of cell lines- HeLa as example	
		Practicals	30 hrs
	21	Blood Smear Preparation,	
		• Identification of mitotic stages (slide/figure)	
		• Familiarisation with equipments and culture wares related to cell culture	
		• Demonstration of sterilization techniques used in cell culture lab (any one).	
	22	Activities	
		• Preparation chart for cell division	
		• Visit to cell culture lab	
		* Lab record has to be maintained	

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Discuss the basic structural and functional aspects of cell	R,U	1
CO-2	Describe the structure and function of plasma membrane and basic types of transport across the membrane	R, U	1,4
CO-3	Summarise the basic concepts of cell division and cancer	R, U	3
CO-4	Illustrate the elementary concepts in cell culture	R, U	3,4
CO-5	Explain the concept of cell lines and cell culture media	R, U	3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1	R,U	F, C	LT	
2	2	1,4	R,U	F, C	LT	
3	3	3	R,U	F, C	LT	
4	4	3,4	R,U	F, C	LT	
5	5	3,4	R,U	F, C	LT	Р

Name of the Course: Cellular Biochemistry Credits: 3:0:1 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	P S O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-	-	-		2				
CO 2	2		-	3	_	_		2				3
CO 3	-	-	2	-	-	-	1	2				
CO 4	_	-	2	3	-	_	1	2		2		3
CO 5	3	-	-	-	-	_		2				

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- Biochemistry by Lubert Stryer, 4th Edition, W.H Freeman and Company ISBN 0-7167-2009-4.
- Cell and Molecular Biology-Gerald Karp, John Wiley & Son, Inc. New York ISBN 9780470-16961-2, 5th Edition.
- Principles of Genetics by D. Peter Snustad and Michael J Simmons, John Wiley & Son, Inc., ISBN 0-471-44180-5, 3rd Edition.
- Cell and Molecular Biology by De Robertis & amp; De Robertis, jr.
- Molecular Cell Biology by Lodish, H, Baltimore D, Berk A, Zipursky ST, Matsudaira P, Darnell J.
- The cell: A molecular approach by Geoffrey M Cooper and Robert E Hausman.

University of Kerala

Discipline	BIOCHEMISTRY								
Course Code	UK1MDCBCH100								
Course Title	Biochemistry of Contagious Diseases: Current Scenario								
Type of Course	MDC1								
Semester	Ι								
Academic Level	100 - 199								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	3	2 hours	-	1 hours	3				
Pre-requisites	Nil		· · · · ·						
Course	The course outlines	The course outlines the common contagious diseases prevalent in the							
Summar	society and strategie	s employed t	for the preven	ntion and mar	nagement of the				
у	disease								

Module	Unit	Content	Hrs		
Ι		Viral Diseases	6		
	1	Chickenpox, Hepatitis (A, B and C), Nipah, Covid, Bird flu, Dengue,			
		Mumps and AIDS: Cause, symptoms, mode of transmission			
		(Elementary ideas only)			
Π	Bacterial Diseases				
	2	Cause, symptoms, mode of transmission of tuberculosis, leptospirosis and typhoid (Elementary ideas only)			
III		Parasitic Diseases	6		
	3	Malaria- causative agent, symptoms, vectors, mode of transmission and diagnosis (Elementary ideas only)			
	4	Filariasis– causative agent, symptoms, vector, mode of transmission and diagnosis (Elementary ideas only)			

	5	Pinworm, Roundworm and Tapeworm infection- cause, symptoms and mode of transmission (Elementary ideas only)	
IV		Fungal Diseases	6
	6	Candidiasis - cause, symptoms and mode of transmission	
	7	Ringworm infection- cause, symptoms and mode of transmission	
V		Strategies For Management Of Infectious Diseases	6
	8	Role of drugs, vaccines, hygiene and sanitation in prevention and transmission of infectious diseases mentioned above.	
		Practicals	15
	9	 Conducting awareness classes/campaign on infectious disease in community Survey based on contagious diseases in local community Student seminar on Zoonosis, bioweapons 	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Classify the types of pathogens and disease caused by them	R, U	1
CO-2	Explain the cause, symptom and mode of transmission of contagious diseases	R, U	2,3
CO-3	Identify the different diagnostic markers of contagious diseases	R,U	2
CO-4	Describe the strategies for management of infectious diseases.	R, U	3,4
CO-5	Examine the prevalence of common contagious diseases in society	R, U, Ap, An	3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-

Create Name of the Course: Biochemistry of Contagious Diseases:

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1	R,U	F, C	LT	
2	2	2,3	R,U	F, C	LT	
3	3	2	R,U	F, C	LT	
4	4	3,4	R,U	F, C	LT	
5	5	3	R,U,Ap,An	F, C	LT	Р

Current Scenario Credits: 2:0:1 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	P S O 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	Ι	-	-	I	-		2				
CO 2		2	3	-	-	-	2	2		2		3
со з	_	3	-	-	-	-						3
CO 4	_	_	2	3	-	-	3	2		3		3
CO 5	_	-	3	-	-	-	2	2		3		
CO 6	-	-	-	-	-	-						

Correlation Levels:

-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		1
CO 5	\checkmark	\checkmark		1

References

- Prescott, Harley, Wiley, J.M., Sherwood, L.M., Woolverton, C.J. Klien's (2008). Microbiology (7th ed.). Mc Graw Hill International Edition (New York) ISBN: 978-007-126727
- Textbook of Medical Biochemistry for Medical Students by DM Vasudevan and Sreekumari S. 5th edition, Japee Brothers, Medical Publishers, ISBN 81-8448-124-1:9788184481242.
- Kenneth J. Ryan, C., George Ray (2010), Sherris Medical Microbiology: An introduction to infectious diseases. McGraw-Hill. ISBN-13: 978-0071604024 ISBN-10: 0071604022
- 4. Jawetz, Melnick & Adelbergs (27th ed.), Medical Microbiology. McGraw Hill Education. ISBN-10: 0071790314; ISBN-13: 978-007179031.

5. Biochemistry With Clinical Concepts And Case Studies: Satyanarayana, U & Chakrapani, U, Elsevier India PVT LTD, 4th Ed. 2016.

University of Kerala

Discipline	BIOCHEMISTRY					
Course Code	UK1MDCBCH101					
Course Title	Nutritional Biocher	mistry for H	ealth & Fitr	iess		
Type of Course	MDC2					
Semester	Ι	Ι				
Academic	100 - 199					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	3	2 hours	-	2 hours	4	
Pre-requisites	Nil				<u> </u>	
Course	The course outlines a general introduction to metabolism, role of nutrition					
Summary	in health, biochemical response to exercise and dietary management of					
	health and disease.					

Module	Unit	Content	Hrs
Ι		Introduction to Metabolism	6
	1	Definition and significance of Metabolism	
	2	Anabolism and Catabolism	

	3	Basic awareness about energy yielding metabolic pathways (Reaction sequence not required).	
	4	Significance of ATP as energy currency	
	5	Phosphocreatine system (basic idea)	
Π		Nutrition for Health	6
	6	Basic concept and definition of balanced diet, calorific value, SDA and RDA	

	7 8 9	Macronutrients: Requirement of carbohydrates, proteins and lipids for health and fitness. Glycemic index, biological value of protein (definition).Micronutrients (vitamins and minerals): Sources and functionsWater: Hydration and electrolyte balance.				
	10	Food guide pyramid, seasonal foods and traditional foods				
III	Biochemical Response in Exercise					
	11	Physiological responses to exercise and physical activity.				
	12	Glycolytic system and oxidative system: as primary energy source				
	 Role of carbohydrates, fats, and proteins in exercise metabolism Metabolic adaptations to aerobic and anaerobic exercise. 					
	15	Impact of exercise on hormones and neurotransmitters: dopamine, serotonin, oxytocin and endorphins (feel good hormones)				
IV	Nutritional Management in Health and Disease					
	16	Nutritional considerations for weight management and body composition goals				
	17	Role of nutrition in metabolic syndrome, diabetes, and cardiovascular health				
	18	Dietary approaches for managing inflammation				
	19	Nutritional interventions for common sports injuries and musculo- skeletal health				

V		Gut Microbiome	6		
	20	Gut microbiome			
	21 Gut brain axis				
	22	Prebiotics and probiotics (artificial and natural)			
	23	Microbial dysbiosis, Disorder associated with gut microbiome			
	24	Recent advance in microbiome research: Pharma biotics and Poop pill			
		Activities	15		

25	1. Diet chart preparation	
	2. Study of impacts of exercise on emotions (questionnaire method)	
	Questionnaire on nutritional status in community (maintenance of record)	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Summarize the basic concepts of metabolism related to energy production	R, U	1
CO-2	Associate the major proximate principles of food to health and fitness	R, U	2,3
CO-3	Describe the physiological and biochemical response of the body to exercise	R, U	3
CO-4	Recognise the importance of nutrition in the management of health and disease	R, U	2,3

CO-5	Discuss the latest developments in the concepts of gut	R, U	2
	microbiome.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Nutritional Biochemistry for Health and Fitness

CO No.	СО	PO/PS O	Cognitive Level	Knowledge Category	Lecture (L)/Tutori al (T)	Practic al (P)
1	1	1	R, U	F, C	LT	
2	2	2,3	R, U	F, C	LT	
3	3	3	R, U	F, C	LT	
4	4	2,3	R, U	F, C	LT	
5	5	2	R, U	F, C	LT	Р

Credits: 2:0:1 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	P S O 1	PS O 2	PS O 3	PSO4	PS O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-	-	-		2				
CO 2	-	2	3	-	-	-	2	2		2		3
CO 3	-	-	3	-	-	-	2	3		2		
CO 4	-	3	_	3	-	-		2				3
CO 5	-	2	-	-	_	-						3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- 1. Textbook of Human Nutrition. Anjana Agarwal and Shobha A Udipi. Jaypee Brothers Medical Publishers (P) Ltd.
- 2. Nutrition (4th edition). Insel P, Ross D, McMahon K and Bernsteind M. Jones and Bartlett Publishers. Boston 2012, 387-502.
- 3. Eastwood, M. (2003). Principles of Human Nutrition. Atlantic Publishers & Distributors.
- 4. Vitamins in Health and Disease.Kulkarni ML. Jaypee Brothers Medical Publishers (P) Ltd
- 5. Krause, L., & Mahan, S. (Eds.). (1992). Food, nutrition, and diet therapy (6th ed.). W.B. Saunders Company.
- 6. Handbook of Foods And Nutrition. Blank, F. C. (2007). Agrobios (India)
- 7. Srilakshmi, B. (2014). Food Science. New Age International Publishers (India).
- 8. Health, Nutrition And Diseases.Chatterjee, G. (2000). Rajat Publication

University of Kerala

Discipline	BIOCHEMISTRY				
Course Code	UK1MDCBCH102				
Course Title	Biochemical Applic	cations in Fo	orensics		
Type of Course	MDC3				
Semester	Ι				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	3	3 hours	-		3
Pre-requisites	Nil				
Course	The course provides	an understa	nding of the a	applications of	of biochemistry
Summary	in forensic sciences				
	develop analytical a	nd problem	solving skills	s for real life	situations. The
	course also deals w	ith all recen	t developme	nts and emer	ging trends in
	forensic science thus	s helping int	erested stude	ents take up fo	prensic science
	as future course of s	tudy.		_	

Module	Unit	Content	Hrs
Ι		Introduction to Forensic Sciences	6
	1	Basic Principles and Significance; History and Development of Forensic Science	
	2	Defining the scene of investigation; Collection, Packaging, Labelling and Forwarding of biological exhibits to forensic laboratories	
	3	Preservation of biological evidence	
	4	Importance of Health and Safety Protocols in sample collection and analysis.	
II		Biological Science and its Application in Investigation	6
	5	Biochemical analysis of various biological evidences like blood, semen & other biological fluids, viscera, bite marks, hair (animal and human), fibers & fabrics, pollen and soil	
	6	Establishment of identity of individuals - fingerprints, footprints, blood and DNA analysis	
	7	Anthropology – skeletal remains, Odontology; Time of death - rigor mortis, liver mortis, algor mortis, forensic entomology.	

	8	Biochemical basis for determination of cause of death, case studies	
III		Chemical Science And Its Application In Investigation	7
	9	Detection of drugs of abuse and narcotics in biological samples;	
	10	Toxicological examination of viscera, detection of petroleum products	
	11	Food adulteration; Analysis of inks and their use in questioned document identification	
	12	Blood spatter analysis, stain analysis, case studies.	
IV		Recent Advances in Forensics	8
	13	Narco analysis: theory, forensic significance, future prospect	
	14	Brain mapping: introduction, EEG, P-3000 wave, forensic applications, limitation of technique	
	15	Polygraph: Principle and technique, polygraph as forensic investigative tool	
	16	Use of psychoactive drugs in forensic analysis. NHRC guidelines for polygraph test	
	17	Facial reconstruction: Method and technique, facial reconstruction in forensic identification	
V		Case studies	3
	18	DNA Fingerprinting; DNA-Introduction, source of DNA in Forensic case work, Extraction of DNA	
	19	Techniques of DNA fingerprinting RFLP, STR, PCR	
	20	DNA fingerprinting in paternity disputes, mass disaster and other forensic case work, case studies.	
		Practicals/Activities	15
	21	1. TLC method for differentiation of ink/drugs	
		2. Microscopic examination of hair/fiber/pollen/diatom	
		3. Examination of blood samples: Blood grouping,	
		4. Field trip to a forensic laboratory.	
		5. Guest lectures from forensic scientists or practitioners	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand Basic Principles and Significance along with History and Development of Forensic Science & Importance of Health and Safety Protocols in sample collection and analysis.	U	1,2
CO-2	Analyse various biological evidences & evaluate establishment of identity of individuals & Biochemical basis for determination of cause of death	E, An	3
C0-3	Understand the role of Chemical science and its application in investigation & detection of drugs of abuse and narcotics & about food adulteration	U,Ap	2,3
CO-4	Understand recent advances in forensics	U	3,4
CO-5	Apply various techniques in the field of forensics for Case studies	U, Ap	3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Biochemical Applications in Forensics

Credits: 3:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1,2	U	F, C	LT	
2	2	3	E, An	F, C	LT	
3	3	2,3	U,Ap	F, C	LT	
4	4	3,4	U	F, C	LT	
5	5	3,4	U, Ap	F, C, P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	
--	----------	----------	----------	------	----------	----------	-----	-----	-----	-----	-----	-----	--

CO 1	2	-	-	-	-	-	-	-	-	-	-	2
CO 2	-	2	3	-	-	-	1	2	_	_	-	-
CO 3	-	-	2	3	-	-	-	-	-	-	-	3
CO 4	-	-	2	3	-	-						
CO 5	-	1	3	2	-	-	-	-	-	-	-	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam- Multiple choice/case studies
- Programming Assignments
- Final Exam- Multiple choice/case studies

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark

	CO 4	\checkmark	\checkmark	\checkmark
,	CO 5	\checkmark	\checkmark	\checkmark

References

1. James, S. H., Nordby, J. J. & Bell, S. (2014). Forensic Science: An Introduction to Scientific and Investigative Techniques, Fourth Edition: Taylor & Francis. ISBN 9781439853832

2. Jones, P., & Williams, R. E. (2009). Crime Scene Processing and Laboratory Workbook First Edition: CRC Press. ISBN 9780429249976

3. Lee, H., Palmbach, T. & Miller, M. (2001). Henry Lee's crime scene handbook, First Edition: Academic Press ISBN 9780080507989

4. Parikh, C. K. (2016). Parikh's textbook of medical jurisprudence, forensic medicine and toxicology : for classrooms and courtrooms, Seventh Edition: CBS Publishers and Distributors. ISBN 9788123926469

5. Saferstein, R. (2018). Criminalistics: An Introduction to Forensic Science, Twelveth edition: Pearson Education. ISBN 10:0134477596, ISBN 13: 9780134477596

6. Tewari, R. K., Sastry P. K., Ravikumar, K. V. (2002). Computer Crime and Computer Forensic, First Edition: Selective & Scientific Books

7. Veeraraghavan, V. (2009). Handbook of Forensic Psychology, First Edition: Selective & Scientific Books.

University of Kerala

Discipline	BIOCHEMISTRY				
Course Code	UK1DSCBCH100				
Course Title	INTRODUCTION	TO BIOM	DLECULES		
Type of Course	DSC7				
Semester	II				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	Basic knowledge in	Biology and	Chemistry		
Course	Students will get an	understandin	ng of the diff	erent types of	biomolecules
Summary	that make up living	things. The st	tructure, chai	acteristics, ar	nd significance
	of lipids, cholester	ol, proteins,	carbohydra	tes, and DN	IA/RNA in
	biological systems v	vill all be tau	ght to the stu	idents.	

Hrs	Module
6	Ι
12	II
10	III
e of	

9	Structure and classification of fatty acids- saturated, unsaturated;	
	essential and non-essential, PUFA (one example each).	

	10	Sterol- (structure and functions of cholesterol)	
IV		AMINO ACIDS	10
	11	Nomenclature and classification of amino acids based on the chemical	
		nature of R groups (structure not needed), polarity, metabolic fate and	
		nutritional classification	
	12	Single letter and three letter representation (Alanine, Serine, Cystein,	
		Glutamate, Lysine, Phenylalanine and Proline)	
	13	Isoelectric pH, Zwitter ion (cite example-alanine)	
	14	Non protein amino acids- significance of β-alanine, homocysteine. Rare	
		amino acids-hydroxy proline, hydroxylysine (structure not needed)	
	15	Peptide- significance of glutathione, aspartame, gramicidin (structure not	
		needed)	_
V	1.6	PROTEINS	7
	16	Classification of proteins	
	17	Different levels of protein organization- Primary (Significance citing	
		Sickle cell anaemia as an example), Secondary- alpha, beta, triple helix,	
		Tertiary and Quaternary-(elementary ideas only- structure not needed)	20
		Practical (Identification of Biomolecules: Preliminary tests)	30
	18	Preparation of reagents	
	19	Qualitative analysis of Carbohydrates- Solubility test, Molisch's test, reduction test (Benedicts, Fehlings, Barfoeds, Picric acid test) and starch (Iodine test).	
	20	Qualitative analysis of Amino acids and protein: Amino acids: Solubility test, ninhydrin test.	
		Protein: Solubility, Xanthoproteic test, Biuret, Folin's test	
	21	Qualitative analysis of fatty acids: Solubility test, test for unsaturation	
		Students must maintain a rough record for practicals.	

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand thorough explanations of the chemistry, function and classification of nucleic acids	U	1

CO-2	Describe the general reactions, structure and classification of carbohydrates and lipids	R,U	1,2
CO-3	To acquire knowledge on classification, physicochemical properties and characterization of amino acids and proteins	U,E	2
CO-4	Familiarize and distinguish the biomolecules through specific colour reactions	U,A	3,4
C0-5	To differentiate different biomolecules	An	2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Introduction to Biomolecules

Credits: 3:0:1 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1	U	F, C	LT	
2	2	1,2	R, U	F, C	LT	
3	3	2	U, E	F, C	LT	
4	4	3,4	U, Ap	F, C	LT	
5	5	2	An	Р	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of Cos with PSOs and Pos :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-		3				
CO 2	2	3	-	-	_	-						3
CO 3	-	-	1	-	_	-	1	2		2		
CO 4	-	-	2	3	_	_		2		2		2
CO 5	-	3	-	-	-	-						3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low

2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

REFERENCES

- Nelson D. L., Cox M. M. (2021) Lehninger Principles of Biochemistry, (8th ed.) W.H. Freeman &. Co Ltd.
- Biochemistry (2004) by Donald Voet, Judith G. Voet Publisher: John Wiley & Sons Inc ISBN: 047119350X ISBN-13: 9780471193500, 978-0471193500.
- Biochemistry by Lubert Stryer, 4th Edition, W.H Freeman and Company ISBN 0-7167-2009-4.2.
- J L Jain, Sunjay Jain, Nitin Jain, Fundamentals of Biochemistry Paperback 1 January 2016; ISBN : 9788121924535
- Thomas M. Devlin (Editor) Textbook of Biochemistry with Clinical Correlations, 7th Edition, ISBN, 9789354641558. Publisher, Wiley Blackwell. Year, 2022.
- Introductory Practical biochemistry, S. K. Sawhney & Randhir Singh (eds) Narosa Publishing House, New Delhi, ISBN 81-7319-302-9.
- Standard Methods of Biochemical Analysis, S. K. Thimmaiah (ed), Kalyani Publishers, Ludhiana, ISBN 81-7663-067-5.

University of Kerala

Discipline	BIOCHEMISTRY				
Course Code	UK2DSCBCH101				
Course Title	STRUCTURE OF	BIOMOLE	CULES		
Type of Course	DSC8				
Semester	II				
Academic	100-199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	1.				
	2.				
Course	Students will acquire	an insight in	to various bi	omolecules th	nat constitute
Summary	he living organisms. Students will learn the structure and properties of				
	carbohydrates, amino	acids, prote	ins, lipids, ch	olesterol, DN	IA, RNA, and
	their importance in bi	iological syst	ems.		

Module	Unit	Content	Hrs
Ι		Nucleic acids	8
	1	Structure of Ribose, deoxyribose and Nitrogenous Bases (A, G, C, T,	
		U)	
	2	Structure of nucleoside and nucleotide (AMP, ATP)	
	3	Double helical structure of DNA	
	4	Structure of tRNA	
II		Amino acids	10
	5	Structure of aliphatic amino acids (Alanine, valine)	
	6	Structure of aromatic amino acids (Tyrosine, Tryptophan)	
	7	Structure of Sulphur containing amino acids (Cysteine, Methionine)	
	8	Structure of hydroxy amino acids (Serine, threonine)	
	9	Structure of basic and acidic amino acids (Lysine, Glutamate)	
	10	Structure of Imino acids (Proline)	
III		Proteins	8
	11	Structure of Insulin	
	12	Structure of Myoglobin	
	13	Structure of Hemoglobin	

IV		Carbohydrates	9
	14	Structure of Monosaccharides (Glucose, Fructose)	
	15	Structure of Disaccharides (Sucrose, Lactose)	
	16	Structure of Trisaccharides (Trehalose)	
		Structure of Polysaccharides (Glyocogen, Starch)	
V		Lipids	10
	17	Structure of Triglycerides (Simple. Mixed)	
	18	Structure of Fatty acids (Palmitic acid, Oleic acid)	
	19	Structure of Phospholipid (Lecithin, Cephalin)	
	20	Structure of Cholesterol	
		Practical	30
	21	Preparation of reagents	
	22	Qualitative analysis of Carbohydrates- Solubility test, Molisch's test, reduction test (Benedicts, Fehlings, Barfoeds, Picric acid test) and starch (Iodine test).	
	23	Qualitative analysis of Amino acids and protein: Amino acids: Solubility test, ninhydrin test. Protein: Solubility, Xanthoproteic test, Biuret, Folin's test	
	24	Qualitative analysis of fatty acids: Solubility test, test for unsaturation	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	To acquire knowledge on the structure of nucleic acids, aminoacids and proteins	R, U	1,2
CO-2	Describe the general reactions, structure and classification of carbohydrates and lipids	R,U	1,2
CO-3	To acquire knowledge on classification, physicochemical properties and characterization of amino acids and proteins	U,E	2
CO-4	Familiarize and distinguish the biomolecules through specific colour reactions	U,A	3,4
C0-5	To differentiate different biomolecules	An	2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Structure of Biomolecules

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1,2	R, U	F, C	LT	
2	2	1,2	R,U	F, C	LT	
3	3	2	U,E	F, C	LT	
4	4	3,4	U,A	F, C	LT	
5	5	2	An	Р	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-		3				
CO 2	2	3	-	-	-	-						3
CO 3	-	-	1	_	-	-	1	2		2		
CO 4	_	-	2	3	-	-		2		2		2
CO 5	-	3	-	-	-	-						3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- 1. Lehninger Principles of Biochemistry, Fourth Edition by David L. Nelson, Michael M.Cox. Publisher: W. H. Freeman; Fourth Edition (April 23, 2004).
- 2. Fundamentals of Biochemistry by J. L. Jain, Sunjay Jain and Nitin Jain (2008) Publishers: S. Chand & Co Ltd ISBN: 81-219-2453-7.
- 3. Introductory Practical biochemistry, S. K. Sawhney & Randhir Singh (eds) Narosa Publishing House, New Delhi, ISBN 81-7319-302-9.
- 4. Standard Methods of Biochemical Analysis, S. K. Thimmaiah (ed), Kalyani Publishers, Ludhiana, ISBN 81-7663-067-5

University of Kerala

Discipline	BIOCHEMISTRY	BIOCHEMISTRY								
Course Code	UK2DSCBCH102									
Course Title	BIOMOLECULES	BIOMOLECULES IN LIVING ORGANISMS								
Type of Course	DSC9									
Semester	П									
Academic Level	100-199.									
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week					
	4	3 hours	-	2 hours	5					
Pre-requisites	Nil	L		L	1					
Course Summary	the living organisms carbohydrates, prot	Students will acquire an insight into various biomolecules that constitute the living organisms. Students will learn the structure and properties of carbohydrates, proteins, lipids, cholesterol, DNA, RNA, and their importance in biological systems								

Module	Unit	Content	Hrs				
Ι		NUCLEIC ACID, AMINO ACIDS AND PROTEINS					
	1	Chemical nature of nucleic acids- nitrogenous bases- purines and pyrimidines, Nucleosides, Nucleotides; Phosphodiester linkages, Nucleotides as Energy carriers, Enzyme cofactors and Chemical messengers					

	2	Watson-Crick model of DNA, Chargaff rule of base pairing, Different types & structure of RNA			
	3	Nomenclature and classification of amino acids based on the chemical nature of R groups (structure not needed), Essential and non-essential amino acids			
	4	Physical & chemical properties of amino acids- isoelectric pH, transamination, oxidative deamination, decarboxylation & peptide bond formation			
	5	Classification, Structure and Physicochemical properties; Peptide bond, Peptides of biological importance, Different levels of protein organization with one example			
П		CARBOHYDRATES	15		
	6	Classification, Physicochemical properties; Chemistry, Biological roles Monosaccharides (glucose & fructose- Open & Haworth structure), oligosaccharide (disaccharides- lactose, sucrose & maltose- Haworth structure) Polysaccharide- homo and heteropolysaccharides, (starch & glycogen- Haworth structure)			
	7	Hemiacetal formation, Anomers, Epimers, mutarotation, Chemical reactions of monosaccharides taking glucose as example (enediol formation, oxidation with acids (mild and strong), oxidation with metal hydroxides (Fehling's, Benedicts & Barfoeds tests), reduction reactions (with sodium amalgam, strong mineral acids & dilute alkali), reaction of different carbohydrates with phenyl hydrazine (ozazone formation)			
Ш		LIPIDS	15		
	8	Classification of lipids- Simple. Compound, Derived with one example (structure needed- triglycerides, lecithin, cephalin), significance of sphingomyelin- structure is not needed)			
	9	Classification; Structure, Properties and Biological roles of Phospholipids and Sphingolipids; Fatty acids and their physicochemical properties; Fats and Waxes -Physicochemical properties and characterization of fats and oils; Classification of fatty acids- saturated, unsaturated; essential and non-essential, PUFA, general structure of fatty acids			
	10 Sterol- (structure and functions of cholesterol)				
IV		AN INTRODUCTION TO BIOCHEMISTRY LABORATORY	15		
	12	Preparation of solution- normality, molarity, percentage, dilution of solutions			
	13	General reactions of Carbohydrates, and lipids			
	14	General reactions of Amino acids, Proteins			

V		QUALITATIVE ANALYSIS OF BIOMOLECULES	15					
	15	Specific reactions of sugars (glucose, fructose, lactose, sucrose), amino acids (cysteine, proline, tyrosine, tryptophan)						
	16							
	17	Analysis of saturated and unsaturated fatty acids						
	18	Systematic analysis of biomolecules						

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	To understand the structure of DNA and RNA and their types & To present fundamental ideas about the structural arrangement and categorization of proteins	U	PSO-1,2
CO-2	Explain the structure, classification, and general reactions of carbohydrates.	R, U	1,2
CO-3	to learn about the physicochemical characteristics and attributes of fats and oils	U,	1,3
CO-4	to impart to the students all the knowledge they require regarding the laboratory	U,R	2,3,4
CO-5	Learn about and differentiate the biomolecules using a particular colour reaction.	U, Ap	2,3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Biomolecules in living Organisms

Credits: 3:0:1 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1,2	U	F, C	LT	
2	2	1,2	R, U	F,C	LT	
3	3	1,3	U,	F,C	LT	
4	4	2,3,4	U,R	F,C	LT	
5	5	2,3,4	U, Ap	F,C,P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of Cos with PSOs and Pos :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-			1	2		2		3
CO 2	2	3	-	-				2				3
CO 3	2	-	1	-			1	2		3		
CO 4	-	1	2	3				2				3
CO 5	-	1	2	3			1	2		3		3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of Cos to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

REFERENCES

- 1. Nelson D. L., Cox M. M. (2021) Lehninger Principles of Biochemistry, (8th ed.) W.H. Freeman &. Co Ltd.
- 2. Biochemistry (2004) by Donald Voet, Judith G. Voet Publisher: John Wiley & Sons Inc ISBN: 047119350X ISBN-13: 9780471193500, 978-0471193500.
- 3. Biochemistry by Lubert Stryer, 4th Edition, W.H Freeman and Company ISBN 0-7167-2009-4.2.
- 4. J L Jain, Sunjay Jain, Nitin Jain, Fundamentals of Biochemistry Paperback 1 January 2016; ISBN : 9788121924535
- 5. Thomas M. Devlin (Editor) Textbook of Biochemistry with Clinical Correlations, 7th Edition, ISBN, 9789354641558. Publisher, Wiley Blackwell. Year, 2022.

University of Kerala

Discipline	BIOCHEMISTRY							
Course Code	UK114DSCBCH							
Course Title	BIOCHEMISTRY	OF HEAL	TH AND DIS	SEASES				
Type of Course	DSC 10							
Semester	II							
Academic	100 - 199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	NIL							
Course	The course is intended to give the student an understanding of							
Summary	biochemical testings	biochemical testings done in a clinical laboratory that will aid in diagnosis						
	thus facilitating accu	hus facilitating accurate, efficient monitoring and treatment of various						
	diseases							

Module	Unit	Content	Hrs					
Ι		Elements of Clinical Biochemistry	9					
	1	Clinical Biochemistry: Scope and applications in diagnosis						
	2	Clinical implications of biomolecules: Glucose; Hyper and						
		ypoglycemia. Lipids; Hyperlipidemia. Proteins; hypoalbuminemia,						
		Bence jones proteins						
	3	Quality control in a clinical laboratory: Basics						
II		Biochemistry of metabolic diseases						
	4	Atherosclerosis, Diabetes mellitus						
	5	Obesity and metabolic syndrome						
	6	Metabolic diseases leading to hyperbilirubinemia						
	7	Inborn errors of metabolism (carbohydrates and amino acid)						
	8	Instrumentation in clinical biochemistry (Basic study)						
III		Endocrine diseases	9					
	9	Principal endocrine glands, hormones and their physiological functions:						
		Hypothalamic, pituitary, Thyroid, parathyroid, adrenal, pancreas, Testis,						
		Ovary and GI hormones						

10	Diseases of the hypothalamus – pituitary system; Biochemical features	
	of Prader-Willi syndrome, acromegaly, Diabetes insipidus	

	11	Thyroid diseases: Hypo and hyperthyroidism, biochemical features,					
		T3,T4, TSH values in health and disease conditions.					
	12	Adrenal diseases and hormone assays					
		Organ function tests and detoxification	9				
	13	Liver: major functions and LFT					
IV	14	Kidney: Structure of nephron, Urine formation and RFT					
	15 Xenobiotics, Major reactions for detoxification in liver						
		Molecular diagnostics	9				
	16	Advantages and features of molecular diagnostics					
V	17	Important molecular tests for diagnosis: PCR,FISH,ELISA					
	18	Isoenzymes and their clinical significance, Enzymes as therapeutic					
		agents					
		Practicals: Biomolecules	30				
	19 Qualitative analysis of abnormal constituents in urine and bloc						
		Quantitative estimation of glucose and protein in blood					
	20	Institute/Lab visit					

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Explain the fundamental aspects of a clinical laboratory	U, R An	1,2
CO-2	Interpret and analyse blood analysis of various biochemical parameters	E, An, U	1,2,3
CO-3	Evaluate the results of LFT, RFT and endocrine parameters which will help to identify and monitor various diseases	E, Ap, An	2,3,4
CO-4	Attain proficiency in various molecular diagnosis methods	R, U, Ap	4
CO-5	Analysis of abnormal constituents in urine and blood	An	2,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: BIOCHEMISTRY OF HEALTH AND DISEASES

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial	Practical (P)
					(T)	

1	1	1,2	U, R An	F, C	LT	
2	2	1,2,3	E, An, U	F, C	LT	
3	3	2,3,4	E, Ap, An	F, C	LT	
4	4	4	R, U, Ap	F, C	LT	
5	5	2,4	An	F, C, P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	P S O 5	PSO 6	PO 1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	-	-	-	-						3
CO 2	1	2	3	-	-	-	2	3				
CO 3		1	2	3	-	-		2		2		2
CO 4	_	_	-	3	-	-		2		2		
CO 5	-	2	-	2	-	_		2		2		2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

REFERENCES

- 1. "Tietz Textbook of Clinical Chemistry and Molecular Diagnostics" by Nader Rifai, Andrea Rita Horvath, and Carl T. Wittwer - Latest edition: 2017
- 2. "Marks' Basic Medical Biochemistry: A Clinical Approach" by Michael Lieberman and Alisa Peet - Latest edition: 2020
- 3. "Textbook of Biochemistry with Clinical Correlations" by Thomas M. Devlin Latest edition: 2010
- "Clinical Chemistry: Principles, Techniques, Correlations" by Michael L. Bishop, Edward P. Fody, and Larry E. Schoeff - Latest edition: 2018
- 5. "Molecular Diagnostics: Fundamentals, Methods, & Clinical Applications" by Lela Buckingham and Maribeth L. Flaws - Latest edition: 2017

University of Kerala

Discipline	BIOCHEMISTRY					
Course Code	UK115DSCBCH					
Course Title	Biochemical aspects of metabolic regulators					
Type of Course	DSC 10	DSC10				
Semester	II	II				
Academic	100-199					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3 hours	-	2 hours	5	
Pre-requisites	Basic knowledge in Biology and Chemistry					
Course	Course The course helps to understand the fundamental biochemical aspects of					
Summary	enzymes vitamins, minerals and hormones exploring their roles in					
	maintaining physiological balance and supporting essential cellular					
	functions.					

Module	Unit	Content	Hrs	
Ι	Enzymes-I			
	1Definition and classification of enzymes2Definition of apoenzyme, holoenzyme, prosthetic group and			
		coenzymes		
	3	Features of active site		
	4	Theories of enzyme-substrate binding (Lock and key hypothesis,		
		Koshland's induced fit model		
II		Enzymes-II	8	
	5	Factors affecting enzyme catalysed reaction		
	6	Km value and its significance		
	7	Enzyme inhibition (reversible-competitive, non-competitive and		
		uncompetitive and irreversible with one example each)		
III		Vitamins	12	
	8	Sources, RDA, functions and deficiency manifestations of fat-		
		soluble vitamins		
	9	Sources, RDA, functions and deficiency manifestations of water-		
		soluble vitamins		

IV	Minerals		
	10	Sources, RDA, functions and deficiency manifestations of Sodium,	
		Potassium, Calcium, Phosphorous, Iron, Iodine and Zinc	
V		Hormones	
	11	Classification and mechanism of action of hormones (outline only)	
	12	Site of biosynthesis and functions of thyroid hormones, pituitary hormones (TSH, ACTH, oxytocin and vasopressin), hormones of adrenal gland and pancreatic hormones (insulin and glucagon)- Structure not needed	

13	Common hormonal imbalances- hyperthyroidism, hypothyroidism, Addison's diseases, Cushing's disease, Diabetes mellitus, Diabetes insipidus and PCOD.	
	Practicals	30
14	Preparation of stock and working standard solutions	
15	Isolation of amylase from sweet potato	
16	Estimation of solid ash in milk.	
17	Estimation of ascorbic acid in orange juice	
18	Estimation of iron in Amaranthus leaves	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Definition, classification, active site and theories of enzyme activity	R,U	1
CO-2	Factors of enzyme activity, types of enzyme inhibition and regulation	R.U	1,2
CO-3	Elaborate the importance of human nutrition	R,U	1,3,4
CO- 4	Classify hormones and explain the functions of hormones	R,U	1,3,4
CO-5			

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-

Create Name of the Course: Biochemical aspects of metabolic regulators

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1	R,U	F, C	LT	

Credits: 3:0:1 (Lecture: Tutorial: Practical)

2	2	1,2	R.U	F, C	LT	
3	3	1,3,4	R,U	F, C	LT	
4	4	1,3,4	R,U	F, C	LT	
5	5			F, C, P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	P S O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-	-	-		2				
CO 2	2	3	-	-	-	-						3
CO 3	1	-	2	3	-	-	2	2		3		
CO 4	1	-	2	3	-	-		2				2
CO 5	-	-	-	-	-	-						3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- Arthur Vander, James Sherman, and Dorothy Luciano Vander et al. Human Physiology: The Mechanism of Body Function, Eighth Edition, The McGraw-Hill Companies.
- Granner, Robert K. Murray Darryl K., and Peter A. Mayes Victor W. Rodwell. Harper's Illustrated Biochemistry (Harper's Biochemistry).McGraw-Hill Medical, 2006
- Principles of Biochemistry, by Albert Lehninger, David L Nelson, Michael M Cox, CBS Publishers & Distributors Delhi ISBN 81-239-0295-6.
- Advanced Text Book on Food and Nutrition, Vol I and II, Dr. M Swaminathan.2nd edition. The Bangalore Printing and Publishing Co Ltd.
- Food Safety and Standards Authority of India. Ministry of Health and Family Welfare, Government of India
- Food Science. 2nd edition, SR Mudambi, SM Rao and MV Rajagopal (2006). New Age International Pvt.Ltd. ISBN-81-224-1779-5
- Laboratory Handbook on Biochemistry. S.Shanmugam, J.Satish Kumar, K. Paneer Selvan Publisher: PHI Learning Private Limited New Delhi ISBN 976-81-2030-4103-

University of Kerala

Discipline	BIOCHEMISTRY				
Course Code	UK2DSCBCH105				
Course Title	MOLECULES OF	LIFE			
Type of Course	DSC12				
Semester	II				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	Nil				
Course	This course will hel	lp to create	a strong four	ndation in bio	ochemistry for
Summary	students, with a focu	us on basic b	iomolecules.	The course a	also covers the
	basics of qualitative	analysis of b	oiomolecules		

Detailed Syllabus:

Module	Unit	Content	Hrs				
		Amino acids and proteins	10				
	1	General Structure and Function of aminoacids					
	2	Standard and non protein amino acids (2 examples each)					
	3	Single letter and three letter representation (Alanine, Serine, Cysteine,					
		Glutamate, Lysine, Phenylalanine and Proline)					
I	4	Zwitter ionic form and isoelectric pH (significance)					
	5	Essential and non-essential aminoacids					
	6	Classification of Proteins (Structural, Functional and nutritional)					
	7 Structural organization of proteins (basics only)						
	8	Basic functions of Plasma proteins					
		Carbohydrates	10				
	9	Monosaccharides – glucose and fructose					
		(Open and Haworth projection formula). D & L isomerism, epimers,					
		anomers and mutarotation					
	10	Disaccharides - lactose, sucrose (Components, bond involved and					
		occurrence)					
II	11	Polysaccharide: Structural and storage polysaccharides (Cellulose,					

II	11	Polysaccharide: Structural and storage polysaccharides (Cellulose,	
		glycogen and starch-Components, bond involved and occurrence)	

		Lipids	9
	12	Basic functions of lipids	
	13	Essential and non-essential fatty acids	
	14	Structure and function of triglycerides (simple triglyceride)	
	15	Structure and function of phospholipids (Lecithin)	
III	16	Structure and functions of cholesterol.	
		Nucleic acids	6
	17	Base composition, Purines and pyrimidines (names only)	
IV	18	Nucleosides & Nucleotides (Basic structure)	
	19	Basic structural features of B-DNA	
	20	Basic function of mRNA, tRNA and rRNA	
		Enzymes	10
	21	Basic difference between chemical and biological catalyst	
V	22	Concept of holoenzyme, apoenzyme, prosthetic group (with suitable	
		example) and active site of enzyme	
	23	Lock and Key hypothesis, Koshland hypothesis	
	24	Units of enzyme activity-IU	
	25	Competitive inhibition-significance (with reference to Ethanol in	
		methanol poisoning)	
	26	Therapeutic enzymes (Basic idea on application of Urokinase and	
		Lipase)	
	27	Industrial enzymes (Basic idea on application of Lipase and pectinase)	
		Practicals: Biomolecules	30
	28	Qualitative analysis of Carbohydrates- Solubility test, Molisch's test,	
		reduction test (Benedicts, Fehlings, Barfoeds, Picric acid test) and starch	
		(Iodine test).	
		Qualitative analysis of Amino acids and protein:	
		Amino acids: Solubility test, ninhydrin test.	
		Protein: Solubility, Xanthoproteic test, Biuret, Folin's test	
		Qualitative analysis of fatty acids: Solubility test, test for unsaturation	
		Rough record for Practical work has to be maintained	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the basic molecules that make up life	U	1
CO-2	Evaluate the structure of carbohydrates, lipids, amino acids, proteins and nucleic acids	R, U,E	1,2
CO-3	Acquire an understanding of enzymes, activity and applications	U, A, E	3,4

CO-4	Analyse qualitatively some important biomolecules in	U,A,C	3,4
	the laboratory		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Molecules of Life Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	(L)/Tutorial (T)	
1	1	1	U	F, C	LT	
2	2	1,2	R, U,E	F, C	LT	
3	3	3,4	U, A, E	F, C	LT	
4	4	3,4	U,A,C	F, C	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	P S O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-	-	-	2	3		2		
CO 2	2	3	-	-	-	-						3
CO 3	-	_	2	3	-	-	2	3		2		
CO 4	-	-	2	3	-	-	2	3		2		

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

Mapping of COs to Assessment Rubrics :

REFERENCES

- 1. Nelson D. L., Cox M. M. (2021) Lehninger Principles of Biochemistry, (8th ed.) W.H. Freeman &. Co Ltd.
- 2. Biochemistry (2004) by Donald Voet, Judith G. Voet Publisher: John Wiley & Sons Inc ISBN: 047119350X ISBN-13: 9780471193500, 978-0471193500.
- 3. Biochemistry by Lubert Stryer, 4th Edition, W.H Freeman and Company ISBN 0-7167-2009-4.2.
- 4. J L Jain, Sunjay Jain, Nitin Jain, Fundamentals of Biochemistry Paperback 1 January 2016; ISBN : 9788121924535
- 5. Thomas M. Devlin (Editor) Textbook of Biochemistry with Clinical Correlations, 7th Edition, ISBN, 9789354641558. Publisher, Wiley Blackwell. Year, 2022.

University of Kerala

Discipline	BIOCHEMISTRY	BIOCHEMISTRY					
Course Code	UK2MDCBCH100						
Course Title	Biochemistry of Lif	festyle Disea	ses				
Type of Course	MDC4						
Semester	Ш	II					
Academic Level	100 - 199						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week		
	3	3 hours	-	1	3		
Pre-requisites	NIL				1		
Course Summary	The course covers fundamental concepts of lifestyle-related diseases such as cardiovascular diseases, diabetes, cancer, and chronic respiratory diseases, including their causes, diagnosis, prevention, and management. Specific topics include obesity classification, coronary artery diseases, cancer types and risk factors, diabetes mellitus types and diagnostic methods, and chronic respiratory disease prevention. Course activities include surveys on modern lifestyle and visits to Primary Health Centers for practical understanding.						

Detailed Syllabus:

Module	Unit	Content	Hrs
I		LIFE STYLE: BASIC CONCEPTS	6
	1	Definition of health, Definition of lifestyle diseases/noncommunicable diseases - four major types of diseases-CVD, Diabetes, Cancer, and Chronic Respiratory diseases.	
	2	Obesity: classification according to BMI (brief description) symptoms, Causes, treatment Prevention and management Sedentary life style	

l	3	Significance of dist and even iss. Data of antionidants and fibre	
	3	Significance of diet and exercise: Role of antioxidants and fibre	
		containing food- PUFA- impact of junk foods	
Π		CORONARY ARTERY DISEASES	6
	4	Coronary Artery diseases - Angina, myocardial infarction, congenital heart disease, CVD (definition).	
	5	Causes (confirmed & indirect risk factors – brief description only),	
	6	Diagnosis (electrocardiography, exercise stress test, coronary angiography -brief description only)	
	7	Prevention (lifestyle, diet, drugs), Management (drugs, angioplasty, stenting, bypass surgery- brief description only): Normal value of cholesterol in blood	
ш		CANCER	7
	8	Cancer - Types of cancer, benign and malignant tumor	
	9	Risk factors-tobacco and alcohol abuse, lack of physical activity and unhealthy food habits : GTT	
	10	Diagnosis- blood tests, X-rays, CT scans & endoscopy - brief description only	
	11	Prevention - dietary, medication, vaccination, Periodic Health Check ups , Significance of diet and exercise	
	12	Treatment modalities (name only) -surgery, chemotherapy, radiation,	
		Management :Palliative care (brief description only).	
IV		DIABETES MELLITUS	7
	13	Diabetes mellitus: Four types of diabetes: Type 1, Type 2, Gestational, and Pre-Diabetes. Symptoms (polyuria, polydypsia, polyphagia),	
	14	Modifiable and non-modifiable risk factors.	
	15	Definition of fasting blood sugar, post prandial blood sugar, random blood sugar and their normal values.	

	16	16 Significance of glucose tolerance test, Drugs lowering blood glucose level (names only).			
	17	Diagnosis, prevention and management of diabetes			
V		CHRONIC RESPIRATORY DISEASE	4		
	18	Definition: Chronic respiratory disease			

19	Effect of smoking to lungs. Modifiable and Non modifiable risk factors. Prevention and management of the disease.	
20	 Activities 1. Survey of family members/ neighbors on modern lifestyle and public health issues discussed during the course. Analysis of data and its interpretation. 2. Visit to near by PHC 	15

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Identify healthy and unhealthy life habits and adopt better life style.	U	1,3,4
CO-2	Enumerae the different causes and risk factors of life style diseases	R, U	1,2,3
CO -3	List out the methods to diagnose the diseases and gain a knowledge regarding interpretation of the test result.	R,U	2,3
CO -4	Spell out the methods of prevention, treatment and management of the diseases	R,U	3
CO-5	Gain knowledge about the normal levels of different clinical parameters.	R,U	2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Biochemistry of Lifestyle Diseases

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1,3,4	U	F, C	LT	
2	2	1,2,3	R, U	F, C	LT	
3	3	2,3	R,U	F, C	LT	
4	4	3	R,U	F, C	LT	
5	5	2	R,U	F, C, P	LT	Р

Credits: 3:0:0 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	2	3	-	-		2				
CO 2	1	2	3	-	-	-	2	2				3
CO 3	-	2	3	-	-	-	2	2				2
CO 4	-	-	3	-	-	-		2				
CO 5	-	3	-	-	-	-						3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments Final Exam Multiple choice questions

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- Textbook of Medical Biochemistry for Medical Students by DM Vasudevan and Sreekumari S. 5th edition, Japee Brothers, Medical Publishers, ISBN 81-8448-124-1:9788184481242.
- 2. Guide to Prevention of Lifestyle Diseases by R. Kumar (Author), M. Kumar (Author), Deep & Deep Publications, ISBN-13: 978-8176295185.
- 3. Cell and Molecular Biology by Gerald Karp, John Wiley & Son, Inc. New York ISBN 978 0470-16961-2, 5th Edition.
- 4. Guyton, A., & Hall, J. E. (1996). Textbook of Medical Physiology (9th edition). Prism Saunders.
- 5. Satyanarayana, U., & Chakrapani, U. (2021). Essentials of Biochemistry (3rd ed.).

University of Kerala

Discipline	BIOCHEMISTRY						
Course Code	UK2MDCBCH101						
Course Title	Biochemistry of Food Adulteration						
Type of Course	MDC5						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	3	3 hours	-	-	3		
Pre-requisites	Nil						
Course	The course on food adu	ulteration pro	ovides an ove	rview of com	imon		
Summa	adulterants and their to	dulterants and their toxic effects, covering categories such as physical,					
-)	chemical, and biologic			•			
	various food items, inc	luding milk,	edible oils, s	pices, and co	ndiments, and		

understand the ill effects they may cause, ranging from gastrointestinal
disorders to diabetes and cardiovascular diseases. Additionally, the course
delves into food safety management systems.

Detailed Syllabus:

Module	Unit	Content	Hrs			
Ι		FOOD ADULTERATION	6			
	1	FSSAI definition of an adulterant, Familiarisation of common adulterants				
	2	Basic concepts of toxicity and hazard (physical, chemical and biological) in food				
II	COMMON FOOD ADULTERANTS					
	3	Adulterants in milk, edible oils, fats, cereal flour, sugar, pulses, cereals, green vegetables and honey				
	4	Adulterants in Spices and condiments (turmeric powder, chilli powder, coriander powder, black pepper powder, asafoetida, cinnamon)				
III		TOXICITY OF ADULTERANTS	8			
	5	Ill effects of adulterants- Diarrhea and nausea				
	6	Gastrointestinal and kidney disorders				
	7	Skin and allergic reactions				
	8	Diabetes and cardiovascular disorders				
IV	FOOD SAFETY AND QUALITY MANAGEMENT					
	9	Food quality and safety management systems: Good Manufacturing Practices (GMP) and Good Handling Practices (GHP)				
	10	Product certification/grading – BIS and AGMARK (basic approach only)				
	11	Brief study of the following: FSSAI, PFA 1954, FSSA 2006, FPO and essential commodities act.				
V		DETECTION OF ADULTERANTS [With demonstration]	15			
	12	Adulterants in milk – cane sugar, starch, urea, ammonium compounds, NaCl				
	13	Detection of metanil yellow in condiments and jaggery				
	14	Detection of sodium bicarbonate (in flour & jaggery)				
	15	Detection of added sugar (in honey)				

16	Detection of prohibited colors in edible oil	
17	Detection of rhodamine-B (in chilli powder)	
18	Detection of lead chromate in pulses	
19	Detection of starch in ghee	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the definition of adulterants and basic concepts of hazard	U	1
CO-2	Identify the common adulterants in food.	U	1,2,3
CO-3	understand the harmful effects caused by food adulterants	R, U	3
CO-4	Explain the importance of food safety and management systems	R.U	3,4
CO-5	perform some of the basic test to find out common adulterants	R,U,E	4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-

Create Name of the Course: Biochemistry of Food Adulteration

Credits: 3:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutori al (T)	Practica l (P)
1	1	1	U	F, C	LT	
2	2	1,2,3	U	F, C	LT	

3	3	3	R, U	F, C	LT	
4	4	3,4	R.U	F, C	LT	
5	5	4	R,U,E	F, C, P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	P S O 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-	-	-		2				
CO 2	1	2	3	-	_	-	1	2		2		
CO 3	-	-	3	-	-	-						
CO 4	-	-	2	3	_	-		2		2		
CO 5	-	-	2	3	-	-	2	2		2		

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Quiz/ Discussion / Seminar

- Midterm Exam
- Programming Assignments
- Final Exam Multiple choice questions

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- 1. Food Safety and Standards Authority of India. Ministry of Health and Family Welfare, Government of India
- 2. Food Science. 2nd edition, SR Mudambi, SM Rao and MV Rajagopal (2006). New Age International Pvt.Ltd. ISBN-81-224-1779-5
- 3. Food Science- Chemistry and Experimental Foods. Dr. M Swaminathan, The Bangalore Printing and Publishing Co. Ltd.
- 4. Food Science-Experiments and Applications. Mohini Sethi and Eram S Rao. CBS Publishers and Distributors. ISBN-81-239-0747-8.

University of Kerala

Discipline	BIOCHEMISTRY	BIOCHEMISTRY				
Course Code	UK2MDCBCH102					
Course Title	Application of Artificial intelligence in Biomedical Science					
Type of Course	MDC 3					
Semester	II					
Academic	100 - 199					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	3	3 hours	-		3	
Pre-requisites	NIL					
Course	The course covers the	he basics of a	Artificial Inte	elligence (AI)) showing how	
Summary	they're used in biom	edical science	e. Students w	ill see how A	I helps manage	
	Alzheimer's Disord	ler, diabetes	, and breast	cancer, and	aids in drug	
	discovery and med	ical imaging	g. It also lo	oks at how	AI is used in	
	healthcare and what					

Detailed Syllabus:

Module	Unit	Content	Hrs					
Ι		AI Foundation	10					
	1	AI fundamentals, Forms of AI-Artificial Narrow Intelligence (ANI), Artificial General Intelligence (AGI), Artificial Super Intelligence (ASI) (Definition only)						
	2	Introduction to machine learning, deep learning, and natural language processing. (Definition only)						
	3	Significance of AI in biomedical science.						
II		Artificial Intelligence in Noncancerous and Cancerous Diseases	10					
	4	Management of Alzheimer's Disorder with Artificial intelligence						
	5	Management of Diabetes with Artificial Intelligence						
	6	Diagnosis of Neurological Pathologies						
	7	Artificial Intelligence in cancer detection (Breast cancer, lung cancer)						
III		Applications of Artificial Intelligence in Biochemistry						

9	Prediction of Long Non-Coding RNAs Based on Deep Learning	
---	---	--

	10	Artificial Intelligence in Protein Secondary Structure Prediction	
	11	Artificial Intelligence in Drug Discovery	
	12	Machine Learning in Enzyme Engineering	
IV		AI in Medical Imaging and Diagnostics	7
	13	Application of AI in medical imaging techniques such as MRI, CT scan, and X-ray.	
	14	Challenges and limitations of AI-based medical imaging systems.	
V		AI in Healthcare Delivery and Patient Care	6
	18	Implementation of AI in electronic health records (EHRs), clinical decision support systems, and telemedicine.	
	19	AI-based tools for monitoring patient health, detecting anomalies, and predicting health outcomes.	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Recall fundamental concepts of Artificial Intelligence (AI) and its applications in biomedical science	R	1,2
CO-2	Comprehend the significance of AI in managing various medical conditions as well as its role in drug discovery and medical imaging.	U	2
C0-3	Apply AI techniques to analyze biomedical data and diagnose diseases, demonstrating their understanding of how AI can be used in real-world scenarios	Ар	2,3
CO-4	Evaluate the effectiveness and limitations of AI-based systems in healthcare delivery, identifying challenges and proposing potential solutions	An	2
CO-5	Explain approaches for using AI in biomedical research and patient care, demonstrating creativity and critical thinking skills in addressing complex healthcare challenges.	U,C	2,3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Application of Artificial intelligence in Biomedical Science

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1,2	R	F, C	LT	
2	2	2	U	F, C	LT	
3	3	2,3	Ар	F, C	LT	
4	4	2	An	F, C	LT	
5	5	2,3,4	U,C	С, Р	LT	Р

Credits: 3:0:0 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	2	-	-	2					
CO 2	-	3	-	-	2					
CO 3	-	2	3	-		2				
CO 4	-	2				3				
CO 5	-	1	3	3			3			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium

3	Substantial /
	High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam -Multiple choices/oral test
- Programming Assignments
- Final Exam -Multiple choice questions

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- 1. James, S. H., Nordby, J. J. & Bell, S. (2014). Forensic Science: An Introduction to Scientific and Investigative Techniques, Fourth Edition: Taylor & Francis. ISBN 9781439853832
- Jones, P., & Williams, R. E. (2009). Crime Scene Processing and Laboratory Workbook First Edition: CRC Press. ISBN 9780429249976
- 3. Lee, H., Palmbach, T. & Miller, M. (2001). Henry Lee's crime scene handbook, First Edition: Academic Press ISBN 9780080507989
- 4. Parikh, C. K. (2016). Parikh's textbook of medical jurisprudence, forensic medicine and toxicology : for classrooms and courtrooms, Seventh Edition: CBS Publishers and Distributors. ISBN 9788123926469
- 5. Saferstein, R. (2018). Criminalistics: An Introduction to Forensic Science, Twelveth edition: Pearson Education. ISBN 10:0134477596, ISBN 13: 9780134477596
- 6. Tewari, R. K., Sastry P. K., Ravikumar, K. V. (2002). Computer Crime and Computer Forensic, First Edition: Selective & Scientific Books

7. Veeraraghavan, V. (2009). Handbook of Forensic Psychology, First Edition: Selective & Scientific Books.

University of Kerala

Discipline	Biochemistry				
Course Code	UK2DSCBCH103				
Course Title	Biochemical Aspec	ts of Emerg	ing and Re-e	emerging dise	eases
Type of Course	MDC7				
Semester	II				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	3	3 hours	-		3
Pre-requisites	1. Nil				
Course					
Summary					

Detailed Syllabus:

Module	Unit	Content	Hrs		
Ι		Emerging and Reemerging infectious diseases	9		
	1	Definition of Emerging and Reemerging infectious diseases			
	2	Epidemiological triad of disease			
	3	Factors contributing to emergence – agents, hosts, resistance to drugs			
		and resistance of vectors to pesticides and breakdown of public health			
		measures			
П		Emerging Diseases in the World	9		
	4 Causes, signs and symptoms, mode of transmission and preventive				
		measures of – SARS, Swine Flu (H1N1). Zika Fever, Ebola, Viral			
		Fever			
III		Emerging Diseases in India	9		
	5	Causes, signs and symptoms ,mode of transmission and preventive			
		measures of - Viral hepatitis, Enteric Fever, Acute encephalitis			
		syndrome, Measles, Rubella fever, Chicken pox, Crimean-Congo			
		Haemorrhagic Fever and Kyasanur Forest Disease			
IV	Emerging and Re-emerging Diseases Related to Tourism		9		
	6	6 Causes, signs and symptoms, mode of transmission and preventive			
		measures of - Lyme disease, Falciparum Malaria, Yellow Fever,			
		Cyclosporidosis			

V		Re-emerging Infectious Diseases	9
	7	Causes, signs and symptoms ,mode of transmission and preventive measures of - Plague, Leptospirosis, Anthrax, Cholera, Dengue fever, Nippah and Chikungunya	
		Activities	
		 Presentation or group discussion about the topic Awareness campaign for the community Survey in local comunity 	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Gain knowledge about the factors that contribute to the emergence of diseases	R,U	1,2
CO-2	Identify different types of emerging and re-emerging diseases in the World and in India.	R, U	1,2
CO-3	Acquire awareness about the mode of transmission, signs and symptoms and preventive measures of these diseases.	R, U	3
CO-4	Adopt preventive measures of diseases	R, U, Ap	3.4
CO-5	Apply the knowledge by creating awareness in the society	R, U, Ap	2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Biochemical Aspects of Emerging and Reemerging diseases Credits: 3:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PS O	Cognitive Level	Knowledge Category	Lecture (L)/Tutor ial (T)	Practic al (P)
1	1	1,2	R,U	F, C	LT	
2	2	1,2	R, U	F, C	LT	
3	3	3	R, U	F, C	LT	
4	4	3.4	R, U, Ap	F, C	LT	
5	5	2	R, U, Ap	F, C, P	LT	Р

	PSO 1	PS O 2	PS O 3	PSO4	PS O5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
C 0 1	1	2	-	-	-	-		2				2
CO 2	2	3	-	_	_	_		2		2		2
CO 3	-	-	1	-	-	-	2	3		2		
C 0 4	-	-	2	3	-	-	3	2		2		
CO 5	-	1	-	-	-	-						3

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs and POs

Correlation Levels:

:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam Multiple choice questions

	Internal Exam	Assign m ent	Project Evaluatio n	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

Mapping of COs to Assessment Rubrics :

References

- Textbook of Medical Biochemistry for Medical Students by DM Vasudevan and Sreekumari S. 5th edition, Japee Brothers, Medical Publishers, ISBN 81-8448-124-1:9788184481242.
- 2. Guide to Prevention of Lifestyle Diseases by R. Kumar (Author), M. Kumar (Author), Deep & Deep Publications, ISBN-13: 978-8176295185.
- 3. Cell and Molecular Biology by Gerald Karp, John Wiley & Son, Inc. New York ISBN 978 0470-16961-2, 5th Edition.
- 4. Guyton, A., & Hall, J. E. (1996). Textbook of Medical Physiology (9th edition). Prism Saunders.
- 5. Satyanarayana, U., & Chakrapani, U. (2021). Essentials of Biochemistry (3rd ed.).

University of Kerala

Discipline	BIOCHEMISTRY				
Course Code	UK3DSCBCH200				
Course Title	Properties of Biome	olecules			
Type of Course	DSC13				
Semester	III				
Academic	200 -299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites					
Course	The course is design	ed to provid	e an overviev	w of the phys	ical properties,
Summary	chemical properties			5	
	nucleic acids, amino			1	
	will enable the stud				s from a given
	sample through sche	ematic qualita	ative analysis	5.	

Detailed Syllabus:Properties of Biomolecules

Module	Unit	Content	Hrs
Ι		Nucleic acids	8
	1	Denaturation of nucleic acids, hyper chromic effect, Tm-values, cot	
		values, cot curve (significance)	
	2	Introduction to circular DNA, supercoiling	
	3	Repetitive and single copy DNA	
	4	Helix to random coil transition (brief aspects only)	
II		Amino acids	10
	5	Physical properties of amino acids- solubility, melting point	
	6	Isoelectric pH, zwitterion, optical property, amphoteric nature of amino acids	
	7	Chemical properties- transamination, deamination, decarboxylation and peptide bond formation	
	8	Colour reactions of amino acids- Reaction with Ninhydrin, Xanthoproteic reaction, Biuret reaction, Folin's test, Millon's test, Hopkins-Cole reaction, Sakaguchi reaction, Lead acetate test, Nitroprusside test, Pauly's test, and Isatin test (Structure not required)	

III		Proteins	8
	9	Physical properties of proteins- Solubility, molecular weight, shape,	
		Isoelectric pH	
	10	Denaturation of proteins- agents of denaturation and characteristics of	
		denatured protein	
	11	Precipitation reactions of proteins- precipitation at pI, salting in and	
		salting out, precipitation by salts of heavy metals, anionic or alkaloidal	
		reagents, and organic solvents.	
	12	Colour reactions of proteins- Xanthoproteic test, Biuret test and Folins	
		test (Structure not required)	
IV		Carbohydrates	10
	13	Optical activity of sugars	
	14	Reducing and non-reducing sugars with structure- open chain and	
		Haworth formula (glucose, fructose and sucrose), Anomers, epimers,	
		enantiomers, and mutarotation.	
	15	Physical properties- Optical isomerism, stereoisomerism	
	16	Chemical properties- Chemical reactions of carbohydrates (with	
		reference to glucose): reaction with alcohol (glycosides), reaction with	
		acetic anhydride (esterification), reaction with methyl iodide	
		(etherification), oxidation with acids (mild and strong), oxidation with	
		metal hydroxides (Fehling's, Benedicts & Barfoeds tests), reduction	
		reactions (with sodium amalgam, strong mineral acids & dilute alkali),	
		reaction with hydrogen cyanide, reaction with alanine, reaction of	
		different carbohydrates with phenylhydrazine (osazone formation),	
		reaction with hydroxyl amine and fermentation reaction. (Structure not	
		required)	
V		Lipids	9
	17	Properties of fatty acids - solubility, properties based on chain length	
		and unsaturation.	
	18	Reactions of lipids - hydrolysis, hydrogenation, rancidity,	
		emulsification and peroxidation reaction.	
	19	Definition and significance of iodine number, saponification value,	
		acid value and Reichert-Meissel number.	
		Practical	30
	20		
		Qualitative analysis of glucose, fructose, lactose, sucrose and starch	
	21		
	21		
		Qualitative analysis of lipids- solubility, translucent spot tests, test for	
		saturation/unsaturation, Salkowski test and Zaks test.	
	22		
		Qualitative analysis of Amino acids- Tests- Biuret test, Folin's test,	
		Xanthoproteic test, Millon's test, Morner's test, Hopkin-Cole test	
		(Glyoxylic acid test), Ehrlich's test, Sodium nitroprusside test, Pauly's	
		test, Aldehyde test, Basic Lead acetate test, Test for Methionine, and	
		Isatin test.	

	23		
		Qualitative analysis of Proteins- Biuret test, Folin's test, Picric acid	
		test, Heat denaturation, Heller's Nitric acid test, Metal precipitation,	
		Alcohol precipitation and Heller's- nitric acid test.	
		1 1	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Memorize the physical, chemical, and other general properties of biomolecules like Nucleic acids, Amino acids, Proteins, Carbohydrates, and lipids.	R, U	1
CO-2	Classify major biomolecules based on their properties	U, An	1,4
CO-3	Evaluate the significance of various reactions of major biomolecules	Е	1, 2, 4
CO-4	Illustrate various experiments for qualitative analysis of biomolecules	Ар	1, 2, 4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Properties of Biomolecules

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/P SO	Cog niti ve Lev el	edge	Lectur e (L)/Tut orial (T)	Practical (P)
CO-1	Memorize the physical, chemical, and other general properties of biomolecules like Nucleic acids, Amino acids, Proteins, Carbohydrates, and lipids	1	R, U	F, C	L/T	
CO-2	Classify major biomolecules based on their properties	1, 4	U, An	F, C	L/T	

CO-3	Evaluate the significance of various reactions of major biomolecules	1, 2, 4	Е	C, P, M	L/T	Р
CO-4	Illustrate various experiments for qualitative analysis of biomolecules	1, 2, 4	Ap	С, Р	L/T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-		2				
CO 2	2	3	-	-	-	-		2				3
CO 3	-	-	1	-	-	-	2	2		3		
CO 4	-	-	2	3	_	-	2	2		3		3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

References

- Lehninger Principles of Biochemistry, Fourth Edition by David L. Nelson, Michael M.Cox. Publisher: W. H. Freeman; Fourth Edition (April 23, 2004).
- Fundamentals of Biochemistry by J. L. Jain, Sunjay Jain and Nitin Jain (2008) Publishers: S. Chand & Co Ltd ISBN: 81-219-2453-7.
- Introductory Practical biochemistry, S. K. Sawhney & Randhir Singh (eds) Narosa Publishing House, New Delhi, ISBN 81-7319-302-9.
- Standard Methods of Biochemical Analysis, S. K. Thimmaiah (ed), Kalyani Publishers, Ludhiana, ISBN 81-7663-067-5.

University of Kerala

Discipline	BIOCHEMISTRY					
Course Code	UK3DSCBCH201					
Course Title	Enzymes and Enzy	me Kinetics	5			
Type of Course	DSC14					
Semester	III					
Academic	200-299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours/Week	
		per week	per week	per week		
	4	3 hours	-	2 hours	5	
Pre-requisites						
Course	This course offers a	an understand	ding of basic	concepts of	enzymes and its role	
Summary	in various biochemical processes. This course also envisages to give students					
	the critical analytical ability of the scientific phenomena involving enzymes and					
	proficiently work w	ith enzyme s	systems in bo	th academia	and industry.	

Detailed Syllabus: Enzymes and Enzyme Kinetics

Module	Unit	Content	Hrs		
		Introduction to Enzymes	9		
	1	Models of enzyme substrate complex formation: Induced fit, Lock and key, transition state models. Enzyme specificity.			
Ι	2 Enzyme classification and nomenclature. (Class and subclass with one example).				
	3	Units of enzyme activity- IU, Specific activity Katal, and Turnover number.			
	4	Coenzymes and their biochemical roles (CoA, TPP, PLP, NAD/NADP, FAD, FMN, Biotin, folic acid, Vitamin B12)			
	5	Concept of ES complex and features of active site			
		Enzyme Kinetics	9		
	6	Factors affecting the velocity of enzyme catalyzed reaction - enzyme concentration, substrate concentration, temperature, pH, inhibitors and activators (explanation with graphical representation)			
Π	7	Michaelis Menten equation; Km and Vmax values and their significance			
	8	Lineweaver-Burk plot, derivation of LB equation and its importance.			
	9	Allosteric enzymes: Regulation, mechanism and examples (ATCase and			
		Glycogen phosphorylase)			
III		Enzyme Inhibition and Regulations	9		

	10	Enzyme inhibition – competitive, non-competitive, uncompetitive and	
		feedback inhibitions.	
	11	Allosteric inhibition, suicide inhibition, role in drug design	
	12	Zymogens and their activation, Multi enzyme systems: FAS as example	
IV		Industrial Enzymology	9
	13	Isolation and purification of enzymes and criteria of purity.	
	14	Enzyme technology: Methods for large scale production of enzymes,	
		immobilized enzymes and their comparison with soluble enzymes	
	15	Application of immobilized and soluble enzymes in health and industry	
		Clinical Enzymology	9
\mathbf{V}	16	Diagnostic enzymes in different diseases: Liver, pancreatic and muscle	
		enzymes in diagnosis	
	17	Isoenzymes definition, clinical applications	
	18	Enzymes as reagents, analytical agents and therapeutic agents.	
		Practicals	30
		• Demonstration of factors affecting enzyme activity.	
		○ pH	
		• temperature	
		 substrate concentration 	
		• enzyme concentration	
		• Estimation of AST and ALT	
		• Extraction and assay of urease, acid phosphatase & beta amylase.	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe the fundamental concepts of enzymes, catalytic mechanisms, specificity	R,U	1, 4
CO-2	Differentiate types of enzyme inhibitions and regulations	R, U, E	1, 3
CO-3	Understand and analyse industrial applications of enzymology	R,U, Ap	1, 3, 4
CO-4	Understand and analyse clinical applications of enzymology	R, U, Ap	1, 3, 4
CO-5	Develop basic skills in isolation of enzymes, assays, and related experimental techniques	R, U, An, E	2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Describe the fundamental concepts of enzymes, catalytic mechanisms, specificity	1, 4	R,U	F, C	L/T	
CO-2	Differentiate types of enzyme inhibitions and regulations	1, 3	R, U, E	F, C	L/T	
CO-3	Understand and analyse industrial applications of enzymology	1, 3, 4	R,U, Ap	С, М	L/T	
CO-4	Understand and analyse clinical applications of enzymology	1, 3, 4	R, U, Ap	С, М	L/T	
CO-5	Develop basic skills in isolation of enzymes, assays, and related experimental techniques	2	R, U, An, E	Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1			2	-	-		2				
CO 2		2	3		-	-	2			2		3
CO 3		2	3	2	-	-	2			2		3
CO 4		2	3	2	-	-	2	2		2		3
CO 5		2			-	-						3

Mapping of COs with PSOs and POs :

Correlation Levels:

Lev	Correlation
el	
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to	Assessment Rubrics :
-------------------	----------------------

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- 1. Nelson D. L., Cox M. M. (2021) Lehninger Principles of Biochemistry, (8th ed.) W.H. Freeman &. Co Ltd.
- 2. Berg J.M., Gatto G.J., Hines J, Tymoczko J.L., Stryer L. (2023) Biochemistry (10th ed.) W.H. Freeman &. Co Ltd.
- 3. West E.S., Todd W.R., Mason H.S., Van Bruggen J.T., (2017) TextBook of Biochemistry (4th ed.)
- 4. Voet D., Voet J., Pratt C.W., (2018) Voet's Principles of Biochemistry (5th ed.)
- 5. Experimental Biochemistry: A Student Companion, Beedu Sasidhar Rao & Vijay Deshpande (ed), I.K International Pvt. LTD, New Delhi.
- 6. Introductory Practical biochemistry, S. K. Sawhney & Randhir Singh (eds) Narosa Publishing House, New Delhi.
- 7. Standard Methods of Biochemical Analysis, S. K. Thimmaiah (ed), Kalyani Publishers, Ludhiana

University of Kerala

Discipline	BIOCHEMISTRY						
Course Code	UK3DSCBCH202						
Course Title	Sports Nutrition						
Type of Course	DSC15						
Semester	III						
Academic	200 - 299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours/Week		
		per week	per week	per week			
	4	4 hrs	-	-	4 hours		
Pre-requisites							
Course					nificance of balanced		
Summary	diet, dietary health supplements, importance of types of exercise and physical						
	activity levels to maintain fitness, short term effects of exercise on important						
	body systems, role of macro and micro nutrients in exercise and sports,						
	importance of diet in	n sports and	ergogenic aid	ls.			

Detailed Syllabus:

Module	Unit	Content	Hrs		
Ι		Basics of Nutrition			
	1 Calorific value of food. BMR and factors affecting BMR, BMI and obesit				
	2	2 Significance of measurement of BMI, waist-hip ratio, and skin fold			
		thickness. SDA of food, balanced diet, RNI and RDA.			
	3 Concept of health supplements, food supplements and dietary supplem				
		with examples.			
Π	Types of Exercises and Physical Activity Levels				
	4	Types of exercise -isometric, isotonic, isokinetic, strength building, aerobic,			
		resistance and weight bearing, flexibility, balancing and stretching, warm up			
	and cool down and cardiac exercises.				
	5 Levels of physical activity-moderate and vigorous. Benefits of physical				
		activities.			
	6 Physiological changes during exercise -body composition, aerobic cap				
		glycogen reserves, water and electrolyte balance, timing of ingestion of			
		nutrients, ATP production, energy expenditure, and free radical generation.			

III		Short term Effects of Exercise on Body Systems		
	7	 Response of CVS to exercise- basic information about changes in heart rate, stroke volume, cardiac output, blood flow, and blood pressure. 		
	8	Response of Respiratory system to exercise- basic information about changes in tidal volume, minute rate respiratory rate and pulmonary ventilation		
	9 Response of muscular system to exercise			
IV	Nutrition for Sports		9	
	10	Role of carbohydrates in sports. Carbohydrate loading. Factors influencing selection of carbohydrates.		
	11	Role of proteins and fat in sports		
	12	Role of vitamins and minerals in sports		
	13	Role of water and electrolytes in sports		
V	Nutritional Requirement during Sports		9	
	14	Pre-event requirements		
	15	Requirements during events		
	16	Post event requirements		
	17	Ergogenic aids in sports		
		Activity	15	
	18	Measurement and understanding the significance of BMI, skin fold thickness and waist-hip ratio.		
	19	Measurement of vital capacity, heart rate and blood pressure in response to physical activity.		
	20	Preparation of dietary charts for general physical fitness and for sports requirements.		
	21	Basic physical activity training in gymnasium.		
	22	Visit to a physical education training institution		

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Relate and analyse the basic concepts in nutrition and health	U, An	1
CO-2	Outline, classify and plan the types of exercise and physical activity levels required to maintain health and to explain the physiological changes in response to physical activity.	R, U, Ap	1, 3
CO-3	Relate and explain the short term effects of physical activity on major body systems	R, U	1

CO-4	Relate and explain the role of macro and micronutrients in sports nutrition	R, U	1
CO-5	Relate and plan the nutritional requirements at different stages of events in sports	R, Ap	1, 3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Sports Nutrition Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1	U, An	F, C	LT	
2	2	1, 3	R, U, Ap	F, C	LT	
3	3	1	R, U	F, C	LT	
4	4	1	R, U	F, C	LT	
5	5	1, 3	R, Ap	F, C, P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	P S O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	2	_	_	-	2	2		2		
CO 2	2	I	1	-	-	i	2	2		2		
CO 3	2	I	-	-	-	-		3				
CO 4	2	_	-	-	_	-		3				
CO 5	2	_	1	-	_	-	2	2		2		

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- 1. Sports Nutrition and Balance Diet BPES Physical Education Course Book .Dr. Alok Mishra .Sports Publication; 2022nd edition.
- 2. Nutritional Guidelines for Sportspersons. Geetanjali Bhide and Subhadra Mandalika. Jaypee Brothers Medical Publishers; First Edition. ISBN-13 : 978-9352703456.
- 3. Practical Applications in Sports Nutrition.Heather Hedrick Fink (Author). Jones and Bartlett Publishers, Inc. ISBN-13 : 978-0763726577.
- 4. Sports Nutrition And Weight Management. Prof. V. Satyanarayana. Sports Publication; ISBN-13- 978-8178798998.

University of Kerala

Discipline	BIOCHEMISTRY				
Course Code	UK3DSCBCH203				
Course Title	Biosafety, Bioethics	and IPR			
Type of Course	DSC16				
Semester	III				
Academic	200 - 299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	4 hours	-		4
Pre-requisites					
Course	The course introduc	es biosafety	principles,	regulations, a	and guidelines,
Summary	and explores bioeth	ical conside	rations in ge	netic researc	h, GMOs, and
	medical experiment	tation. Cour	se provides	an understan	nding of IPR,
	including patents, tr	ademarks, a	nd internation	nal treaties, v	with a focus on
	patent filing procedu	ures and infr	ingement iss	ues. The cour	rse offers case
	studies on women	's health et	hics, medica	al errors, an	d
	radioactive waste	disposal, pr	oviding pra	ctical applic	ations of the
	concepts taught.				

Detailed Syllabus:

Module	Unit	Content	Hrs		
Ι		Biosafety	10		
	1	Historical background; introduction to biological safety cabinets; primary containment for biohazards.			
	2	Biosafety levels; recommended biosafety levels for infectious agents and infected animals.			
	3	Biosafety guidelines - government of India, roles of IBSC, RCGM, GEAC etc. for GMO applications in food and agriculture; environmental release of GMOs.			
	4	Risk assessment; risk management and communication; national regulations and international agreements.			
Π	Bioethics				
	5	Introduction to bioethics, human genome project and its ethical issues, genetic manipulations and their ethical issues			

	countries, environmental release of GMOs	
7	Ethical issues involved in stem cell research and use, use of animals in research experiments	
8	Animal cloning, human cloning and their ethical aspects, testing of drugs on human volunteers	
	Intellectual Property Rights (IPR)	10
9	Introduction to patents, types of patents, process involved in patenting in India.	
10	Trademarks, copyright, industrial design, trade secrets, traditional knowledge, and geographical indications.	
11	History of national and international treaties and conventions on patents, WTO, GATT, WIPO, Budapest Treaty, Patent Cooperation Treaty (PCT) and TRIPS.	
12	Patent databases: Searching international databases; analysis and report formation. Indian Patent Act 1970.	
13	Recent amendments; filing of a patent application; precautions before patenting disclosure/non-disclosure; procedure for filing a PCT application.	
	Patent Filing and Infringement	10
14	Patent application- forms and guidelines, fee structure, time frames.	
15	Types of patent applications: provisional and complete specifications; PCT and convention patent applications, International patenting- requirement.	
16	Financial assistance for patenting-introduction to existing schemes; Publication of patents-gazette of India, status in Europe and US.	
17	Research Patenting: Patenting by researchers and scientists- University/organizational rules in India and abroad.	
18	Detailed information on patenting biological products, Case studies on patents (basmati rice, turmeric, neem etc.), and patent infringement.	
	Case Study on Women Health Ethics	5
19	Case study on medical errors and negligence	
20	Case study on handling and disposal of radioactive waste	1
	9 10 11 12 13 14 15 16 17 18	research experiments 8 Animal cloning, human cloning and their ethical aspects, testing of drugs on human volunteers Intellectual Property Rights (IPR) 9 Introduction to patents, types of patents, process involved in patenting in India. 10 Trademarks, copyright, industrial design, trade secrets, traditional knowledge,and geographical indications. 11 History of national and international treaties and conventions on patents, WTO, GATT, WIPO, Budapest Treaty, Patent Cooperation Treaty (PCT) and TRIPS. 12 Patent databases: Searching international databases; analysis and report formation. Indian Patent Act 1970. 13 Recent amendments; filing of a patent application; precautions before patenting disclosure/non-disclosure; procedure for filing a PCT application. Patent Filing and Infringement 14 Patent applications: provisional and complete specifications; PCT and convention patent applications, International patenting-requirement. 16 Financial assistance for patenting-introduction to existing schemes; Publication of patents-gazette of India, status in Europe and US. 17 Research Patenting: Patenting by researchers and scientists-University/organizational rules in India and abroad. 18 Detailed information on patenting biological products, Case studies on patents (basmati rice, turmeric, neem etc.), and patent infringement.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Discuss the working principles in a laboratory taking all safety measures, handling of live cultures, disposal of infectious waste, care of the equipment requiring safety audit and get an insight into Biosafety guidelines.	U,R	1
CO-2	Understand the International Agreements and Regulations with respect to Biosafety and Analyse to Manage the Risks involved with GMOs.	U, A	2,3
C0-3	Understand about different treaties, rights and duties of Patent owner and Gain Knowledge about Intellectual Property Rights.	U,R	3,4
CO-4	Understand and apply the process of filing a patent.	U, A	4
CO-5	Understand and evaluate Case study on health ethics.	U, E	4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Biosafety, Bioethics and IPR

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1	U,R	F, C	LT	
2	2	2,3	U, A	F, C	LT	
3	3	3,4	U,R	F, C	LT	
4	4	4	U, A	F, C	LT	
5	5	4	U, E	F, C	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :Correlation Levels

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-		2				
CO 2	2	3	-	-	-	-		2		2		3
CO 3	-	-	1	-	-	-	2	2		2		
CO 4	-	-	2	3	-	-	2	2		2		
CO 5	-	1	-	-	-	-						3

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

Internal	Assignm	Project	End Semester
Exam	ent	Evaluation	Examinations

CO 1	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark

References

1. World Health Organization (WHO) Biosafety Manual, Third Edition, 2004. Centers for Disease Control and Prevention (CDC) Biosafety Guidelines.

2. Indian Biosafety Rules and Guidelines, issued by the Ministry of Environment, Forest and Climate Change, Government of India.

3. Guidelines for Safety in Academic Institutions, issued by the Department of Biotechnology (DBT), Government of India

4. Fleming D.A., Hunt D.L., (2002), Biological safety Principles &practices(3rd Ed.) ASM Press, Washington.

5. Singh BD. 2007. Biotechnology: Expanding Horizon. Kalyani.

6. P Ganguly, Intellectual Property Rights, Tata McGraw Hill, 2007.

7. Thomas J.A., Fush R.L., (2002), Biotechnology & safety Assessment (3rdEd.), Academic press.

8. World Intellectual Property Organization (WIPO) Intellectual Property Handbook: Policy, Law and Use, 2008

9. Indian Patent Act, 1970

10. National Bioethics Advisory Commission (NBAC). Ethical Issues in Human Stem Cell Research, Volume I: Report and Recommendations of the National Bioethics Advisory Commission, 1999

11. UNESCO Universal Declaration on Bioethics and Human Rights

University of Kerala

Discipline	BIOCHEMISTRY						
Course Code	UK3DSCBCH204	UK3DSCBCH204					
Course Title	Functional Foods an	d Nutraceuti	cals				
Type of Course	DSC17 (Minor)						
Semester	III						
Academic	200 - 299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours/Week		
		per week	per week	per week			
	4	3	-	2	5		
Pre-requisites							
Course	The course aims to	provide a co	mprehensive	knowledge a	bout the significance		
Summary	of functional foods a	and nutraceu	ticals in hum	an health. It	provides information		
	about the different types of functional foods, their sources and possible health						
	benefits. Course hig	hlights the in	nportance of	nutraceutical	s in terms of food as		
	medicine in various	disease cond	litions.				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Basics of Functional Foods & Nutraceuticals	9
	1	Introduction to Functional Foods and Nutraceuticals	
	2	History and Classification	
	3	Perceived Effects of Functional Foods and Nutraceuticals	
II		Probiotics, Prebiotics & Synbiotics	9
	4	Definition of Probiotics, Prebiotics and Synbiotics	
	5	Sources and health benefits of Probiotics	
	6	Sources and health benefits of Prebiotics	
	7	Synbiotics and its health benefits	
		Carotenoids, Fatty acids & Flavonoids	9
	8	Sources and health benefits of carotenoids $-\beta$ -carotene, lycopene and Lutein	
III	9	Sources and health benefits of fatty acids - MUFA, omega-3 and omega-6 (EPA, DHA)	
	10	Sources and health benefits of flavonoids-Anthocyanins, Flavanols and	
		Flavanones	
IV		Phytoestrogens, Minerals & Dietary Fibers	9

	18	Sources and health henefits of Dhytosetrogens Stilhenes (Desveretrol)	
	10	Sources and health benefits of Phytoestrogens-Stilbenes (Resveratrol),	
		Lignans (Medioresinol and Sesamin) and Isoflavones (Daidzein and	
	10	Genistein).	
	19	Sources and health benefits of minerals-Calcium, Magnesium, Potassium	
		and Selenium.	
	20	Sources and health benefits of dietary fibers- soluble fiber, β -glucan and	
		insoluble fibers.	
V		Food as Medicine	9
	23	Nutraceutical remedies for cognitive disorders – source and potential benefit	
		of carnosine, DHA, soy isoflavones and green tea.	
	24	Nutraceutical remedies for arthritis- source and potential benefits of	
		capsaicin, bromelain, curcumin and Boswellia Serrate.	
	25	Nutraceutical remedies for cardiovascular diseases-Dietary fibers,	
		tocotrienols and pantethine.	
		Practical/Activity (30 hr)	30
		• Qualitative analysis of phytochemicals from different plant sources	
		used in our daily life (two/three sources)	
		 Identification of plants and plant products rich in phytoestrogens, 	
		carotenoids and flavonoids.	
		 Identification of plants and plant products rich in minerals and fiber 	
		content.	
		• Familiarization of nutraceuticals available in the market and	
		understanding its potential health benefits.	
		understanding its potential nearth benefits.	
		*Lab record to be maintained.	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Outline the importance of functional foods and nutraceuticals in human health	R, U	1
CO-2	Identify the sources of different functional foods in day today life	R, U, Ap	1, 3
CO-3	Describe the health benefits of functional foods	R, U	1
CO-4	Apply knowledge of functional foods and plan daily diet to ensure maximum health benefits.	R, U, Ap	1, 3
CO-5	Relate the significance of different nutraceuticals used as remedy for disease conditions.	R, U	1

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Functional Food and Nutraceuticals

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1	R, U	F, C	LT	
2	2	1, 3	R, U, Ap	F, C	LT	
3	3	1	R, U	F, C	LT	
4	4	1, 3	R, U, Ap	F, C	LT	
5	5	1	R, U	F, C, P	LT	Р

Credits: 4:0:0 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	P S O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
C0 1	1	-	-	-	-			2				
CO 2	2	-	1	-	-		2	2		2		
CO 3	1	-	-	-	-			2				
CO 4	2	-	2	-	-		2	2		2		
CO 5	1	-	-	-	-			2				

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignme nt	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- 1. Textbook of Human Nutrition. Anjana Agarwal and Shobha A Udipi. JAYPEE Brothers Medical Publishers (P) Ltd.
- 2. Krause, L., & Mahan, S. (Eds.). (1992). Food, nutrition, and diet therapy (6th ed.). W.B. Saunders Company.
- 3. Robert E.C. Wildman; Handbook of Nutraceuticals and Functional Foods, Second Edition; CRC Press.
- Nutraceuticals and Dietary Supplements: Applications in Health Improvement and Disease Management .Anil K. Sharma, Raj K. Keservani, Rajesh K. Kesharwani. Apple Academic Press Inc.; 1st edition. ISBN-13: 978-1774638903.
- 5. Shakuntalamanay, N., & Shadaksharaswam, M. (2008). Food Facts and Principles (3rd ed.). New Age International.
- 6. Ghosh, D., et al. (2012). Innovations in Healthy and Functional Foods. CRC Press.
- 7. Handbook of Nutraceuticals-Ingredients, Formulations and Applications. Yashwant Pathak. CRC Press.
- 8. Vattem, Dhiraj A. and Vatsala Maitin. 2016. Functional Foods, Nutraceuticals and Natural Products, Concepts and Applications. USA: DEStech Publications, Inc.
- 9. Aluko, Rotimi E. 2012. Functional Foods and Nutraceuticals. Germany:Springer.

University of Kerala

Discipline	BIOCHEMISTRY					
Course Code	UK3DSCBCH205					
Course Title	PHYTOCHEMIST	'RY				
Type of Course	DSC18					
Semester	III					
Academic	200 - 299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3		2	5	
Pre-requisites	NIL					
Course	The course provide	es an under	standing of	the methods	used for the	
Summary	extraction, purification	extraction, purification and isolation of bioactive compounds from				
	medicinal plants. G	overnment p	olicies and o	quality standa	rds for herbal	
	medicine preparatio	on are covere	d in the sylla	bus		

Detailed Syllabus:

Module	Unit	Content	Hrs		
Ι		Phytochemicals	5		
	1	Plant secondary metabolites,			
	2 Chemical nature of phytoconstituents				
	3	Major classes – Polyphenols, Terpenoids, Phytosterols and Alkaloids. Therapeutic applications in ethnomedicine.			
II		Phytochemical Extraction			
	5	Solvents used in extraction, Polarity, Properties, Factors to be considered in solvent selection			
	6	Extraction methods – Soxhlet extraction, maceration, decoction, infusion, percolation, sonication and microwave-assisted extraction.			
	7	Screening for phytochemicals – Qualitative tests to detect the presence of alkaloids, glycosides, phenolics, tannins and phytosterols.			

III		Purification of Phytoconstituents	15
	10	Separation Techniques – TLC, Paper chromatography & HPLC	

	11	Quantification of phytoconstituent GC-MS, HPTLC & OPLC	
	12	Spectroscopy for compound identification – UV, IR and Mass spectroscopy	
	13	Structure elucidation of isolated compound– LCMS, FTIR & NMR	
IV		Sustainable Herbal Medicine Policies	5
	14	Conservation of Medicinal plants – in situ & ex-situ	
	15	Good quality gene pool sources, Good agriculture practices [GAP], Good field collection practices for medicinal plants[GFCP], Quality standardization	
	16	Biological diversity Act, Medicinal plant conservation areas, National Medicinal Plants Board [NMPB], National AYUSH Mission [NAM]	
V		Phytochemicals in disease prevention	10
	19	Anticancer effect of phytochemicals	
	20	Herbal medicine for liver diseases	
	21	Herbal drugs for the management of infectious diseases	
	22	Phytotherapeutics for COVID-19	
	23	Antiviral activity of phytochemicals	
1			
VI		Practical	30
VI	25	Familiarization of laboratory instruments – Soxhlet apparatus, Hot air	30
VI	25 26	· · · · · · · · · · · · · · · · · · ·	30
VI		Familiarization of laboratory instruments – Soxhlet apparatus, Hot air oven, Desiccator & Rotary evaporator	30

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the methods for extraction of phytochemicals	R, U, An	2
CO-2	Techniques for purification and isolation of active components from medicinal herbs	R, U, Ap	2
CO-3	Recall the Government policies in phytochemical research and manufacturing of herbal medicines	R, U,Ap	3
CO-4	To explain Chronic disease management employing the therapeutic efficacy of phytochemicals	R, U	2
CO-5	Expertise in extraction and purification of compounds from plants	R, U, Ap	2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-	Create
--	--------

Name of the Course: PHYTOCHEMISTRY

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	2	R, U, An	F, C	LT	
2	2	2	R, U, Ap	F, C	LT	
3	3	3	R, U,Ap	F, C	LT	
4	4	2	R, U	F, C	LT	
5	5	2	R, U, Ap	F, C, P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PS O6	PO 1	PO2	PO3	PO4	PO5	PO6
CO 1	-	3	-	-	-	-	2	2		2		
CO 2	1	3	-	-	-	-		2				3
CO 3	-	-	3	-	-	-	2	2		2		
CO 4	-	2	-	-	-	-						3
CO 5	-	3	-	-	-	-						6

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- 1. Arnason, J. T., Mata, R., & Romeo, J. T. (Eds.). (1995). *Phytochemistry of medicinal plants* (Vol. 34). Springer Science & Business Media.
- 2. Harborne, A. J. (1998). *Phytochemical methods a guide to modern techniques of plant analysis*. springer science & business media.
- 3. Shah, B. N. (2009). Textbook of pharmacognosy and phytochemistry. Elsevier India.
- **4.** Arora, C., Verma, D. K., Aslam, J., & Mahish, P. K. (Eds.). (2023). *Phytochemicals in Medicinal Plants: Biodiversity, Bioactivity and Drug Discovery*. Walter de Gruyter GmbH & Co KG.
- **5.** Pengelly, A. (2020). *The constituents of medicinal plants: an introduction to the chemistry and therapeutics of herbal medicine.* Routledge.
- **6.** Tiwari, B. K., Brunton, N., & Brennan, C. S. (2015). *Handbook of plant food phytochemicals*. Wiley-Blackwell,.
- 7. Schmidt, B. M., & Cheng, D. M. K. (Eds.). (2017). *Ethnobotany: A phytochemical perspective*. John Wiley & Sons.

University of Kerala

Discipline	BIOCHEMISTRY	BIOCHEMISTRY					
Course Code	UK3DSCBCH206	UK3DSCBCH206					
Course Title	Properties of Biomole	cules and Enz	ymology				
Type of Course	DSC 19						
Semester	III						
Academic Level	200-299	200-299					
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	1.						
	2.						
Course	This course provide	es a thorou	igh understar	nding of the	properties of		
Summary	biomolecules and en	biomolecules and enzymology. This course will help to create a strong					
	foundation in biochemistry for students, with a focus on basic biomolecules. The						
	course also covers the	basics of qua	litative analys	is of biomolec	ules.		

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Amino acids and Proteins	10
	1	Physical properties of amino acids- solubility, melting point	
	2	Isoelectric pH, zwitterion, optical property, amphoteric nature of amino acids	
	3	Chemical properties- transamination, deamination, decarboxylation and peptide bond formation	
	4	Colour reactions of amino acids- Reaction with Ninhydrin, Xanthoproteic reaction, Biuret reaction, Folin's test, Millon's test, Hopkins-Cole reaction, Sakaguchi reaction, Lead acetate test, Nitroprusside test, Pauly's test, and Isatin test (Structure not required)	
	5	Proteins: Physical properties of proteins- Solubility, molecular weight, shape, Isoelectric pH, Denaturation of proteins- agents of denaturation and characteristics of denatured protein, Precipitation reactions of proteins- precipitation at pI, salting in and salting out, precipitation by salts of heavy metals, anionic or alkaloidal reagents, and organic solvents. Colour reactions of proteins- Xanthoproteic test, Biuret test and Folins test	
II		Carbohydrates	10
	6	Reducing and non-reducing sugars with structure- open chain and Haworth formula (glucose, fructose and sucrose), Anomers, epimers, enantiomers, and mutarotation.	
	7	Physical properties- Optical activity Optical isomerism, stereoisomerism,	
	8	Chemical properties- Chemical reactions of carbohydrates (with reference to glucose): reaction with alcohol (glycosides), reaction with acetic anhydride (esterification), reaction with methyl iodide (etherification), oxidation with acids (mild and strong), oxidation with metal hydroxides (Fehling's,	

III	9	Benedicts & Barfoeds tests), reduction reactions (with sodium amalgam, strong mineral acids & dilute alkali), reaction with hydrogen cyanide, reaction of different carbohydrates with phenylhydrazine (osazone formation), reaction with hydroxyl amine and fermentation reaction. (Structure not required) Lipids and Nucleic acids Properties of Lipids: Fatty acids - solubility, properties based on chain length and unsaturation. Reactions of lipids - hydrolysis, hydrogenation, rancidity, emulsification and peroxidation reaction. Definition and significance of iodine number, saponification value, acid value and Reichert-Meissel number. Properties of Nucleic acids: Denaturation of nucleic acids, hyper chromic	10
		effect, Tm-values, cot values, cot curve (significance). Introduction to circular DNA, supercoiling, repetitive and single copy DNA, Helix to random coil transition (brief aspects only)	
IV		Enzymology	15
	11	Properties ,nomenclature and classification of enzymes, Holoenzyme ,apoenzyme, prosthetic group,cofactor metalloenzymes ,coenzymes and their functions (one reaction involving TPP,FMN, FAD, NAD, NADP, PLP, Biotin). Enzyme units -IU, Katal, turnover number and specific activity. Enzyme specificity characteristic features of active site, activation energy.	
	12	Hypotheses of enzyme substrate binding -Fischer hypothesis-lock and key model, Koshland hypothesis - induced fit theory. Factors affecting velocity of enzyme catalyzed reaction- enzyme concentration, substrate concentration, temperature, pH, inhibitors and activators.	
	13	Derivation of Michaelis- Menten equation, significance of Vmax and Km value, Derivation of Lineweaver- Burk equation and LB-plot (for single enzyme catalyzed reaction)	
	14	Enzyme inhibition- Irreversible and reversible (competitive, noncompetitive and uncompetitive inhibition. Enzyme Regulation - Covalent modification (Glycogen phosphorylase as example), Allosteric regulation (ATCase as example)	
		Zymogens (trypsinogen, chymotrypsinogen and pepsinogen), Isozymes (LDH, Creatine kinase), Designer enzymes - Abzymes, Ribozymes	
V		Practical	30
	15	Qualitative analysis of glucose, fructose, lactose, sucrose and starch	
	16	Qualitative analysis of lipids- solubility, translucent spot tests, test for saturation/unsaturation, Salkowski test and Zaks test.	
	17	Qualitative analysis of Amino acids- Tests- Biuret test, Folin's test, Xanthoproteic test, Millon's test, Morner's test, Hopkin-Cole test (Glyoxylic acid test), Ehrlich's test, Sodium nitroprusside test, Pauly's test, Aldehyde	

test, Basic Lead acetate test, Test for Methionine, and Isatin test.				
18	Qualitative analysis of Proteins- Biuret test, Folin's test, Picric acid test, Heat denaturation, Heller's Nitric acid test, Metal precipitation, Alcohol precipitation and Heller's- nitric acid test.			

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Evaluate the properties of carbohydrates, lipids, amino acids, proteins and nucleic acids	R, U, E	PSO-1,4
CO-2	Describe nomenclature , classification of enzymes, mechanism of enzyme catalysis and inhibition	R, U,	PSO-1
CO-3	Acquire an understanding of enzymes activity and enzyme kinetics	R, U	PSO-1
CO-4	Analyse qualitatively some important biomolecules in the laboratory	U, An, E	PSO-1,2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Note: 1 of 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	со	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Describe the physical and chemical properties of standard aminoacids and Proteins	1	R, U	F, C	L/T	
CO-2	Explain the Physiochemical properties and structure of carbohydrates	1,3	R,U	F, C	L/T	
C0-3	Understand the properties and	1	R, U	F, C	L/T	

	significance of nucleic acids and also the properties used to characterize lipid molecules					
C0-4	A thorough understanding of enzymes with their properties, types and kinetics.	1,2	R, U	F, C	L/T	
CO-5	Expertise in the qualitative identification of major biomolecules	1,2	R, U, Ap	Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-	-	-	1	-	-	-	-	-
CO 2	2	-	1		-	-	1	-	-	-	-	-
CO 3	2	-	1	-	-	-	1	-	-	-	-	-
CO 4	3	-	-	-	-	-	1	-	-	-	-	-
CO 5	1	3	-	-	-	-	1	-	-	-	-	-

Correlation Levels:

Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignme nt	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- 1. Lehninger Principles of Biochemistry, Fourth Edition by David L. Nelson, Michael M.Cox. Publisher: W. H. Freeman; Fourth Edition (April 23, 2004).
- 2. Fundamentals of Biochemistry by J. L. Jain, Sunjay Jain and Nitin Jain (2008) Publishers: S. Chand & Co Ltd ISBN: 81-219-2453-7.
- 3. Introductory Practical biochemistry, S. K. Sawhney & Randhir Singh (eds) Narosa Publishing House, New Delhi, ISBN 81-7319-302-9.
- 4. Standard Methods of Biochemical Analysis, S. K. Thimmaiah (ed), Kalyani Publishers, Ludhiana, ISBN 81-7663-067-5
- 5. Biochemistry by U. Satyanarayana, U. Chakrapani , third edition, ISBN 81-87134-80 1Enzymes-M.DixonandECWebb.LongmanPublication.

University of Kerala

Discipline	BIOCHEMISTRY				
Course Code	UKDSEBCH200				
Course Title	Nutrition for Huma	an Health			
Type of Course	DSE1 (Elective)				
Semester	III				
Academic	200 - 299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours/Week
		per week	per week	per week	
	4	3 hours	-	2 hours	5 hours
Pre-requisites					
Course	The course offers a	basic unders	tanding of nu	itrition, empo	wering students with
Summary	insights into variou	s nutritional	l concepts a	nd the signif	icance of each food
	component. The cou	rse provides	an overview	of the connec	tion between diet and
	deficiency/lifestyle-	related dise	eases. The	course of	utlines the recent
	advancements in nut	trition and th	eir applicatio	on in promotii	ng a healthy lifestyle.
	Basic education on	nutrition pr	ovides stude	ents with prac	ctical skills that find
	application through	out their life.		_	

Detailed Syllabus:

Module	Unit	Content	Hrs			
Ι		Basic Concepts in Nutrition	6			
	1	Definition of nutrition, health, nutrients, malnutrition – undernutrition, and				
		overnutrition. Proximate principles of food. Calorific value of food and its				
		determination (Bomb calorimeter), Respiratory Quotient of carbohydrate,				
		lipid and protein.				
	2	BMR and factors affecting BMR, BMI, Significance of BMI range and				
		obesity. Significance of skin fold thickness measurement.				
	4	Definitions and concept of balanced diet, bland diet, RNI and RDA				
II		Role of Dietary Components in Health	12			
	5	Types of nutrients: macronutrients (carbohydrates, lipids and protein),				
		micronutrients (vitamins and minerals) nutritional supplements.				
	6	Carbohydrates: General functions, dietary sources, role of dietary fibers in				
		lipid metabolism, colon function, maintenance of blood glucose level and				
		gastric motility.				

	7	Lipids: General functions, dietary sources, nutritional significance of major							
	1	dietary lipids (triglyceride, phospholipids, cholesterol). Essential fatty acids,							
		PUFA (omega-3/omega-6 fatty acids, EPA and DHA).							
	8	Protein: General functions, dietary sources and RDA for different age							
	groups, essential amino acids, limiting amino acids, nitrogen balance-								
	positive and negative, biological value of protein. Protein-calorie								
		malnutrition (Kwashiorkor and marasmus)							
III		Vitamins and Minerals	12						
	9	Classification of vitamins (Fat soluble and water soluble), minerals (macro							
		and trace)							
	10	Sources and biological functions of water soluble vitamins (B complex							
		vitamins and Vitamin C)							
	11	Sources and biological functions of fat-soluble vitamins (A, D, E and K).							
		Hypervitaminosis and deficiency diseases of A, D, E and K.							
	13	Sources and biological functions of minerals (Ca, P, Na, K,F, Cl, I, Cu, Zn							
		and Fe). Deficiency diseases of Ca,F, I, Fe, Cu.							
IV		Functional Foods & Dietary Management of Diseases	9						
	18	Basic concepts of dietary supplements, antinutritional factors, functional							
		foods, and nutraceuticals.							
	19	Nutritional significance of functional foods (probiotics, prebiotics,							
		antioxidants, bran fiber and fish oil).							
	20	Dietary management of lifestyle diseases (diabetes, obesity, hypertension							
		and cardiovascular diseases)	6						
\mathbf{V}	Advanced Trends in Health & Nutrition								
	23	Gut health: Maintenance of a healthy gut microbiome							
	24	Personalized nutrition planning based on genetics & lifestyle - apps and							
		digital platforms							
	25	Balanced diet and Sustainable nutrition							
		Practical (30hr)							
		• Measurement and understanding the significance of BMI, skin fold	30						
		thickness and waist-hip ratio.							
		• Preparation of dietary charts.							
		 Case study based on deficiency of Ca, I, Fe, Cu and F. 							
		 Case study based on deficiency of Vit A, D, B1 and C. 							
		- Case study based on denotency of vit A, D, D1 and C.							

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Recall and relate the basics concepts in nutrition	R, U	1

CO-2	Outline the significance and identify the importance of each component of food in maintaining health.	R, U, Ap	1, 3
CO-3	Identify the different types of nutritional deficiency diseases	R , U	1, 3
CO-4	Apply diet and nutrition for management of lifestyle diseases	R, U, Ap	1,3,4
CO-5	Point out recent advancements in the field of nutrition and to extend the applications of digital platforms and apps for health maintenance.	R, U, Ap	3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Nutrition for Human Health

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1	R, U	F, C	LT	
2	2	1, 3	R, U, Ap	F, C	LT	
3	3	1, 3	R, U	F, C	LT	
4	4	1,3,4	R, U, Ap	F, C	LT	
5	5	3, 4	R, U, Ap	F, C, P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	PS O 5	PS 0 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	-	-				3				
CO 2	2	-	2	-			2	2		2		
CO 3	2	-	2	-			2	2		2		
CO 4	2	-	2	1			2	2		2		
CO 5	-	-	3	1			2	2		2		

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark		\checkmark

Mapping of COs to Assessment Rubrics :

References

- i. Textbook of Human Nutrition. Anjana Agarwal and Shobha A Udipi. Jaypee Brothers Medical Publishers (P) Ltd.
- ii. Nutrition (4th edition). Insel P, Ross D, McMahon K and Bernsteind M. Jones and Bartlett Publishers. Boston 2012, 387-502.
- iii. Eastwood, M. (2003). Principles of Human Nutrition. Atlantic Publishers & Distributors.
- iv. Vitamins in Health and Disease.Kulkarni ML. Jaypee Brothers Medical Publishers (P) Ltd
- v. Krause, L., & Mahan, S. (Eds.). (1992). Food, nutrition, and diet therapy (6th ed.). W.B. Saunders Company.
- vi. Handbook of Foods And Nutrition. Blank, F. C. (2007). Agrobios (India)
- vii. Srilakshmi, B. (2014). Food Science. New Age International Publishers (India).
- viii Health, Nutrition And Diseases.Chatterjee, G. (2000). Rajat Publicat

Discipline	BIOCHEMISTRY	BIOCHEMISTRY						
Course Code	UK3DSEBCH201							
Course Title	Introduction to Nat	Introduction to Nanobiotechnology						
Type of Course	DSE2							
Semester	III	III						
Academic	200 - 299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	4 hours	-		4			
Pre-requisites	NIL							
Course	This course provides a basic overview of different types and properties of							
Summary	nanomaterials, basic methods of synthesis and characterization and							
		general applications of nanobiotechnology in the field of healthcare and						
	agriculture with spec	cial reference	e to crop imp	rovement.				

Detailed Syllabus:

•

Module	Unit	Content	Hrs			
Ι	Introduction to Nanomaterials					
	1 Introduction to nanomaterials; Various types of nanomaterials, Three- dimensional, two dimensional, one-dimensional and zero-dimensional nanomaterials.					
	2	Carbon nanotubes, Graphene, Carbon dots, metal nanoparticles, metal oxide-based nanomaterials, semiconductor nanomaterials, quantum dots, hybrid nanoparticles, Bio-nanomaterials, polymer nanoparticles, lipid nanoparticles etc.	4			
	3	Synthesis methodologies, Top down and bottom up approaches for nanomaterial synthesis.	5			
II	Properties of Nanomaterials					

4	Structural properties, chemical properties, surface functionalization,	3
	physical properties.	

	5	Characterization of nanomaterials by various analytical methods, optical characterization and spectroscopy such as FTIR, UV-Vis, DLS, Zeta	4			
		Potential.				
	6	Structural characterization by X-Ray Diffraction, XPS and advanced microscopy (TEM, SEM, AFM) etc.	5			
III	Nanobiotechnology in Healthcare					
	7	Role of nanobiotechnology in the area of infectious & noninfectious diseases.	4			
	8	Nano pharmaceuticals, Diagnosis, sensors and biosensors Delivery vehicles.	4			
	9 Biomedical applications of nanomaterials. Multimodal nanoparticles, targeted drug delivery, theranostics.					
IV	Nanobiotechnology for Agriculture					
	10	Nanotechnology based tools to enhance agricultural productivity Nano Based Agri and Food Products, food preservation and toxicity.	4			
	11	Nanopesticides and Nanofertilizers. Nano-biostimulants and soil enhancers.	4			
	12	Nano-enabled technologies and abiotic stress management.	4			
V		Nanobiotechnology for Crop Improvement	12			
	13	Precision Delivery Systems, Diagnostics and sensing.	3			
	14	Nanotechnology for environment: contamination detection and remediation.	3			
	15	Activities:	6			
		i. Visit to Centre for Nanotechnology in Kerala/India				
		ii. Brainstorming lectures				

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	To compare the different types of nanomaterials and understand the basic methods involved in the synthesis of nanomaterials.	R, U	2
CO-2	To familiarize with the basic properties of nanomaterials and the approaches undertaken to characterize the nanomaterial.	R,U,Ap	1,2

C0-3	To analyze the applications of nanotechnology in the healthcare field.	R,U,An, Ap	2,4
CO-4	To relate the role of nanobiotechnology in the field of agriculture.	R, U	3
CO-5	Point out the applications of nanotechnology in crop improvement.	R, U,An	3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Introduction to Nanobiotechnology

Credits: 4:0:0 (Lecture:Tutorial)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	2	R, U	F, C	LT	
2	2	1,2	R,U,Ap	F, C	LT	
3	3	2,4	R,U,An, Ap	F, C	LT	
4	4	3	R, U	F, C	LT	
5	5	3,4	R, U,An	F, C, P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PS O2	PS O3	PS O4	PO 1	P O2	PO 3	PO 4	PO 5	PO 6
CO 1	2	-	-	-				2		-
CO 2	2	-	-	-				2		
CO 3	-	2	-	-						3
CO 4	-	3	1	2						3
CO 5	-	-	-	3						3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

1. A. L. Rogach, Semiconductor nanocrystal quantum dots synthesis, assembly, spectroscopy and applications (Springer, Wien; London, 2008).

2. G. E. J. Poinern, A laboratory course in nanoscience and nanotechnology (CRC Press, Taylor & Francis Group, Boca Raton, 2015).

3. C. A. Mirkin, C. M. Niemeyer, Eds., More concepts and applications (Wiley-VCH, Weinheim, 2007), Nanobiotechnology.

4. A. K. Mishra, Ed., Application of nanotechnology in water research (Wiley, Scrivener Publishing, Hoboken, New Jersey, 2014).

5. K. R. Nill, Glossary of biotechnology and nanobiotechnology terms (Taylor & Francis, Boca Raton, 4th ed., 2006).

6. J. Kim, Ed., Advances in nanotechnology and the environment (Pan Stanford, Singapore, 2012).

7. P. N. Prasad. Nanophotonics (Wiley, New York, 2003).

8. E. Gazit, Plenty of room for biology at the bottom: an introduction to bionanotechnology

(Imperial College Press ; Distributed by World Scientific Pub. in the USA, London : Hackensack, NJ, 2007).

University of Kerala

Discipline	BIOCHEMISTRY						
Course Code	UK3DSEBCH202						
Course Title	Nanobiotechnology						
Type of Course	DSE3						
Semester	III						
Academic Level	200 - 299						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2	5		
Pre-requisites	NIL						
Course	This course provides a basic overview of different types and properties of						
Summary	nanomaterials, basic methods of synthesis and characterization and general						
	applications of nanobi	applications of nanobiotechnology in the field of healthcare and agriculture with					
	special reference to cr	op improveme	ent.				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction to Nanomaterials	9
	1	Introduction to nanomaterials; Various types of nanomaterials, Three- dimensional, two dimensional, one-dimensional and zero-dimensional nanomaterials.	

	2	Carbon nanotubes, Graphene, Carbon dots, metal nanoparticles, metal oxide- based nanomaterials, semiconductor nanomaterials, quantum dots, hybrid nanoparticles, Bio-nanomaterials, polymer nanoparticles, lipid nanoparticles etc.						
	3	Synthesis methodologies, Top down and bottom up approaches for nanomaterial synthesis.						
II		Properties of Nanomaterials	9					
	4	Structural properties, chemical properties, surface functionalization, physical properties.						
	5	Characterization of nanomaterials by various analytical methods, optical characterization and spectroscopy such as FTIR, UV-Vis, DLS, Zeta Potential.						
	6	Structural characterization by X-Ray Diffraction, XPS and advanced microscopy (TEM, SEM, AFM) etc.						
III		Nanobiotechnology in Healthcare	9					
	7	Role of nanobiotechnology in the area of infectious & noninfectious diseases.						
	8	Nano pharmaceuticals, Diagnosis, sensors and biosensors Delivery vehicles.						
	9	Biomedical applications of nanomaterials. Multimodal nanoparticles, targeted drug delivery, theranostics.						
IV		Nanobiotechnology for Agriculture	9					
	10	Nanotechnology based tools to enhance agricultural productivity Nano Based Agri and Food Products, food preservation and toxicity.						
	11	Nanopesticides and Nanofertilizers. Nano-biostimulants and soil enhancers.						
	12	Nano-enabled technologies and abiotic stress management.						
V		Nanobiotechnology for Crop Improvement						
	13	Precision Delivery Systems, Diagnostics and sensing.						
	14	Nanotechnology for environment: contamination detection and remediation.						
	15	Activities:						
		i. Visit to Centre for Nanotechnology in Kerala/India						
		ii. Brainstorming lectures						
		Practicals	30hr s					
		1. Synthesis of Ag metal nanoparticles by chemical route						
		2. Green synthesis of chitosan nanoparticles						
		3. Synthesis of transition metal oxide nanoparticles by hydrothermal route						
		4. Analysis of nanoparticles by UV-Vis and FTIR spectroscopy						

	5. Analysis of the XRD spectrum of a standard sample

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	To compare the different types of nanomaterials and understand the basic methods involved in the synthesis of nanomaterials.	R, U	2
CO-2	To familiarize with the basic properties of nanomaterials and the approaches undertaken to characterize the nanomaterial.	R,U,Ap	1,2
C0-3	To analyze the applications of nanotechnology in the healthcare field.	R,U,An, Ap	2,4
CO-4	To relate the role of nanobiotechnology in the field of agriculture.	R, U	3
CO-5	Point out the applications of nanotechnology in crop improvement.	R, U,An	3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: Nanobiotechnology

Credits: 4:0:0 (Lecture:Tutorial)

CO No.	СО	PO/PSO	Cognitiv e Level	Knowled ge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	To compare the different types of nanomaterials and understand the basic methods involved in the synthesis of nanomaterials.	2	R, U	F, C,P	L/T	Р
CO-2	To familiarize with the basic properties of nanomaterials and the approaches undertaken to characterize the nanomaterial.	1,2	R,U,Ap	F, C	L/T	
C0-3	To analyze the applications of nanotechnology in the healthcare field.	2,4	R,U,An, Ap	F, C	L/T	
CO-4	To relate the role of	3	R, U	F, C	L/T	

	nanobiotechnology in the field of agriculture.					
CO-5	Point out the applications of nanotechnology in crop improvement.	3,4	R, U,An	F, C	L/T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PS O2	PSO 3	PS O4	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2	-	-	-				2		-
CO 2	2	-	-	-				2		
CO 3	-	2	-	-						3
CO 4	-	3	1	2						3
CO 5	-	-	-	3						3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignme nt	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark

CO 4	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark

References

1. A. L. Rogach, Semiconductor nanocrystal quantum dots synthesis, assembly, spectroscopy and applications (Springer, Wien; London, 2008).

2. E. Gazit, Plenty of room for biology at the bottom: an introduction to bionanotechnology (Imperial College Press; Distributed by World Scientific Pub. in the USA, London: Hackensack, NJ, 2007).

3. G. E. J. Poinern, A laboratory course in nanoscience and nanotechnology (CRC Press, Taylor & Francis Group, Boca Raton, 2015).

4. C. A. Mirkin, C. M. Niemeyer, Eds., More concepts and applications (Wiley-VCH, Weinheim, 2007), Nanobiotechnology.

5. A. K. Mishra, Ed., Application of nanotechnology in water research (Wiley, Scrivener Publishing, Hoboken, New Jersey, 2014).

6. K. R. Nill, Glossary of biotechnology and nanobiotechnology terms (Taylor & Francis, Boca Raton, 4th ed., 2006).

7. J. Kim, Ed., Advances in nanotechnology and the environment (Pan Stanford, Singapore, 2012).

8. P. N. Prasad. Nanophotonics (Wiley, New York, 2003)

University of Kerala

Discipline	BIOCHEMISTRY						
Course Code	UK3VACBCH200						
Course Title	Basic Dietetics						
Type of Course	VAC1						
Semester	III						
Academic	200 - 299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours/Week		
		per week	per week	per week			
	3	3 hrs	-		3 hrs		
Pre-requisites	—						
Course	This course focuses	on the basic	concepts in	dietetics, put	pose of diet therapy,		
Summary	diet modifications for common clinical conditions, specific disease conditions,						
	diet for the management of lifestyle diseases and dietetics for metabolic						
	disorders and addict	ive behaviou	ır.				

Module	Unit	Content	Hrs		
Ι	Basics Concepts in Dietetics				
	1	Purpose and principle of therapeutic diets			
	 Modifications of normal diet and classification of therapeutic diets Routine hospital diets-regular diet, light diet, soft diet, and full liquid diet 				
	4	Types of feeding – oral feeding, tube feeding, parenteral nutrition and			
		intravenous feeding			
Π	Diet Modifications for Clinical Conditions				
	5	Modification of diet - Febrile conditions and infections			
	6	Diets for gastrointestinal disorders, constipation, diarrhoea, and peptic ulcer			
	7	Diet for renal diseases - nephritis, nephrotic syndrome, and renal failure.			
III	Nutritional Requirements in Specific Disease Conditions				
	8	Nutrition in cancer			
	9	Nutrition in Immune system dysfunction- AIDS			
	10	Nutrition in Allergy.			
IV	Dietary Management of Lifestyle Diseases				
	11	Management of diabetes			
	12	Management of Obesity			
	13	Management of Cardiovascular diseases			
	14	Management of liver diseases			
V	Nutrition in Specific Clinical Situations				
	15	Nutrition in burns and surgery.			
	16	Nutrition-Addictive behaviour in anorexia, bulimia nervosa			
	17	Nutrition support in metabolic disorders.			

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Relate the purpose and conditions requiring diet therapy.	R, U	1, 3
CO-2	Relate and apply diet modifications in common illnesses	R, U, Ap	1, 3
CO-3	Relate and plan diets for serious terminal illnesses	R, U, Ap	1, 3
CO-4	Apply the knowledge of management of lifestyle diseases through diet and plan diet accordingly.	R, U, Ap	1, 3
CO-5	Relate and plan nutritional requirements for addictive behaviours, surgery, and metabolic disorders.	R, U, Ap	1, 3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Basic Dietetics

Credits: 3:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1, 3	R, U	F, C	LT	
2	2	1, 3	R, U, Ap	F, C	LT	
3	3	1, 3	R, U, Ap	F, C	LT	
4	4	1, 3	R, U, Ap	F, C	LT	
5	5	1, 3	R, U, Ap	F, C,	LT	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	P S O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	1	-	-		2	2		3		
CO 2	2	-	2	-	-		2	2		2		
CO 3	2	-	2	-	-		2	2		2		
CO 4	2	-	2	-	-		2	2		3		
CO 5	2	-	2	-	_		2	2		2		

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments Final Exam Multiple choice questions

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- 1. Guide to Prevention of Lifestyle Diseases by R. Kumar (Author), M. Kumar (Author), Deep & Deep Publications, ISBN-13: 978-8176295185.
- 2. Blank, F. C. (2007). A Handbook of Foods And Nutrition. Agrobios (India)
- 3. Chatterjee, G. (2000). Health, Nutrition And Diseases. Rajat Publication.
- 4. Coultate, T. P. (2002). Food: The Chemistry of its Components. Royal Society of Chemistry.
- 5. Eastwood, M. (2003). Principles of Human Nutrition. Atlantic Publishers & Distributors.
- 6. Joshi, S. A. (2007). Nutrition And Dietetics. Tata McGraw Hill

Discipline	BIOCHEMISTRY						
Course Code	UK3VACBCH201						
Course Title	Drug Abuse and Pre	Drug Abuse and Prevention					
Type of Course	VAC2						
Semester	III						
Academic	200 - 299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	3	3 hours	-		3		
Pre-requisites	NIL						
Course	The course focuses of	on the basic c	oncept of dru	ıg abuse, sign	s & symptoms,		
Summary	causes & consequences, management & prevention of drug abuse. Course						
	provides knowledge prevention of drug a		actical appli	ications for	the successful		

Module	Unit	Content	Hrs		
Ι	Intro	duction to Drugs and Drug Abuse	12		
	1	Definition of drugs and their various forms. Prevalence and impact of drug abuse on individuals and society. Prevalence of menace of Drug Abuse.			
	2	Introduction to drugs of abuse: Short Term, Long term effects & withdrawal symptoms. Differentiating Drug Abuse from Drug Dependence. Physical and psychological dependence- concepts of drug tolerance.			
	3 Stimulants: Amphetamines, Cocaine, Nicotine. Depressants: Alcoho Barbiturates- Nembutal, Seconal, Phenobarbital Benzodiazepines Diazepam, Alprazolam, Flunitrazepam.				

	4	Narcotics: Opium, morphine, heroin. Hallucinogens: Cannabis & derivatives (marijuana, hashish, hash oil). Steroids. Inhalants.			
II		Nature of the Problem	6		
	5	Vulnerable Age Groups.			
	6	Signs and symptoms of Drug Abuse			
		(a)- Physical indicators			
		(b)- Academic indicators			
		(c)- Behavioral and Psychological indicators			
III		Causes and Consequences of Drug Abuse	4		
	7	Causes -Psychological and Sociological			
	8	Consequences of Drug Abuse -For individuals, For families, For society & Nation.			
IV	Management & Prevention of Drug Abuse				
	9	Management of Drug Abuse. Prevention of Drug Abuse			
	10	Narcotic Drugs and Psychotropic substances Act 1985			
	11	Case studies and real-life examples of successful prevention .			
	12	Role of Family, School, Media, Legislation & Deaddiction Centers.			
V		Activities	15		
	13.	 Visit to Deaddiction centre and report submission Seminar Presentation Collaboration with college Vimukthi club to give awareness class to students and community. Discussion on the importance of community involvement and collaboration in prevention efforts. Case study and real life examples of successful prevention of drug abuse. 			

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the basic concepts & overview of drug abuse.	R, U	2
CO-2	Identify the signs & symptoms of drug abuse	R, U	3

C0-3	Differentiate the psychological & sociological causes of drug abuse and its consequences for individuals , family, society & nation.	R, U	3
CO-4	Gain knowledge on the management & prevention of drug abuse or apply through activities	R, U , Ap	2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 3:0:0 (Lecture:Tutorial:Practical)

CO No.	со	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	2	R, U	F, C	LT	
2	2	3	R, U	F, C	LT	
3	3	3	R, U	F, C	LT	
4	4	2	R, U , Ap	F, C	LT	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS O3	PSO 4	P S O 5	PS O6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
CO 1	-	2	-	-			3	-	-	-		3		3
CO 2	-	2	-	-					2	-	-	-	-	3
CO 3	-	-	2	-			-	3	-	-	-			3
CO 4	-	-	-	3			-	-	-	-	-	3		3

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam-Multiple choice/case studies
- Programming Assignments
- Final Exam -Multiple choice/case studies

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

References

- 1. National Institute on Drug Abuse (NIDA)
- 2. Substance Abuse and Mental Health Services Administration (SAMHSA)
- 3. Centers for Disease Control and Prevention (CDC)
- 4. World Health Organization (WHO)
- 5. Extent, Pattern and Trend of Drug Use in India, Ministry of Social Justice and

Empowerment, Government of India, 2004.

6.. The Narcotic Drugs and Psychotropic Substances Act, 1985, (New Delhi: Universal,

2012)

Journal Articles:

1. McLellan AT, Lewis DC, O'Brien CP, Kleber HD. "Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation." JAMA. 2000.

2. Volkow ND, Koob GF, McLellan AT. "Neurobiologic Advances from the Brain Disease Model of Addiction." N Engl J Med. 2016.

3. Gilman JM, Ramchandani VA, Crouss T, Hommer DW. "Subjective and neural responses to intravenous alcohol in young adults with light and heavy drinking patterns." Neuropsychopharmacology. 2012.

4. Volkow ND, Baler RD, Compton WM, Weiss SR. "Adverse health effects of marijuana use." N Engl J Med. 2014.

5. Degenhardt L, Hall W. "Extent of illicit drug use and dependence, and their contribution to the global burden of disease." Lancet. 2012

University of Kerala

Discipline	Biochemistry									
Course Code	UK3VACBCH202									
Course Title	Fermentation Technology	ology								
Type of Course	VAC3									
Semester	III									
Academic	200 - 299									
Level										
Course Details	Credit	Credit Lecture Tutorial Practical Total								
		per week	per week	per week	Hours/Week					
	3	2 hours	-	2 hours	4					
Pre-requisites										
Course	The course is desig	gned to prov	vide a comp	rehensive un	derstanding of					
Summary	fermentation princip	les and their	applications	in industrial	processes. The					
	course emphasizes b		1	1	11					
	ensure that students	0	nderstanding	g of fermentat	ion technology					
	and its industrial app	olications.								

Detailed Syllabus: FERMENTATION TECHNOLOGY

Module	Unit	Content	Hrs					
Ι	Basic Concepts of Fermentation							
	1	Fermentation-Definition, Factors affecting the fermentation process, Biological agents responsible for fermentation (Bacteria,Yeasts,						
		Molds, Enzymes).						
	2	Microbial growth kinetics: Batch culture, Continuous Culture, Fed -						
		Batch culture.						
Π		Media for Industrial Fermentations	6					
	5	Media formulation						
	6	Sterilization						
	7	Development of inoculum for industrial fermentations.						
III	Fermenter							
	9	Design-Parts						
	10	Functions						
	11	Types-Batch & continuous						
IV		Recovery of Fermentation Products	6					
	18	Methods for cell lysis						
	19	Physical separation, liquid extraction, precipitation, chromatography,						
		drying						
V		Production of Fermentation Products	6					

23	Production of Alcohol	
24	Production of Organic acid (Citric acid)	
25	Production of Antibiotic (Penicillin)	
26	Production of Amino acid (Glutamic acid)	
27	Production of Vitamin B1	

28	Production of Single Cell Protein	
	Practicals (30 Hours)	30
	Demonstration of fermentation by yeastPreparation of Fermented milk product	

Course Outcomes

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the basic principles of fermentation	R, U	1,4
CO-2	Learn the role of microorganisms in fermentation	R, U	1,4
CO-3	Proficiency in media formulation and sterilization	R, U, Ap	1,4
C0-4	Acquire knowledge about fermentors	R, U	1,4
C0-5	Gain knowledge about the production technologies for different types of fermented food products	R, U, Ap	1,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1,4	R, U	F, C	LT	
2	2	1,4	R, U	F, C	LT	
3	3	1,4	R, U, Ap	F, C	LT	
4	4	1,4	R, U	F, C	LT	
5	5	1,4	R, U, Ap	F, C, P	LT	Р

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	2	-	-		2		3		
CO 2	1	-	-	2	-	-		2		3		
CO 3	1	-	-	2	-	-		2		3		
CO 4	1	-	-	2	-	-		2		3		
CO 5	1	-	-	2	-	-		2		3		

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low

2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment		Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark			\checkmark
CO 2	\checkmark	\checkmark			\checkmark
CO 3	\checkmark	\checkmark			\checkmark
CO 4	\checkmark	\checkmark			\checkmark
CO 5	\checkmark	\checkmark			\checkmark

References

- **1.** Principles of Fermentation Technology by Peter F. Stanbury, Allan Whitaker, Stephen J Hall.
- 2. Industrial Microbiology L.E. Casida, JR (ISBN 0 85226 1012).
- 3. Industrial Microbiology-A.H.Patel (ISBN 0333 90842 2).
- **4.** Prescott & Dunn's Industrial Microbiology Reed G (Ed) ISBN 81-239-1001-0) (Fourth Edition).
- 5. Food Microbiology-William C.Frazier Dennis .C Westhoff (ISBN 0-07-46210147).
- 6. Fermented Foods. Economic Microbiology Vol 7 rose A .

- Manual of Industrial Microbiology and Biotechnology, Demin & Davis .
 Applied Microbiology- Musharraffudde .

University of Kerala

Discipline	BIOCHEMISTRY						
Course Code	UK211DSCBCH						
Course Title	ENZYMOLOGY						
Type of Course	DSC16						
Semester	IV						
Academic Level	200 - 299						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	Nil				<u> </u>		
Course	This course prov	ides a tho	rough unde	rstanding of	f enzymology		
Summary	comprising of nomenclature, classification of enzymes, mechanism of						
	enzyme catalysis, enzyme kinetics, inhibition, regulation, industrial,						
	diagnostic & therapeutic applications of enzymes. It expertise students to analyze enzymes isolated from plant & human sources.						

Module	Unit	Content						
Ι	Introd	uction to enzymes and coenzymes	8					
	1Properties, nomenclature and classification of enzymes.							
	2 Holoenzyme, apoenzyme, prosthetic group,cofactor metalloenzymes, coenzymes and their functions (one reaction involving TPP, FMN, FAD, NAD, NADP, PLP, Biotin)							
	3	Isolation & purification of enzymes- Cell disruption, differential centrifugation & chromatographic techniques (Basic concepts only)						
	4	Enzyme units & criteria of purity of enzyme -IU, Katal, turnover number and specific activity						
II	Mech	Mechanism of Enzyme catalysis						

	5	Enzyme Substrate interaction- Enzyme specificity characteristic features of the active site, activation energy					
	6	Mechanism of enzyme action – general acid-base catalysis, covalent catalysis, proximity and orientation effect, and metal ion catalysis(Basics only)					
	7	Hypotheses of enzyme-substrate binding -Fischer hypothesis-lock and key model, Koshland hypothesis- Induced fit theory					
Ш	Enzyme kinetics						
	8 Factors affecting the velocity of enzyme-catalyzed reaction- enzyme concentration, substrate concentration, temperature, pH, inhibitors and activators						
	9 Derivation of Michaelis- Menten equation, significance of Vmax and Km value						
	10	Derivation of Lineweaver- Burk equation and LB-plot (for single enzyme catalyzed reaction)					
IV	Enzyn	ne inhibition & regulation	10				
	11	Enzyme inhibition- Irreversible and reversible (competitive, noncompetitive and uncompetitive inhibition with an example each					
	12	Covalent modification (Glycogen phosphorylase as example)					
	13	Allosteric regulation (ATCase as example)					

	14Zymogens (trypsinogen, chymotrypsinogen and pepsinogen).							
	15 Isozymes (LDH, Creatine kinase)							
V	Applie	ed enzymology	12					
	16Industrial uses of enzymes-Amylases, cellulose-degrading enzymes, lipases, proteolytic enzymes							
	17	Diagnostic and therapeutic applications,						
	18	Designer enzymes - Abzymes, Ribozymes.						

PRACTICALS (30 hrs)

1. Isolation & assay of Urease from Red gram

2. Analysis of enzyme kinetics-effect of temperature, P^{H} , concentration of enzyme & concentration of substrate

3. Assay of salivary amylase

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe nomenclature , classification of enzymes, mechanism of enzyme catalysis and inhibition	R,U	1, 3, 4
CO-2	Understand & analyze enzyme kinetics.	U, An	1, 2, 4
CO-3	Describe the major industrial, diagnostic & therapeutic applications of enzymes	R, U	1, 3, 4
CO-4	Expertise in the isolation & analysis of enzymes	U, Ap	1, 2, 3, 4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Describe nomenclature, classification of enzymes, mechanism of enzyme catalysis and inhibition	1, 3, 4	R,U	F, C	LT	
CO-2	Understand & analyze enzyme kinetics.	1, 2, 4	U, An	Р	LT	Р
CO-3	Describe the major industrial, diagnostic & therapeutic applications of enzymes	1, 3, 4	R, U	F, C	LT	
CO-4	Expertise in the isolation & analysis of enzymes	1, 2, 3 , 4	U, Ap	F, C, P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PS O1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	2	2	-	-		2		2		
CO 2	2	3	-	2	-	-	2	2		2		3
CO 3	1	-	2	2	-	-	2	2		2		
CO 4	1	2	2	2	-	-	1	2		3		2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

Mapping of COs to Assessment Rubrics :

University of Kerala

Discipline	Biochemistry				
Course Code	UK4DSCBCH201				
Course Title	CELL BIOLOGY				
Type of Course	DSC20(Major)				
Semester	IV				
Academic	200 - 299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	Nil				
Course Summary	The course providencompassing fundation and cell interactions and subcellular fractions and subcellular fractions.	imental princ . It equips stu	ciples, memb idents with p	rane structure ractical skills	e, cell division,

Module	Unit	Content	Hrs
Ι		Fundamentals of Cells	8
	1	Discovery of Cell and Cell Theory	
	2	Comparison between plant, animal and bacterial cells, prokaryotic and	
		eukaryotic cell	
	3	Subcellular fractionation and marker enzymes	
	4	Subcellular Organelles -Structure and functions (Nucleus,	
		Mitochondria, Ribosomes, Endoplasmic reticulum, Golgi complex,	
		Lysosomes, Microbodies, Vacuoles, Chloroplast), Cytoskeleton –	
		Structure & Functions	
II		Plasma Membrane	10
	5	Models of membrane structure -Charles Overton, Langmuir, Gorter and	
		Grendel, Danielli and Davson, Robertson, Singer and Nicolson	

III		Cell Division	9
		Transport of macromolecules-Endocytosis & Exocytosis	
		type, F-type pumps & Secondary active transport -Symport, Uniport and Antiport.	
	8	Active transport: Primary active transport- P-type (Na ⁺ K ⁺ ATPase), V-	
	/	outline of GLUT-1, 2, 3, 4 &5), Ion channels	
	7	Membrane Transport- Simple diffusion, Facilitated diffusion (brief	
	6	Membrane- Composition, fluidity and functions	

	9	Cell cycle- Phases, Mitosis		
	10	Meiosis		
	11	Cell death - Apoptosis and Necrosis		
	12	Apoptotic pathways-Intrinsic & Extrinsic, Caspases		
IV		Cancer	9	
	13	Cancer Cells- basic properties		
	14	Oncogene & Tumor Suppressor genes, Role of p53 (brief outline only)		
	15	Tumor markers- Alpha-fetoprotein (AFP), Acid		
		Phosphatase, Alkaline phosphatase, Carcino embryonic antigen (CEA),		
		Prostate-specific antigen (PSA) -Clinical significance		
V	Interaction between Cells and their Environment			
	16	Extra Cellular Matrix- Basic features, Molecular components &		
		Function		
	17	Interaction of cells with ECM- Integrins		
	18	Cell-cell adherence junctions: Adherence junction, Desmosomes, Tight		
		Junction, Gap Junction (Basic structural organization and function only)		
	19	Cell-cell interaction- Townes and Holtfreter Experiment		
	20	Cell-cell adherence junctions: Adherence junction, Desmosomes, Tight		
		Junction, Gap Junction (Structural organization and function only)		
		Practical (30hr)	30	
	21	 Basic Microscopy & amp; Instrumentation 		
		• Mitosis – Squash preparation & amp; Staining of Onion root		
		tips to study the different stages of mitosis.		
		Subcellular Fractionation		

Course Outcomes

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Comprehensive understanding of cell	R, U	1
CO-2	Familiarize with the mechanism of membrane transport	R, U	1, 3, 4
C0-3	Acquire a fundamental understanding of cell division, apoptosis & cancer	U	1, 3, 4
C0-4	Demonstrate a thorough understanding of interaction between Cells and their environment	Ap, An	1, 2
CO-5	Understanding the use of microscopy and its application in studying mitosis	R,U,Ap	1,2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-

Create Name of the Course: Credits: 3:0:1 (Lecture:Tutorial:Practical)

СО	СО	PO/PSO	Cogniti	Knowledge	Lecture	Practical
No.			ve Level	Category	(L)/Tuto rial (T)	(P)
CO-1	Comprehensive understanding of cell	1	R, U	F, C	LT	
CO-2	Familiarize with the mechanism of membrane transport	1, 3, 4	R, U	F, C	LT	
C0-3	Acquire a fundamental understanding of cell division, apoptosis & cancer	1, 3, 4	U	F, C	LT	
C0-4	Demonstrate a thorough understanding of interaction between Cells and their environment	1, 2	Ap, An	F, C, P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	P S O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	I	-	-	-	-		2				
CO 2	2		2	2	-	-	2	2		2		
CO 3	2		2	2	-	-	2	2		2		
CO 4	2	2			-	_		2				3
CO 5	2	1	-	-	-	-		2				3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm en t	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	✓	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- Biochemistry by Lubert Stryer, 4th Edition, W.H Freeman and Company ISBN 0-7167-2009-4.
- Cell and Molecular Biology-Gerald Karp, John Wiley & amp; Son, Inc. New York ISBN 9780470-16961-2, 5th Edition.
- Principles of Genetics by D. Peter Snustad and Michael J Simmons, John Wiley & amp; Son, Inc., ISBN 0-471-44180-5, 3rd Edition.
- Cell and Molecular Biology by De Robertis & amp; De Robertis, jr.
- Molecular Cell Biology by Lodish, H, Baltimore D, Berk A, Zipursky ST, Matsudaira P, Darnell J.
- The cell: A molecular approach by Geoffrey M Cooper and Robert E Hausman.

University of Kerala

Discipline	BIOCHEMISTRY					
Course Code	UK4DSCBCH202					
Course Title	Specialized tissues a	and membrai	nes			
Type of Course	DSC21(MAJOR)					
Semester	IV					
Academic	200-299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3 hours	-	2 hours	5	
Pre-requisites	Basic knowledge in	Basic knowledge in Biology				
Course	The Course describes anatomy, physiological and biochemical functions					
Summary	of specialised tissue	s of the body	and biologi	cal membran	es.	

Module	Unit	Content	Hrs
Ι		Epithelial Tissue and Connective Tissue	9
	1	Epithelial tissue - general character and functions, classification -	
		simple and stratified.	
	2	Connective tissue – areolar tissue, adipose tissue, white fibrous tissue,	
		yellow elastic tissue, reticular tissue, lymphoid tissue, cartilage, -	
		structure and function.	
	3	Reticuloendothelial system.	
II		Muscle and nervous system	9
	4	Muscle tissue – voluntary, involuntary and cardiac, Ultra structure-overview	
	5	Structure and function of muscle cell	
	6	Muscle proteins-Myosin and Actin, Tropomyosin, Troponin,	
	7	Nervous system-Subdivision	
	8	Structure of neurons, Structural and functional classification of neurons	
	9	Axonal transport, Types of neuroglia, Myelin	
III		Eye	9
	10	Eye - Structure and functions of rods and cones	
	11	Photochemistry of vision, role of vitamin A, light activation of	
		rhodopsin, biochemical reactions (cycle),	
	12	Origin of nerve impulse in vision, Cone vision- cones, mechanism of	
		color vision, light and dark adaptation.	
IV		Renal system	9
	13	Structure and function of nephron	
	14	Renal blood flow and its importance	
	15	Formation of Urine- Ultrafiltration, glomerular filtration rate, tubular	
		reabsorption,	
	16	Threshold substances, tubular secretion.	
	17	Composition of urine-normal and abnormal constituents	

V		Membrane and transport across membrane	9
	18	Membranes - cutaneous, mucous membrane, serous membrane,	
		endothelium, synovial membrane	
	19	Models of membrane structure (Charles Overton, Langmuir, Gorter and Grendel, Danielli and Davson, Robertson, Singer and Nicolson).	
	20		
	20	Common features, functions and composition of membrane, membrane fluidity and factors affecting fluidity.	
	21	Transport across membranes: exocytosis, endocytosis, simple diffusion, facilitated diffusion (brief outline of GLUT-1, 2, 3, 4 &5),	
		ion channels, active transport (primary active transport- P-type [Na+K	
		+ATPase], V-type, F-type pumps), secondary active transport	
		(symport, uniport and antiport).	
		Practical	30
	22	Urine Analysis Qualitative tests of urine:	
		Detection of abnormal constituents	
		Proteins (Coagulation test, sulfosalicylic acid test, test for Bence-Jones	
		proteins)	
		Sugars (Benedicts test)	
		Hemoglobin (o-toluidine test)	
		Ketone bodies (Rothera's test, Gerhardt's test)	
		Bile pigments (Fouchet's test, Gmelin's test)	
		Bile salts (Hay's sulphur test).	
		*Lab record should be maintained	

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Discuss the structure and function of epithelial and connective tissues of the body	R, U	1, 4
CO-2	Describe structure and function of muscle and nervous system	R, U	1, 4
CO-3	Restate the structure of eye and mechanism of vision	R, U	1,4
CO-4	Illustrate the structural and functional aspects of renal system	R, U	1, 2, 4
CO-5	Explain the structure of biological membranes and the mechanism of transport of molecules across membrane	R, U	1, 4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO C No.	CO	PO/PSO	0	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
-------------	----	--------	---	-----------------------	--------------------------------	------------------

CO-1	Discuss the structure and function of epithelial and connective tissues of the body	1, 4	R, U	F, C	L,T	
CO-2	Describe structure and function of muscle and nervous system	1, 4	R, U	F, C	L,T	
CO-3	Restate the structure of eye and mechanism of vision	1, 4	R, U	F, C	L,T	
CO-4	Illustrate the structural and functional aspects of renal system	1, 2, 4	R, U	F, C	L,T	Р
CO-5	Explain the structure of biological membranes and the mechanism of transport of molecules across membrane	1, 4	R, U	F, C	L,T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	-	3	-	-	2	2		2		
CO 2	2	-	-	3	-	-	2	2		2		
CO 3	2	-	-	3	-	-	2	2		2		
CO 4	2	2	-	3	-	-	2	2		2		3

|--|

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- 1. Rodwell, Victor W., David Allen Bender, Kathleen M. Botham, Peter J. Kennelly, and P. Anthony Weil. Harpers illustrated biochemistry. McGraw-Hill Medical Publishing Division, 2015.
- 2. Devlin, Thomas M. Textbook of biochemistry: with clinical correlations. John Wiley & Sons, 2011.
- 3. Hall, John E. Guyton and Hall textbook of medical physiology. Elsevier Health Sciences, 2010.
- 4. Ganong, W. H. Review of Medical Physiology. Appleton and Lange 1999.
- 5. White, A., P. Handler, and E. L. Smith. Principles of Biochemistry. New York, McGraw-Hill 1117 (1954).

Discipline	BIOCHEMISTRY	BIOCHEMISTRY					
Course Code	UK4DSCBCH203						
Course Title	Plant Biochemistry						
Type of Course	DSC21						
Semester	IV						
Academic	200 - 299						
Level							
Course Details	Credit Lecture Tutorial Practical Total						
	per week per week per week Hours/Week						
	4	3 hours	-	2 hours	5		
Pre-requisites	NA						
Course	The purpose of this course is to give students a brief awareness on the						
Summary	biochemical mechanisms occurring in plants, important secondary						
	metabolites, hormon	metabolites, hormones and phenomena such as photomorphogenesis and					
	senescence.						

Module	Unit	Content	Hrs
Ι		Photosynthesis	10
	1	Introduction, light and dark phase, structure of chloroplast,	
		excitation of molecules by absorption of light, structure and	
		properties of chlorophyll	
	2	Photochemical reaction system, photosynthetic electron transport chain	
	3	Cyclic and noncyclic photophosphorylation - Calvin cycle, regulation, Hatch-Slack pathway (C4 pathway)	
	4	Photorespiration, comparison of mitochondrial and photosynthetic	
		electron transport chain.	
II		Secondary metabolites	12
	5	Phenols - Functions, Shikimate Arogenate Pathway, Phenyl	
		Alanine/ Hydroxycinnamate pathway, Phenyl propanoids pathway,	
	6	Hydroxycinnamate conjugates, Hydroxycoumarins, hydroxy	
		benzoates	
	7	Flavonoids, Lignins, Lignans, Neolignans, Tannins and Quinones.	
	8	Isoprenoids - Nomenclature, Classification and Occurrence, General pathway for Terpenoid biosynthesis and functions.	
	9	Alkaloids - Nicotine, Caffiene and Cocaine. Toxic secondary	
		metabolites, secondary metabolites of medicinal importance	
III		Plant Hormones	9
	10	Structure and function of plant hormones such as	
		Ethylene, Cytokinins, Auxins, Indole Acetic Acid,	
	11	Absicic acid, Florigin and Gibberlins.	
	12	Photochemical and hormone control in plants	
IV		Photomorphogenesis and Senescence	9
	13	Phytochromes - Structure, properties, function	

			1
	14	Mechanism of action of phytochromes	
	15	Calcium and Calmodulin mediated Pfr responses	
	16	Senescence: Various levels of senescence, Factors affecting	
		senescence	
	17	Mechanism of different biochemical changes during senescence	
	18	Senescence related to stress, Regulation of Senescence	
V		Biochemical basis of Plant diseases	5
	19	Host pathogen interaction, Mechanism of pathogenesis	
	20	Enzymes, Toxins, Mechanism of Plant resistance	
	21	Phytoallexins, Elicitors, Pathogen related proteins	
		Practical	30
	22	• Extraction Methods- Choice of solvents based on polarity	
		Extraction Procedure- Cold and Hot solvent extraction	
		• Qualitative analysis of secondary metabolites	
		• Estimation of phenols, Estimation of Tannins, Estimation of	
		alkaloids, Estimation of saponins	
		• Separation techniques: Paper chromatography,	
		 Thin Layer Chromatography, 	
		 Column Chromatography, 	
		 Spectroscopic analysis of extract fractions for 	
		• Spectroscopic analysis of extract fractions for phytochemicals	
L		phytochemicals	

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Define plant processes like photosynthesis	U	1
CO-2	Discuss the importance of photorespiration and electron transport chain in plants	An	1,2
CO-3	Explain the value of secondary metabolites produced in plants in pharmaceutical, food, agricultural industries and ecology	U	2
CO-4	Discuss the role of plant hormones and how these regulate plant functions	Ар	2
CO-5	Describe the process of photomorphogenesis and aging in plants	U	1
CO-6	Discuss host-pathogen interaction, plant resistance and disease development in plants	An	3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Plant Biochemistry

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledg e Category	Lecture (L)/Tutorial (T)	Practical (P)
-----------	----	--------	--------------------	---------------------------	--------------------------------	---------------

1	1	1,	U	F, C	LT	
2	2	1,2	An	F, C	LT	
3	3	2	U	F, C	LT	
4	4	2	Ap	F, C	LT	
5	5	1	U	F, C	LT	
6	6	3	An	F, C, P	LT	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PSO 2	PSO 3	PSO 4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-		2				
CO 2	2	3	-	_	-	_		2				3
CO 3	_	2			-	-						3
CO 4	_	2			-	-						3
CO 5	_	2			_	_						3
CO 6	-		2		-	-	2	2		2		

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

Internal	Assignment	Project	End Semester
Internal	Assignment	Tiojeci	Liiu Seillestei

	Exam		Evaluation	Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark		\checkmark

References

1. Dey, Prakash M., and Jeffrey B. Harborne, eds. Plant biochemistry. Academic Press, 1997.

2. Bonner, James, and Joseph E. Varner, eds. Plant biochemistry. Elsevier, 2012.

3. Salisbury, Frank B., and Cleon W. Ross. "Plant physiology. 4th." Edn. Belmont, CA. Wadsworth (1992).

4. Lea, Peter J., and Richard C. Leegood. Plant biochemistry and molecular biology. John Wiley & Sons, 1993.

5. Heldt, Hans-Walter, and Fiona Heldt. "Plant biochemistry and molecular biology." Oxford University Press, (1997).

Online

1. https://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Isoprenoids

2. https://books.google.co.in/books?id=radCAAAAQBAJ&printsec=frontcover&dq=pla nt+diseases&hl=en&sa=X&ved=2ahUKEwicobz4p7rAhXIcn0KHY6PC8cQ6AEwAXoECAUQAg#v=onepage&q =plant%20diseases &f=false.

3. https://books.google.co.in/books?id=AVTtCAAAQBAJ&printsec=frontcover&dq=pl ant+hormones&hl=en&sa=X&ved=2ahUKEwivvqKs457rAhUbb30KHQ4aBREQ6A EwAnoECAQQAg#v=onepage&q=plant%20hormones&f=false

Discipline	Biochemistry
Course Code	UK4DSCBCH204
Course Title	Techniques in Biochemistry
Type of Course	DSC 24
Semester	IV
Academic Level	300 - 399

Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites								
Course								
Summary	the biochemical field colorimetry, spectrop chromatographic and	The course provides a thorough understanding of different techniques used in the biochemical field including types of microscopy, staining techniques, colorimetry, spectrophotometry, centrifugation method, different types of chromatographic and electrophoretic techniques. The course also provides an overview on different spectroscopic and histopathologic techniques.						

Module	Unit	Content	Hrs				
Ι		Microscopy & Photometry	9				
	1	Principle, instrumentation and applications of Simple microscope					
	2	Principle, instrumentation and applications of compound microscope					
	3	Basic staining techniques (Gram staining)					
	4	Colorimeter and spectrophotometer					
II		Methods in Homogenization & Centrifugation	9				
	5	Methods of tissue homogenization, Subcellular fractionation					
	6	Principle, instrumentation, and applications of different types of centrifugations (Differential and density gradient),					
	7	Ultracentrifugation.					
	8	Different types of rotors.					
III		Chromatography & Electrophoresis	9				
	9	Principle, procedure, and applications of Paper chromatography, TLC					
	10	Ion exchange, Molecular sieve chromatography					
	11	HPLC					
	12	Agarose gel electrophoresis, SDS PAGE					
IV	Spectroscopy						
	18	Flame Photometry, Fluorimeter					
	19	ESR and NMR spectroscopy					
	20	GC MS and HPLC MS					
V	Basics of Histopathology						
	23	Basic knowledge on histopathology					
	24	Different steps such as fixation, tissue processing, cutting, staining and analysis					
	25	Immunohistochemistry					
		Practicals	30hrs				
		 Solvent preparation for chromatography Paper chromatography and TLC Development of chromatogram Mechanical homogenization by mortar and pestle Serum separation by centrifugation Demonstration of electrophoresis 					

REFERENCE

- 1. U Satyanarayana, Biochemistry, Books and Allied (p) Limited, 2014.
- 2. Cox, Michael M. Lehninger principles of biochemistry. Freeman, 2013
- 3. Tymoczko, John L, Stryer . Biochemistry , Macmillan , 2012
- 4. Biologist's Guide to Principles and Techniques of Practical Biochemistry by BryanL.Williams, Keith Wilson Hodder Education, ISBN 071312461X (0-7131-2461-X).
- 5. The Tools of Biochemistry by Cooper, T. G.1977. Publisher: John Wiley & Sons.
- Biophysical Chemistry Principles & Techniques Handbook (2003) by AvinashUpadhyay, KakoliUpadhyay, Nirmalendu Nath Publisher: Himalaya Publishing House SBN:8178665883 ISBN-13:9788178665887, 978-8178665887.
- Physical Biochemistry by David Freifelder Publisher: W.H.Freeman & Co Ltd (September 1976) ISBN-10: 0716705591 ISBN-13: 978-0716705598.
- 8. Research Methodology for Biological Sciences (2006) by Gurumani N Publisher: MJP Publishers ISBN: 8180940160 ISBN-13: 9788180940163, 978-8180940163.
- 9. Instrumental Methods of Chemical Analysis (2006) by M.S. Yadav Publisher: Campus Books International ISBN: 8187815620 ISBN-13: 9788187815624, 978-8187815624.
- 10. Keith Wilson and John Walker, Principles and Techniques of Biochemistry and Molecular Biology. 2010.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the basic principle, instrumentation and applications of different microscopic techniques and photometry.	R, U	1,2
CO-2	Explain the different methods of homogenization, subcellular fractionation, and centrifugation.	R, U	1,2
CO-3	Gain knowledge on different types of chromatographic, electrophoretic and spectroscopic techniques.	R, U	1,2,3
CO-4	Understand the basic concept of histopathology	R,U	1
CO-5	Gain confidence to do various chromatographic and centrifugation techniques	R, U, Ap	1,2,3

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand the basic principle, instrumentation and applications of different microscopic techniques and photometry.	1,2	R, U	F, C,P	L/T	Р

CO-2	Explain the different methods of homogenization, subcellular fractionation, and centrifugation.	1,2	R, U	F, C,P	L/T	Р
CO-3	Gain knowledge on different types of chromatographic, electrophoretic and spectroscopic techniques.	1,2,3	R, U	F, C,P	L/T	Р
CO-4	Understand the basic concept of histopathology	1	R,U	F, C	L/T	
CO-5	Gain confidence to do various chromatographic and centrifugation techniques	1,2,3	R, U, Ap	F, C,P	L/T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PS O5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	3			-	-	2					
CO 2	2	2			-	-	2					
CO 3	2	2	3		-	-	2					
CO 4	2				-	-	1					
CO 5	2	3			-	-	2					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignmen t	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	BIOCHEMISTRY						
Course Code	UK4DSEBCH200	UK4DSEBCH200					
Course Title	Lifestyle Diseases a	nd Dietary	Managemen	t			
Type of Course	DSE3 (Elective)						
Semester	III						
Academic	200 - 299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours/Week		
		per week	per week	per week			
	4	4 hours	-	2 hours	4 hours		
Pre-requisites	NIL						
Course	The course is design	ed to provide	e a comprehei	nsive approact	h to different lifestyle		
Summary	diseases, associated	symptoms	and risk fac	ctors. The co	urse focuses on the		
		tyle modifie	cations throu	igh diet for	the management of		
	lifestyle diseases.						

Detailed Syllabus:

Module	Unit	Content	Hrs		
Ι		Lifestyle Diseases			
	1 Definition and types of lifestyle diseases				
	2	Importance of lifestyle factors in disease development and prevention -role			
		of diet and exercise.			
	3	Significance of balanced diet and BMI			
II		Hypertension and Cardiovascular Diseases	9		
	4	Characteristic features and causes of hypertension. Definition of coronary			
		heart disease, angina, myocardial infarction, ischemic disorders and			
		atherosclerosis.			
	5	Symptoms and Risk factors of hypertension and CVDs			
	6	Dietary management-Low fat diet, high fiber diet, low carbohydrate diet, low			
		sodium and improved intake of calcium, magnesium and potassium,			
		Mediterranean diet and DASH diet.			
III		Diabetes Mellitus	9		
	7	Basic information about Type-I diabetes, Type-II diabetes, and Gestational			
		Diabetes.			
	8	Symptoms and Risk factors of Diabetes			

	9	Dietary Management-constant carbohydrate meal plan, counting carbohydrate meal plan, exchange meal plan, balanced diet, consistent mealtime, fiber rich diet, low GI food, moderate protein diet and low intake of sodium.				
IV						
	10 Types of obesity based on BMI. Subcutaneous obesity and abdominat obesity. Factors causing obesity- physiological, social, environmental, and psychological factors Childhood obesity and consequences. Basic concept in weight management-role of exercise and diet plans.					
	11	Risk factors of Obesity				
	12	Dietary management- Balanced diet, low-calorie diets and reduced-portion size diets.				
V		Liver Diseases	9			
	13	Basic information about the liver diseases due to unhealthy lifestyle- NAFLD, alcoholic liver disease, liver cirrhosis and fatty liver.				
	14	Symptoms and Risk factors				
	15	Dietary management- weight management through healthy diet and exercise, fiber rich diet, avoiding alcohol and processed foods.				

Practical (30 hours)

Planning and preparation of diet charts for the following diseases:

- Hypertension and cardiovascular diseases
- Diabetes mellitus
- Obesity
- Liver diseases

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Define and explain the different types of lifestyle diseases and understand the importance of a balanced diet.	R, U	1
CO-2	Outline and interpret the causes and risk factors of major lifestyle diseases.	R, U	1
CO-3	Relate and interpret the symptoms associated with different lifestyle diseases.	R, U	1
CO-4	Discuss and identify the type of diet to be followed in	R, U	1,3

	different lifestyle diseases.		
CO-5	Plan diets for the management of lifestyle diseases.	R, U, Ap	1,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-

Create Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Define and explain the different types of lifestyle diseases and understand the importance of a balanced diet.	1	R, U	F, C	LT	
CO-2	Outlineandinterpretthecauses and riskfactors of majorlifestylediseases.	1	R, U	F, C	LT	
CO-3	Relate and interpret the symptoms associated with different lifestyle diseases.	1	R, U	F, C	LT	
CO-4	Discuss and identify the type of diet to be followed in different lifestyle diseases.	1,3	R, U	F, C	LT	
CO-5	Plan diets for the management of lifestyle diseases.	1,3	R, U, Ap	F, C,	LT	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	P S O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	_	-			2				
CO 2	1	-	-	-	-			2				
CO 3	1	-	-	-	-			2				
CO 4	1	-	2	-	-		2	2		2		
CO 5	1	-	2	-	_		2	2		2		

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm en t	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

CO 5	\checkmark	\checkmark	\checkmark

References

- 1. Lifestyle Diseases. Dr. Surendra G. Gattan . Nirali Prakashan. ISBN: 9789386353375.
- 2. Food Nutrition And Dietary Management Of Disease.H N Sarker. CBS Publishers. ISBN-13: 978-9389688436.
- 3. Preventing Insidious Lifestyle Diseases. K V Ramani , Hemlatha Ramani , Gunjan Y Trivedi.
- 4. Food and Lifestyle in Health and Disease by Bruno Pham-Huy, Chuong and Pham Huy. CRC Press
- 5. Guide to Prevention of Lifestyle Diseases. R. Kumar, M. Kumar, Deep & Deep Publications, ISBN-13: 978-8176295185.
- Textbook of Medical Biochemistry for Medical Students by DM Vasudevan and Sreekumari S. 5th edition, Japee Brothers, Medical Publishers, ISBN 81-8448-124-1:9788184481242.

University of Kerala

Discipline	BIOCHEMISTRY								
Course Code	UK4DSEBCH201								
Course Title	INDUSTRIAL ENZYMES								
Type of Course	DSE4								
Semester	IV								
Academic Level	200 - 299								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	NIL	L		L					
Course Summary	enzymology, histor enzyme production applications across production, dairy, fr textiles, leather, me the end of the course analyze enzyme rol	The course provides a comprehensive understanding of industrial enzymology, history of enzyme development, as well as large-scale enzyme production techniques. Students gain insights into enzyme applications across various industries, including bakery and beverage production, dairy, fruit, vegetable, and meat processing, as well as paper, textiles, leather, medicine, research, pharmaceuticals, and cosmetics. By the end of the course, students are equipped with the knowledge and skills to analyze enzyme roles, optimize production processes, and contribute to innovation and sustainability in diverse industrial sectors							

6

Detailed Syllabus:

Module	Unit	Content		Hrs			
Ι		Introduction to industrial enzymology					
	1	Enzyme Structure, function and specificity					

	2	History of industrial enzyme development			
	3	Large Scale production of enzymes on an industrial Scale			
Π		Bakery & Beverage Industry			

	5	utilization of enzymes in the bakery sector, specifically in the creation of sweeteners and dough enhancements.				
	6	Process involved in beer and wine production.				
	7	Analyze the pivotal role of enzymes in various aspects of fruit juice extraction, wine production, brewing, and their impact on product flavor profiles and shelf stability.				
III		Dairy, fruit & Vegetable and Meat processing industry	9			
	8	Enzymatic processes involved in cheese making and the production of other dairy products, emphasizing their impact on flavor development and texture enhancement.				
	9	Roles of pectinase, cellulase, amylase, and protease in fruit and vegetable processing, elucidating their contributions to product quality and shelf stability.				
	10	utilization of enzymes in meat processing, focusing on their effects on tenderness, flavor, and preservation methods.				
IV	Paper, textiles and Leather industry					
	11	Enzymes used in paper pulp production, including the roles of cellulase, hemicellulase, and laccase in enhancing paper quality and sustainability.				
	12	Diverse enzymatic applications in the textile industry, focusing on their roles in desizing, stone washing, and bleaching processes to improve fabric quality				
	13	enhance the quality, efficiency, and sustainability of leather production, highlighting their contributions to process optimization and waste reduction.				
V		Medicine, Research, Pharmaceutical and Cosmetic industry	9			
	14	Enzymes used in diagnosis and Prognosis of disease- Glucose oxidase, Cholesteryl esterase and oxidase, Peroxidase, Uricase, creatinase				

15	Commonly used enzymes in life Science Research - molecular biology and Genetics, Proteomics and Protein Engineering.	
16	Enzymes in drug manufacturing, formulation, and quality control	
17	Role of protease, lipase Cellulase, Hyaluroniclase, Amylase, Pectinase and collagenase in Cosmetic Industry	
	PRACTICALS (30 hrs)	
	1. Isolation & assay of amylase from horse gram seed	
	Analysis of enzyme kinetics-effect of temperature, P ^H , concentration of enzyme & concentration of substrate	
	2. Industrial visit	

Course Outcomes

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	The course provides a comprehensive understanding of historical evolution and impact across industries and insights into large-scale enzyme production.	R, U	1, 2, 3, 4
CO-2	Analyze emerging trends and innovations in enzyme technology within the bakery and beverage industry.	U, An	1, 3
CO-3	Evaluate the significance of enzyme applications in dairy, fruit and vegetable, meat processing, paper textile and Leather industries	R, U, Ap	1, 3, 4
CO-4	Gain insight into major diagnostic, research, Pharmaceutical, and Cosmetic applications of enzymes	R, U, Ap	1, 3, 4

3. **R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create** *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	The course provides a comprehensive understanding of historical evolution and impact across industries and insights into large-scale enzyme	ovides a pomprehensive aderstanding historical volution and apact across dustries and sights into rge-scale		F, C	LT	
-	production.					
CO-2	Analyze emerging trends and innovations in enzyme technology within the bakery and beverage industry.	1, 3	U, An	F, C	LT	
CO-3	Evaluate the significance of enzyme applications in dairy, fruit and vegetable, meat processing, paper textile and Leather industries	1, 3, 4	R, U, Ap	F, C	LT	

CO-4	Gain insight into major diagnostic, research, Pharmaceutical, and Cosmetic applications of enzymes	1, 3, 4	R, U, Ap	F, C	LT	
	Chizymes					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	2	2	2	-	-	2	2		2		2
CO 2	2		3	-	-	-	2	2		2		

CO 3	1		2	2	-	-	2	2	2	
CO 4	2	-	2	3	-	-	2	2	2	

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments

Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	Biochemistry				
Course Code	UK4SECBCH200				
Course Title	Enzyme Isolation a	nd Analysis			
Type of Course	SEC-1				
Semester	IV				
Academic Level	200 - 299				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	3	2 hours	-	2 hours	4
Pre-requisites	1. 2.				
Course Summary	The course provides techniques, includir detection, and indus knowledge and prac- various fields.	ng isolation trial applicat	methods, se ions. Studen	paration tech ts will gain b	niques, purity oth theoretical

Detailed Syllabus: Enzyme Isolation and Analysis

Module	Unit	Content	Hrs			
Ι		Introduction to Enzyme Purification	4			
	1	Objectives of enzyme purification				
	2	Basic steps involved in the purification of enzymes- Selection of				
		source of enzyme, homogenization, methods of separation,				
		determination of purity				
II		Isolation of Enzymes from Different Sources-Basic Approach				
	5	Isolation of enzymes from microorganisms				
	6	Isolation of enzymes from plant sources				
	7	Isolation of enzymes from animal sources				
	8	Homogenization				
III		Methods of Separation of Enzymes-Basic Principle	12			
	9	Dialysis & Ultrafiltration				
	10	Centrifugation				
	11	Gel filtration				

	18 19	Determination of specific activity Analytical methods to check the purity of enzymes- Ultracentrifugation	
	19	Analytical methods to check the purity of enzymes- Ultracentrifugation, SDS PAGE and Isoelectric focussing (Basic approach)	
V		SDS PAGE and Isoelectric focussing (Basic approach) Industrial Application of Enzymes	7

23	Enzymes in food industries				
24	Role of enzymes in biofuel production				
25 Role of enzymes in the paper industry					
26	Role of enzymes in the detergent industry				

Practical (30 hours)

- Isolation of Urease
- Isolation of AmylaseDetermination of specific activity

Course Outcomes

No.	Upon completion of the course, the graduate will be able to	Cognitiv e Level	PSO addresse d
CO-1	Understand the importance of enzyme purification	R, U	1, 2, 3
CO-2	Outline the basic steps involved in the isolation and purification of enzymes	R, U	1, 2, 3
C0-3	Acquire knowledge about the industrial applications of enzymes	R,U	1, 3, 4
C0-4	Gain practical knowledge on the isolation of enzymes	R, U,Ap	1, 2, 3, 4
CO-5	Attain knowledge about detection of purity of enzymes	R, U	1,2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

CO No.	СО	PO/PS O	Cognitiv e Level	Knowled ge Category	Lecture (L)/Tutor ial (T)	Practic al (P)
CO- 1	Understand the importance of enzyme purification	1, 2, 3	R, U, Ap	F, C,	LT	
CO- 2	Outline the basic steps involved in the isolation and purification of enzymes	1, 2, 3	R, U, Ap	F, C	LT	
C0- 3	Acquire knowledge about the industrial applications of enzymes	1, 3, 4	U, R, An	F, C	LT	
C0- 4	Gain practical knowledge on the isolation of enzymes	1, 2, 3, 4	An, Ap	F, C	LT	
CO- 5	Attain knowledge about detection of purity of enzymes	1,2	R, U	F, C, P		Р

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO 1	PS O 2	PS O 3	PSO4	PS O5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	2	2		-	-	2	2		2		2
CO 2	1	2	2		-	-	2	2		2		2
CO 3	1		2	2	-	-	2	2		2		
CO 4	1	2	2	2	-	-	2	2		2		2

Mapping of COs with PSOs and POs :

CO 5	1 1	-		-						
---------	-----	---	--	---	--	--	--	--	--	--

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assign m ent	Project Evaluatio n	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark

CO 2	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark

Reference

- Fundamentals of Enzymology,3rdediton by Nicholas C Price & Lewis Stevens
- A Handbook of Enzyme Biotechnology by Wiseman
- Enzymes by Trevor Palmer, Philip Bonner
- Enzyme Technology by Ashok Pandey, Colin Webb, Carlos Ricardo Soccol, Christian Larroche

University of Kerala

Discipline	BIOCHEMISTRY				
Course Code	UK4SECBCH201				
Course Title	DIAGNOSTIC BIO	OCHEMIST	'RY		
Type of Course	SEC2				
Semester	IV				
Academic	200-299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	3	2 hours	-	2 hours	4
Pre-requisites	Nil				

Course	The course is intended to impart basic knowledge of clinical disorders,
Summary	demonstrating the application of biochemical parameters and laboratory
	methods in, diagnosing diseases.

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		An introduction to Clinical Biochemistry	4
	1	Scope of clinical biochemistry in Diagnosis	
	2	Collection and preservation of biological fluids and clinical samples	
	3	Quality control and safety measures in clinical laboratory	
		Organ function tests	12
II	4	Liver function tests: - Serum Bilirubin: Total Bilirubin – Direct & Indirect, VD Bergh reaction, Liver enzymes: AST, ALT, ALP & GGT	
	5	Renal Function tests: tests of glomerular functions, , Clearance tests (creatinine and inulin clearance), Plasma creatinine, urea, β 2-microglobulin	
	6	Thyroid function tests: TSH, T3, T4	
III		Molecular diagnostics	12
	7	Basics of Molecular diagnostics and its advantages over serological testing	
	8	Molecular Techniques for diagnosis – PCR , FISH	
	9	Immunodiagnostics: ELISA, Western blotting; immunocytochemistry	
		Metabolic disorders	10
IV	11	Carbohydrate metabolism-Hyperglycaemia, galactosemia, Lactose intolerance.	
	12	Nucleic acid metabolism-Hypo and hyper uricemia, gout.	
	13	Lipid Metabolism – Atherosclerosis, fatty liver	
		Instrumentation in Clinical Biochemistry laboratory	7
	14	Semi auto and fully auto analyser (wet & dry chemistry)	
V	15	ELISA, Nephelometry methods	
		Practicals	15 hrs
	16	Estimation of Blood glucose, Triglycerides and total cholesterol	
VI	17	Hematology: ESR, PCV & Blood grouping, Lab Visit	

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understanding the basic set up and quality control in a clinical biochemistry lab	U	1
CO-2	Develop ability to handle biological fluids and clinical	U,E	1

	samples		
CO-3	Attain the proficiency of performing organ function tests	E, An,Ap	2
CO-4	Understanding of various metabolic disorders associated with carbohydrates, lipids and nucleic acid metabolism	A,An,U	1,4
CO-5	Acquire ability to handle basic biochemistry laboratory instruments	Ap, C	2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1		1	U	F, C	L, T	
2		1	U,E	F, C	L, T	
3		2	E, An,Ap	F, C	L, T	
4		1,4	A,An,U	F, C	L, T	
5		2	Ap, C	F, C,P	L, T	Р

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	2	-		2	2		2		
CO 2	1							2				
CO 3	-	3										3
CO 4	-2	-		3			2	2		2		
СО	-	3	-		-							3

_						
5						
5						

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

Books for Reference:

- 1. Tietz Fundamentals of Clinical Chemistry and Molecular Diagnostics; Elsevier
- 2. Clinical Biochemistry: An illustrated color text 3rd Ed. by Allan Gaw, Micheal Murphy, Robert Cowan, Denis O Reilly, Micheal Stewart and James Shepherd. Churchill Livingtons.
- 3. Laboratory Quality Control and Patient Safety By Jeremie M. Gras \cdot 2017
- 4. Clinical Chemistry principles, procedures and correlations, Bishop, Lipppincott,

- 5. Clinical biochemistry Metabolic and clinical aspects, Pearson Professional Ltd
- 6. Practical clinical biochemistry, volume I and II, 5th Edition Varley*et.al.*, CBS Publishers
- 7. Basic Concepts in Clinical Biochemistry: A Practical Guide By Vijay Kumar, Kiran Dip Gill · 2018

University of Kerala

Discipline	BIOCHEN	BIOCHEMISTRY					
Course Code	UK4VAC	BCH200					
Course Title	Play of H	ormones					
Type of Course	VAC 1						
Semester	IV						
Academic Level	<u> 200 - 299 </u>						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week		
	3	3 hours	-		3		
Pre-requisites	NA						
Course Summary	The cours	The course is intended to impart basic knowledge of the endocrine changes in a life time and its impact on the personal life					

Detailed Syllabus:

Module	Unit	Content	Hrs					
Ι		Introduction to hormones	9					
	1	1 Classification, site of synthesis and function.						
	2	2 Disorders caused by hormone imbalance						
	3	Hormones on teenage emotions and mental health.						
	Role of hormones in male and female reproductive system							
	4	Role of hormones during menstrual cycle						
II	5	Hormonal imbalance in male and female; symptoms (psychological and reproductive).						
	6	Semenarche, Menarche, Perimenopause, menopause (definition), symptoms, hormonal status and their impact.						
III		Hormones during pregnancy and lactation	9					
	7	Endocrine fluctuations during pregnancy						
	8	Endocrine fluctuations during lactation						
	9	Postpartum depression						

		Stress and hormones				
137	10	Role of hormones in stress.				
IV	11	An overview of stress hormones- Epinephrine, norepinephrine and cortisol				
	12	Hormonal anxiety				
	Management of hormonal imbalance					
	13	Happy hormones. Physical activity and hormones.				
V	14	Sleep cycle and hormones, obesity parameters, waist circumference is one of potentially modifiable risk factor for low testosterone and symptomatic androgen deficiency.				
	15	Awareness to society				

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Gain a thorough grasp of how hormones regulate homeostasis by understanding their physiology and biochemistry.	U, An	1
CO-2	Analyse the role of hormones in human reproductive system	U, An, E	3
CO-3	Understand hormonal changes during pregnancy and lactation	U, An, E	1
CO-4	Apply understanding of hormonal action in stress condition	Ap, E, An	3
CO-5	Inculcate an awareness to society on how to manage imbalances associated with hormone release	C, Ap, U	1

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Play of Hormones

Credits: 3:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	1	1	U, An	F.C	LT	
2	2	3	U, An, E	F.C	LT	
3	3	1	U, An, E	F.C	LT	
4	4	3	Ap, E, An	F.C	LT	
5	5	1	C, Ap, U	F.C	LT	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO 1	PSO 2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3				-			2				
CO 2			2				2	2		2		
CO 3			2				2	2		2		
CO 4			3				2	2		2		
CO 5	1				-			2				

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

CO 5	\checkmark	\checkmark	\checkmark

References

1. Text Book of Biochemistry, 5th edition by DM Vasudevan and Sreekumar S, JAYPEE Publishers, New Delhi, ISBN 81-8448-124-1, 9788184481242.

University of Kerala

Discipline	BIOCHEMISTRY				
Course Code	UK3VACBCH201				
Course Title	Science Journalism				
Type of Course	VAC2				
Semester	III				
Academic Level	200 - 299				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	3	3 hours	-		3
Pre-requisites	NIL				
Course	The course covers the	history and cu	urrent state of	science comm	unication, from
Summary	its origins to modern c and the growth of scie media used for science and society. Overall, t effective communication	ntific instituti e communicat he course emp	ons there. Stu- ion and how s phasizes the in	dents learn abo cience intersec nportance of cl	out different ets with politics

Detailed Syllabus:

Module	Unit	Content	Hrs			
Ι	Evolution of Science Communication					
	1	Science communication at the end of the Enlightenment and the importance of notions of the public in the origin of modern science - development of new audiences for science in the Nineteenth century and the emergence of new science communication media (e.g. mechanics' institutes, science journalism, public museums and zoos)	5			
	2	advent of the figure of the scientist as public expert and the debate about 'Two Cultures' $-$	4			
	3	difference between science journalism and science communication	3			
II	Introduction of Western Science in India					
	4	Introduction of Western science in India through missionaries, travelers, army and civilian army of the East India Company–	3			
	5	science in the 18th and 19th century –emergence of Indian pioneer scientists – science teaching-– developments during post-Independence period – emerging areas of science and technology – convergence in study of science	7			
III	Science Institutions in India					
	6	Institutions of science in India - the role of the Asiatic Society - Bose Institute	6			

		 Indian Institute of Science - Council of Scientific and Industrial Research (CSIR) – Indian Space Research Organization (ISRO) – Indian Science Congress organizations for popularization of science – NCSTC and Vigyan Prasar – noted science societies at state level – Science and Technology Academies – 	
	7	Awards for science communication and popularization.	2
IV	New 1	Media and Science Journalism	8
	8	The boom in new media during the twentieth century and their impact on science journalism	2
	9	Role of a science page editor – popular science magazines in the west	2
	10	Science magazines in India – the ideal science reporter - scope of science journalism on radio & television in developing countries –	2
	11	Science serials on radio and television – Bharat ki Chaap on Doordarshan – Science serials on All India Radio - tech news - understanding present market trends.	2
V	Scien	ce Journalism in Contemporary Context	7
	12	Science as an essential element in political, corporate and community news	2
	13	Major issues in science journalism – environmental pollution – genetically modified crops – research for disease prevention and eradication – nuclear power – disaster mitigation – scientific knowledge for effective governance – the North-South divide in science research and scientific development.	5

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Students will recall the key historical developments in science communication from the Enlightenment to the present day	R,U	1
CO-2	Students will understand how Western science was introduced in India and its impact on the country's scientific landscape.	U	1
C0-3	Students will analyze the roles and contributions of key scientific institutions in India, such as the Asiatic Society and ISRO.	An	4

CO-4	Students will apply their understanding of science journalism practices to evaluate the role of new media in science communication.	U	2
CO-5	Students will critically analyze the intersection of science with political, corporate, and community news to assess the major issues in contemporary science journalism	Е	4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1.	1	1	R,U	F, C	LT	
2.	2	1	U	F, C	LT	
3.	3	4	An	F, C	LT	
4.	4	2	U	F, C	LT	
5.	5	4	Е	F, C	LT	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS O3	PSO 4	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8
CO 1	1	-	-	-	-	-	-	2	-	-	-	-
CO 2	1	-	-	-	-	-	-	2	-	-	-	-
CO 3	-	-	-	2	-	-	-	2	-	-	-	-
CO 4		2	-	-	-	-	-	2		2	-	-
CO 5	-	-	-	3	3	-	-	2	-	-	-	1

Correlation Levels:

Leve Correlation

l	
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam-Multiple choice/case studies
- Programming Assignments
- Final Exam -Multiple choice/case studies

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignme nt	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		

References

- 1. National Institute on Drug Abuse (NIDA)
- 2. Substance Abuse and Mental Health Services Administration (SAMHSA)
- 3. Centers for Disease Control and Prevention (CDC)

4. World Health Organization (WHO)

5. Extent, Pattern and Trend of Drug Use in India, Ministry of Social Justice and

Empowerment, Government of India, 2004.

6.. The Narcotic Drugs and Psychotropic Substances Act, 1985, (New Delhi: Universal,

2012)

Journal Articles:

1.McLellan AT, Lewis DC, O'Brien CP, Kleber HD. "Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation." JAMA. 2000.

2. Volkow ND, Koob GF, McLellan AT. "Neurobiologic Advances from the Brain Disease Model of Addiction." N Engl J Med. 2016.

3.Gilman JM, Ramchandani VA, Crouss T, Hommer DW. "Subjective and neural responses to intravenous alcohol in young adults with light and heavy drinking patterns." Neuropsychopharmacology. 2012.

4.Volkow ND, Baler RD, Compton WM, Weiss SR. "Adverse health effects of marijuana use." N Engl J Med. 2014.

5.Degenhardt L, Hall W. "Extent of illicit drug use and dependence, and their contribution to the global burden of disease." Lancet. 2012

Discipline	BIOCHEMISTRY	Y						
Course	UK4VACBCH203							
Code								
Course	ECOLOGY AND F	ENVIRONM	IENTAL ST	UDIES				
Title								
Type of	VAC3							
Course								
Semester	IV							
Academic	200 - 299							
Level								
Course Details	Credit	Lecture	Tutoria l	Practical	Total			
		per	per	per week	Hours/W			
		week	week		eek			
	3	3 hours	_		3			
Pre-								
requisites								
Course	This course explores	s the intricate	e relationship	s between org	anisms and			
Summary	their environment, the principles of ecology, and the biochemical							
	processes shaping environmental dynamics. It covers a broad spectrum							
	of topics aimed at fostering an understanding of ecological systems, environmental issues, and sustainable practices.							
	environmental issue	s, and sustail	able practice	es.				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι	Ecology	·	7

Definition, Scope and importance of environmental studies, Need for public awareness. Natural Resources: Renewable resources and non renewable sources	
Fundamentals of Ecology: Concept of an ecosystem. Structure and function of an ecosystem. Producers, consumers and decomposes.	
Energy flow in the ecosystem. Ecological succession. Food chains, food webs and ecological pyramids.	

	Introduction types, characteristic features- (a) Forest ecosystem, (b) grassland ecosystem, (c) desert ecosystem and (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)	
II	Environmental pollution	12
	Definition • Causes, effects and control measures of air pollution, water pollution, soil pollution, marine pollution, noise pollution, thermal pollution, nuclear hazards .	
	Solid waste management: Causes, effects and control measures of urban and industrial wastes. •	
	Role of an individual in prevention of pollution.	
	Disaster management: floods earthquake, cyclone and landslides	
III	Biodiversity Conservation	12
	Introduction- Definition: genetic, species and ecosystem diversity. • Biogeographical classification of India.	
	Value of biodiversity: India is a mega-diversity nation. • Hot-spots of biodiversity.	
	Threats to biodiversity: habitat less, poaching of wildlife, man wildlife conflicts.	
	Endangered and endemic species of India. • Conservation of biodiversity; In-situ and ex-situ conservation of biodiversity	
IV	Social and Health Perspectives	12
	Water conservation, rain water harvesting, watershed management	

	Resettlement and rehabilitation of people, its problems and concerns.	
	Population explosion –Family welfare Programme	
	Environment and human health. • Human Rights. • Value education. Women and child welfare.	
V	Global environmental issues and solutions	12
	Global Warming, Ozone Depletion, Acid Rains	

Hazardous Waste Management and International Regulations Sustainable Development Principles
Bioremediation Techniques Introduction and types of bioremediation, bioremediation of surface soil and sludge, bioremediation of subsurface material.
Phytoremediation. Chemical toxicology: Biochemical effects of heavy metals (Pb, As, Hg, Cd), pesticides, insecticides, herbicides, weedicides, larvicides.
ACTIVITIES
Field work (5 hrs), Any one or two
• Environmental Asset Documentation and Site Visits: Visit to a local area to document environmental assets-river/forest/grassland/hill/mountain.
• Visit to a local polluted site-Urban/Rural/Industrial/Agricultural.
Study of common plants, Insects, Birds and Ecosystems
Analysis of Polluted Sites and Solid Waste Management Practices

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitiv e Level	PSO addressed
CO-1	Understand the fundamentals of ecology.	U	1, 3
CO-2	Apply the methods for waste management & prevention of environmental pollution	U, A	1, 2, 3, 4
C0-3	Understand & recognize biodiversity conservation.	U	1, 3
CO-4	Understand & apply various social & health perspectives	U, A	3, 4

CO-5	Identify global environmental issues & apply solutions for the safety	U, A	1, 2, 3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Ecology and Environmental studies

Credits: 3:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PS O	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO- 1	Understand the fundamentals of ecology.	1, 3	U	F, C	LT	
CO- 2	Apply the methods for waste management & prevention of environmental pollution	1, 2, 3, 4	U, A	С, Р	LT	
C0- 3	Understand & recognize biodiversity conservation.	1, 3	U	F, C, M	LT	
CO- 4	Understand & apply various	3, 4	U, A	С, Р	LT	
	social & health perspectives					
CO- 5	Identify global environmental issues & apply solutions for the safety	1, 2, 3	U, A	С, Р, М	LT	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	P S 0 1	PS O 2	PS O 3	PSO4	PS O5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	2	-	-	-		2				3
CO 2	2	3	2	2	_	-	2	2		2		3
CO 3	2	_	1	-	-	-	2	2		2		
CO 4	-	_	2	3	-	-	2	2		2		
CO 5	2	1	3	-	_	_	2	2		2		3

Correlation Levels:

Lev el	Correlation
I	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam-Multiple choice questions

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assign ment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	BIOCHEMISTRY								
Course Code	UK5DSCBCH300								
Course Title	Bioenergetics and	Carbohydra	te Metabolis	m					
Type of Course	DSC23								
Semester	V								
Academic	300 - 399								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	NA								
Course	The course provides	The course provides an overview of bioenergetics and energy production							
Summary	by explaining the ge schematizing the ox	1 1		0.	abolism and				

Module	Unit	Content	Hrs				
Ι		Bioenergetics					
	1	Concept of free energy- standard free energy change and actual free					
		energy change. ΔG and spontaneity of reactions.					
	2	Energy rich compounds- Classification -high and low energy compounds					
	3	ATP-Structure of ATP, reason for negative value of ΔG of hydrolysis of					
		ATP, ATP/ADP cycle, coupling of exergonic and endergonic reactions,					
	4	Biological oxidation-reduction reactions- enzymes and co-enzymes					
		involved (brief outline), redox potential (Eo), relation between standard					
		redox potential and free energy change (Equation only).					
Π		Metabolism of Monosaccharides	12				
	5	Glycolysis (aerobic and anaerobic): Site, reactions (structure not					
		required), energetics, regulation and significance. Fate of pyruvate					
	6	Metabolism of Galactose and Fructose: Site, reactions (structure not					
		required), energetics, regulation and significance					
	7	Pyruvate dehydrogenase complex: Formation of acetyl CoA: Site,					
		reactions (structure not required), energetics, regulation and significance					

	0		
	8	TCA cycle: Site, reactions (structure not required), energetics,	
		regulation and significance, amphibolic nature, anaplerotic reactions.	
		Substrate level phosphorylation.	
	9	Glyoxylate cycle: Site, reactions (structure not required), energetics,	
	10	regulation and significance	
	10	HMP Shunt (Oxidative and non-oxidative pathway): Site, reactions	
		(structure not required), energetics, regulation and significance	0
III	10	Metabolism Of Di- and Polysaccharides	8
	10	Action of disaccharidases: Maltase, Sucrase, Lactase	
	11	Glycogenesis: Structure of Glycogen, Site, reactions (structure not	
	10	required), energetics and regulation of glycogenesis	
	12	Glycogenolysis: Structure of Glycogen, Site, reactions (structure not	
	10	required), energetics and regulation of glycogenolysis	
	13	Cori's cycle: Significance	
IV		Electron Transport Chain	9
	14	Structure of mitochondria	
	15	Components and sequence of electron carriers (Complex I, II, III, IV),	
	16	Events during electron transport (brief outline),	
	17	Q-cycle (brief concept only): Significance	
	18	Cytochrome oxidase mechanism (brief concept only): Significance	
\mathbf{V}		Oxidative Phosphorylation	9
	19	ATP synthesis: substrate level and oxidative phosphorylation. P/O ratio	
		(definition)	
	20	Complex V: structure of ATP synthase (brief outline)	
	21	Chemiosmotic hypothesis of mitochondrial oxidative phosphorylation	
		(basic concept)	
	22	Boyer's binding change mechanism (brief outline)	
	23	ATP-ADP translocase	
	24	Inhibitors and uncouplers	
	25	Transport of reducing potentials into mitochondria: malate-aspartate	
		shuttle, glycerol-3-phosphate shuttle	
	26	Net ATP yield from complete oxidation of glucose	
		Practical	30hrs
		• Preparing graphs in estimations	
		• Application of Beer-Lambert's law in quantitative analysis	
		• Estimation of glucose by Nelson Somogyi method	
		 Estimation of ketose by Roe-Papadopoulos method 	
		 Estimation of pentose by Orcinol method 	
		 Estimation of reducing sugar by Anthrone method 	
		• Estimation of reducing sugar by O-toluidine method	
		• Estimation of reducing sugar Phenol-sulphuric acid	
		*Lab records to be maintained	

References:

1. Biochemistry by Lubert Stryer, 4th Edition, W.H Freeman and Company ISBN 0-7167-

2009-4.

- 2. Principles of Biochemistry, by Albert Lehninger, David L Nelson, Michael M Cox, CBS Publishers & Distributors Delhi ISBN 81-239-0295-6.
- 3. Textbook of Biochemistry with Clinical Correlations Edited by Thomas M Devlin, Wiley-Liss Publications, ISBN 100-471-67808-2.
- 4. Biochemistry (2004) by Donald Voet, Judith G. Voet Publisher: John Wiley & Sons Inc ISBN: 047119350X ISBN-13: 9780471193500, 978-0471193500.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Classify energy rich compounds and explain concept of free energy	R, U	1
CO-2	Illustrate the regulatory mechanism of aerobic and anaerobic metabolic pathways of monosaccharides	R, U, Ap	1
CO-3	Predict the regulatory mechanism involved in glycogen metabolism	R, U, Ap	1,3
CO-4	Summarize the events occurring during electron transport in mitochondria	R, U	1
CO-5	Calculate the net ATP yield in the degradation of carbohydrates	R, U, Ap	1, 3

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Bioenergetics and Carbohydrate Metabolism

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PS O	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Classify energy rich compounds and explain concept of free energy	1	R, U	F, C	L/T	

CO-2	Illustrate the regulatory of mechanism of aerobic and anaerobic metabolic pathways of monosaccharides	1	R, U, Ap	F, C	L/T	Ρ
CO-3	Predict the regulatory mechanism involved in glycogen metabolism	1, 3	R, U, Ap	F, C	L/T	Ρ
CO-4	Summarize the events occurring during electron transport in mitochondria	1, 3	R, U, Ap	R, U, Ap	L/T	
CO-5	Calculate the net ATP yield in the degradation of carbohydrates	1,3	R, U, Ap	R, U, Ap	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	-	-	-	-	1					
CO 2	2		-	_	-	-	1					
CO 3	2	-	3	_	-	-	3					
CO 4	3	-	_	_	_	-	1					
CO 5	-	-	2	-	-	-	2					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	Biochemistry
Course Code	UK5DSCBCH301
Course Title	Lipid, Nucleic acid, Amino acid Metabolism

Type of	DSC24						
Course							
Semester	V						
Academic	300-399						
Level							
Course	Credit	Lecture per week	Tutorial	Practical	Total Hours/Week		
Details			per week	per week			
	4	3 hours	-	2 hours	5		
Pre-requisites	Nil						
Course	The course provides an overview of bioenergetics and energy production in metabolism						
Summary	of lipids, n	ucleic acid and amino a	cids.				

Module	Unit	Content	Hrs					
Ι		Lipid Metabolism	12					
	1	Sources of body fat, hydrolysis of triacylglycerol and transport of fatty acids						
		to mitochondria. Role of carnitine.						
	2	β -oxidation of saturated fatty acid, monounsaturated fatty acids and odd chain						
		fatty acids. Calculation of energetics of oxidation of stearic and palmitic acid.						
	3	α -and ω -oxidation of fatty acids (basics only)						
	4	Sources of acetyl CoA, metabolism of ketone bodies, and ketonuria						
	5 Biosynthesis of saturated fatty acid							
	6	Biosynthesis of triglycerides, phospholipids (Lecithin and Cephalin), glycolipids (glucocerebroside), and sphingolipids (sphingomyelin)						
	7	Biosynthesis of cholesterol, regulation of cholesterol metabolism, and degradation of cholesterol to bile acids						
	8	Biosynthesis of steroid hormones (glucocorticoids-cortisol, mineralocorticoids-aldosterone, sex hormones-testosterone, estrone and estradiol)						
	9	Disorders of lipid metabolism- Zellweger syndrome, Refsum's disease, and Sudden infant death syndrome (SIDS).						
II		Nucleic acid Metabolism	8					
	10	Sources of atoms of purines and pyrimidines						
	11	Salvage and de novo pathways of purine and pyrimidine with regulation						
	12	Formation of adenylate (AMP), guanylate (GMP), uridylate (UMP), CTP, deoxyribonucleotides, thymidylate (TMP) and nucleotide di- and triphosphates (Brief outline only)						
	13	Excretory products of purine and pyrimidine degradation. Gout. Disorders of purine or pyrimidine metabolism: Lesch-Nyhan syndrome, SCID						
III		Nitrogen Metabolism	8					
	14	Nitrogen cycle						
	15	Biological nitrogen fixation: symbiotic nitrogen fixation- leguminous plants (rhizobium as example) leghaemoglobin, nitrogenase complex						
	16	Non-symbiotic nitrogen fixation one example (outline only)						

	17	Conversion of nitrate to ammonia by plants- nitrate reductase and nitrite					
		reductase.					
IV		Amino acid Metabolism	10				
	18	Nitrogen balance (positive, negative), general reactions of amino acid metabolism- transamination, oxidative deamination, trans deamination, and decarboxylation.					
	19	Nitrogen excretion. Urea cycle and its regulation					
	20 Glucogenic and ketogenic amino acids. Metabolism of glucogenic amino acid (isoleucine, valine) & ketogenic amino acid (leucine & lysine).						
	21	Brief outline of formation of Epinephrine, Norepinephrine & melanin from Tyrosine.					
	22	Metabolism of essential amino acid (His, Lys), non-essential amino acid (Arg, Gly).					
	23	Disorders of amino acid metabolism (Alkaptonuria, phenylketonuria, maple syrup urine disease, Hartnup disease, tyrosinosis, albinism).					
V		Heme Metabolism	6				
	24	Heme synthesis and degradation,					
	25	Abnormal hemoglobin, disorders of heme metabolism (porphyria - erythropoietic and hepatic, Criggler Najjar syndrome).					
	26	Iron metabolism, iron absorption and transport, anemia.					
	27	Practical	30				
		 Quantitative analysis of protein by Biuret method Quantitative analysis of protein by Folin-Lowry Method Quantitative analysis of Amino acids by Ninhydrin method Quantitative analysis of Tyrosine by Folin and Denis method Quantitative analysis of Cholesterol by Zak's Method Quantitative analysis of DNA by Diphenyl Amine Method Quantitative analysis of RNA by Orcinol Method. 					

References

- 1. E.S. West, W.R. Todd, H.S. Mason and J.T. van Bruggen, A Text Book of Biochemistry, Oxford and IBH Publishing Co., New Delhi, 1974
- 2. Biochemistry (2004) by Donald Voet, Judith G. Voet Publisher: John Wiley & Sons Inc ISBN: 047119350X ISBN-13: 9780471193500, 978-0471193500.
- 3. Principles Of Biochemistry (1995) by Geoffrey L Zubay, William W Parson, Dennis E Vance Publisher: McGraw-Hill Book Company – Koga ISBN:0697142752 ISBN-13: 9780697142757, 978-0697142757
- 4. Principles Of Biochemistry, 4/e (2006) by Robert Horton H , Laurence A Moran, Gray Scrimgeour K Publisher: Pearson ISBN: 0131977369, ISBN-13:9780131977365, 978-0131977365.
- 5. Biochemistry (2008) by Rastogi Publisher: McGraw Hill ISBN: 0070527954 ISBN-13: 9780070527959, 978-0070527959.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe pathways and energetics involved in the metabolism of Lipids, Nucleic acid and Amino acids.	R, U	1
CO-2	Explain the role of enzymes involved under physiological conditions.	R, U	1
CO-3	Explain the metabolic regulatory mechanisms of above-mentioned biomolecules.	R, U	3
CO-4	Understanding the energetics and the mechanism of transport of these biomolecules in the body.	R, U	1
CO-5	Qualitatively analyse these biomolecules in a given test sample	R, U, Ap	2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Lipid, Nucleic acid, Amino acid Metabolism Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Describe pathways and energetics involved in the metabolism of Lipids, Nucleic acid and Amino acids.	1	R, U	F, C	L	
CO-2	Explain the role of enzymes involved under physiological conditions.	1	R, U	F, C	L	
CO-3	Explain the metabolic regulatory mechanisms of above-mentioned biomolecules.	3	R, U	F, C	L	
CO-4	Understanding the energetics and the mechanism of transport of these biomolecules in the body.	R, U	R, U	F, C	L	

CO-5	Qualitatively analyse these	2	R, U, Ap	Р	Р
	biomolecules in a given test				
	sample				

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	_	1	_	_	-	1					
CO 2	2	-	1	-	_	_	1					
CO 3	2	-	1	-	_	_	1					
CO 4	2	_	1	_	_	-	1					
CO 5	-	3	_	-	_	_	1					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark

CO 3	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	

University of Kerala

Discipline	BIOCHEMISTRY							
Course Code	UK5DSCBCH302							
Course Title	Human Physiology	Human Physiology and Immunology						
Type of Course	DSC25							
Semester	V							
Academic	300 - 399							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	Nil							
Course	The course provides	a comprehen	nsive study o	f systems in c	our body which			
Summary	includes the physio	includes the physiology of blood, physiology of respiration, digestive						
	system, specialized	tissues, im	mune syster	n function a	and associated			
	disorders.							

Module	Unit	Content	Hrs
Ι		Blood Physiology	10
	1	Basic idea of circulatory system, general functions of blood.	
	2	Blood components: Blood, plasma and serum. Formed elements: count, structure, function and clinical significance of (i) RBC (ii) WBC and (iii) platelets.	
	3	Haemoglobin – structure and functions. Plasma Proteins-types & functions.	
	4	Abnormal Haemoglobin: Thalassemia and hemoglobinopathies. (Outline only).	
	5	Blood forming organs, hemopoiesis: erythropoiesis, leukopoiesis and thrombopoiesis.	
	6	Hemostasis: Blood coagulation- Intrinsic and Extrinsic pathways, anticoagulants	

7	Bleeding time and coagulation time	
8	Basis of blood group classification (ABO, Rh).	
9	Hemocompatibility and transfusion (basic idea only). Erythroblastosis fetalis.	

II		Respiratory Physiology	8
	10	Basic structure of lungs	
	11	Exchange of gases in alveoli and tissues, transport of oxygen in blood	
	12	O ₂ dissociation curve - Effect of PO ₂ , PCO ₂ , H ⁺ concentration	
	13	Bohr effect, temperature and 2,3 BPG. Transport of CO ₂ in blood	
	14	Chloride shift	
	15	Carbonic anhydrase reaction	
	16	Acid base balance: Respiratory regulation	
	17	Acid base disturbances- (respiratory acidosis and alkalosis, metabolic	
	10	acidosis and alkalosis)	
	18	Compensation mechanism (basic idea only)	
III	10	Digestion And Absorption	4
	19	Gastrointestinal organs and functions	
	20	Digestion and absorption of carbohydrates	
	21	Digestion and absorption of proteins	
	22	Digestion and absorption of lipids	
	23	Lactose intolerance, Hartnup disease	
IV		Specialized Tissues	8
	24	Muscle: Structure of muscle, muscle proteins, energy sources for muscle	
		contraction and sliding filament theory. Biochemical events during	
		muscle contraction. Rigor mortis.	
	25	Neuron: Structure of neuron, glial cells, graded potential and action	
		potential, ionic basis of action potential, threshold and all or none	
		response, refractory period, excitatory and inhibitory chemical synapses,	
		neurotransmitters and neuromodulators.	
	26	Bone: Composition, role of Ca, P and Vitamin D in bone remodelling.	
V		Immunology And Immunological Disorders	15
			10
	27	Immunity- Basic concepts	
	28	Immunity- Basic concepts Types of immunity-innate and acquired immunity.	
		Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological	
	28 29	Immunity- Basic concepts Types of immunity-innate and acquired immunity. Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.	
	28 29 30	Immunity- Basic concepts Types of immunity-innate and acquired immunity. Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers. Cells and organs of immune system	
	28 29	Immunity- Basic concepts Types of immunity-innate and acquired immunity. Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers. Cells and organs of immune system Acquired immunity- humoral and cell mediated immunity, characteristic	
	28 29 30 31	Immunity- Basic concepts Types of immunity-innate and acquired immunity. Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers. Cells and organs of immune system Acquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.	
	28 29 30 31 32	Immunity- Basic concepts Types of immunity-innate and acquired immunity. Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers. Cells and organs of immune system Acquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity. Antigens, antigenicity, immunogenicity.	
	28 29 30 31 32 33	Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.Cells and organs of immune systemAcquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.Antigens, antigenicity, immunogenicity.Factors influencing immunogenicity (basic concepts only).	
	28 29 30 31 32	Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.Cells and organs of immune systemAcquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.Antigens, antigenicity, immunogenicity.Factors influencing immunogenicity (basic concepts only).Definition of epitope and adjuvant	
	28 29 30 31 32 33 34 35	Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.Cells and organs of immune systemAcquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.Antigens, antigenicity, immunogenicity.Factors influencing immunogenicity (basic concepts only).Definition of epitope and adjuvant Antibody production- Clonal selection theory.	
	28 29 30 31 32 33 34	Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.Cells and organs of immune systemAcquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.Antigens, antigenicity, immunogenicity.Factors influencing immunogenicity (basic concepts only).Definition of epitope and adjuvant	
	28 29 30 31 32 33 34 35 36 37	Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.Cells and organs of immune systemAcquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.Antigens, antigenicity, immunogenicity.Factors influencing immunogenicity (basic concepts only).Definition of epitope and adjuvantAntibody production- Clonal selection theory.Structure of immunoglobulin, classification of immunoglobulins.Immune response: primary and secondary immune response. (basic idea only).	
	28 29 30 31 32 33 34 35 36 37 38	Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.Cells and organs of immune systemAcquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.Antigens, antigenicity, immunogenicity.Factors influencing immunogenicity (basic concepts only).Definition of epitope and adjuvantAntibody production- Clonal selection theory.Structure of immunoglobulin, classification of immunoglobulins.Immune response: primary and secondary immune response. (basic idea only).Disease related to immune function (elementary ideas only)	
	28 29 30 31 32 33 34 35 36 37 38 39	Immunity- Basic concepts Types of immunity-innate and acquired immunity. Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers. Cells and organs of immune system Acquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity. Antigens, antigenicity, immunogenicity. Factors influencing immunogenicity (basic concepts only). Definition of epitope and adjuvant Antibody production- Clonal selection theory. Structure of immunoglobulin, classification of immunoglobulins. Immune response: primary and secondary immune response. (basic idea only). Disease related to immune function (elementary ideas only) Hypersensitivity (brief outline only)	
	28 29 30 31 32 33 34 35 36 37 38	Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.Cells and organs of immune systemAcquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.Antigens, antigenicity, immunogenicity.Factors influencing immunogenicity (basic concepts only).Definition of epitope and adjuvantAntibody production- Clonal selection theory.Structure of immunoglobulin, classification of immunoglobulins.Immune response: primary and secondary immune response. (basic idea only).Disease related to immune function (elementary ideas only)Hypersensitivity (brief outline only)Autoimmune disorders (Hashimoto's Thyroiditis, Insulin Dependent	
	28 29 30 31 32 33 34 35 36 37 38 39	Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.Cells and organs of immune systemAcquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.Antigens, antigenicity, immunogenicity.Factors influencing immunogenicity (basic concepts only).Definition of epitope and adjuvantAntibody production- Clonal selection theory.Structure of immunoglobulin, classification of immunoglobulins.Immune response: primary and secondary immune response. (basic idea only).Disease related to immune function (elementary ideas only)Hypersensitivity (brief outline only)Autoimmune disorders (Hashimoto's Thyroiditis, Insulin Dependent Diabetes Mellitus, Myasthenia Gravis, Rheumatoid Arthritis) (brief	
	28 29 30 31 32 33 34 35 36 37 38 39 40	Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.Cells and organs of immune systemAcquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.Antigens, antigenicity, immunogenicity.Factors influencing immunogenicity (basic concepts only).Definition of epitope and adjuvantAntibody production- Clonal selection theory.Structure of immunoglobulin, classification of immunoglobulins.Immune response: primary and secondary immune response. (basic idea only).Disease related to immune function (elementary ideas only)Hypersensitivity (brief outline only)Autoimmune disorders (Hashimoto's Thyroiditis, Insulin Dependent Diabetes Mellitus, Myasthenia Gravis, Rheumatoid Arthritis) (brief outline only)	
	28 29 30 31 32 33 34 35 36 37 38 39	Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.Cells and organs of immune systemAcquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.Antigens, antigenicity, immunogenicity.Factors influencing immunogenicity (basic concepts only).Definition of epitope and adjuvantAntibody production- Clonal selection theory.Structure of immunoglobulin, classification of immunoglobulins.Immune response: primary and secondary immune response. (basic idea only).Disease related to immune function (elementary ideas only)Hypersensitivity (brief outline only)Autoimmune disorders (Hashimoto's Thyroiditis, Insulin Dependent Diabetes Mellitus, Myasthenia Gravis, Rheumatoid Arthritis) (brief outline only)Immunodeficiency disorders (X linked agammaglobulinemia, Digeorge	
	28 29 30 31 32 33 34 35 36 37 38 39 40 41	Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.Cells and organs of immune systemAcquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.Antigens, antigenicity, immunogenicity.Factors influencing immunogenicity (basic concepts only).Definition of epitope and adjuvantAntibody production- Clonal selection theory.Structure of immunoglobulin, classification of immunoglobulins.Immune response: primary and secondary immune response. (basic idea only).Disease related to immune function (elementary ideas only)Hypersensitivity (brief outline only)Autoimmune disorders (Hashimoto's Thyroiditis, Insulin Dependent Diabetes Mellitus, Myasthenia Gravis, Rheumatoid Arthritis) (brief outline only)Immunodeficiency disorders (X linked agammaglobulinemia, Digeorge syndrome, SCID and AIDS) (Brief outline only)	
	28 29 30 31 32 33 34 35 36 37 38 39 40	Immunity- Basic conceptsTypes of immunity-innate and acquired immunity.Components of innate immunity - anatomic barriers, physiological barriers, phagocytic/endocytic barriers, inflammatory barriers.Cells and organs of immune systemAcquired immunity- humoral and cell mediated immunity, characteristic attributes of acquired immunity.Antigens, antigenicity, immunogenicity.Factors influencing immunogenicity (basic concepts only).Definition of epitope and adjuvantAntibody production- Clonal selection theory.Structure of immunoglobulin, classification of immunoglobulins.Immune response: primary and secondary immune response. (basic idea only).Disease related to immune function (elementary ideas only)Hypersensitivity (brief outline only)Autoimmune disorders (Hashimoto's Thyroiditis, Insulin Dependent Diabetes Mellitus, Myasthenia Gravis, Rheumatoid Arthritis) (brief outline only)Immunodeficiency disorders (X linked agammaglobulinemia, Digeorge	

		 Introducing students to equipments/tools used in clinical biochemistry lab Different methods of blood collection- capillary and venous Separation of serum, plasma and blood cells. Determination of ESR by Westergren's methods Determination of PCV by Westergrens and Wintrobe's method Determination of RBC and TC/DC count using hemocytometer Determination of Blood Grouping by agglutination method Determination of Hemoglobin by Sahli's method. *Visit to a clinical laboratory to experience the advanced methods in haematology. *Visit to a research laboratory to learn how immunological techniques like ELISA, Western blotting etc were performed to determine immunological disorders 	
--	--	---	--

References

- 1. Textbook of Medical Physiology, by Arthur C Guyton, John E Hall Prism Saunders 9th Edition ISBN: 81-7286-034-X.
- 2. Arthur Vander, James Sherman, and Dorothy Luciano Vander et al. Human Physiology: The Mechanism of Body Function, Eighth Edition, The McGraw-Hill Companies.
- 3. Granner, Robert K. Murray Darryl K., and Peter A. Mayes Victor W. Rodwell. Harper's Illustrated Biochemistry (Harper's Biochemistry).McGraw-Hill Medical, 2006.
- 4. Human Physiology an integrated approach by Dee Ungulaub Silverthorn
- 5. Principles of Anatomy and Physiology by Gerard J. Tortora and Bryan Derrickson, 13 th Edition
- 6. Kuby Immunology by Thomas J. Kindt (2006). W H Freeman & Co ISBN: 0716785900, ISBN-13: 9780716785903, 978-0716785903.
- 7. Delves, Peter J., Seamus J. Martin, Dennis R. Burton, and Ivan M. Roitt.Roitt's essential immunology. Vol. 20. John Wiley & Sons, 2011.
- 8. Barrett, K. E., Barman, S. M., Boitano, S., & Brooks, H. L. (2019). Ganong's Review of Medical Physiology.
- 9. Gupta, R. C., & Bhargava, S. (Eds.). (2022). Practical Biochemistry. CBS Publishers and Distributors. New Delhi.
- 10. Sherwood, L. (2015). Brooks/Cole Human Physiology: From Cell to System.
- 11. Widmaier, E. P., Raff, H., & Strang, K. T. (2019). Vander's Human Physiology The Mechanism of Body Function. McGraw Hill. New York.
- 12. Martini, F. H., & Nath, J. L. (2009). Fundamentals of Anatomy and Physiology (8th ed.). Pearson Publications.

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed

CO-1	Describe hemostasis and predict hemocompatibility in transfusion	R, U, Ap	1,3
CO-2	Demonstrate the compensatory mechanism involved in acid-base disturbances	R, U, Ap	1
CO-3	Restate the digestion and absorption of biomolecules	R, U	1
CO-4	Discuss the biochemical events occurring in specialised tissues	R, U	3
CO-5	Explain immunological processes and related disorders	R, U	1,2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Human Physiology and Immunology

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PS O	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Describe hemostasis and predict hemocompatibility in transfusion	1,3	U, An	F, C	L/T	
CO-2	Demonstrate the compensatory mechanism involved in acid- base disturbances	1	R, U	Р		Р
CO-3	Restate the digestion and absorption of biomolecules	1	R, U	F, C	L/T	
CO-4	Discuss the biochemical events occurring in specialised tissues	3	R, U	F, C	L/T	
CO-5	Explain immunological processes and related disorders	1,2	R,U	F, C	L/T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	3	-	-	-	3					
CO 2	3	-	-	-	-	-	2					
CO 3	2	-	-	-	-	-	1					
CO 4	-	-	2	-	-	-	1					
CO 5	1	3	-	-	-	-	2					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark

CO 3	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark

University of Kerala

Discipline	BIOCHEMISTRY						
Course Code	UK5DSCBCH303	UK5DSCBCH303					
Course Title	MOLECULAR BIC	DLOGY					
Type of Course	DSC26						
Semester	V	V					
Academic Level	300 - 399						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	1 hour	5		
Pre-requisites	Completed 200-299	level course	8				
Course	Molecular biology is th	e study of bio	logical proces	sses at the mole	ecular level,		
Summary	focusing on the structur	focusing on the structure, function, and interactions of molecules such as DNA,					
2 dilling	RNA, and proteins. It encompasses topics such as gene expression, regulation,						
	and the molecular mech	nd the molecular mechanisms underlying cellular functions and genetic					
	inheritance.		• •		0		
Detailed Syllahi							

Module	Unit	Content	Hrs
Ι		Genome Organisation and DNA replication	11
	1	Concept of gene as unit of inheritance	
	2	Chromosome structure in prokaryotes and viruses	
	3	Chromosome structure in eukaryotes, DNA packaging in eukaryotic	
		chromosomes, Chromatin, centromere, and telomere. Giant	
		chromosomes, Repeated DNA sequences	
	4	Central Dogma	
	5	DNA replication in prokaryotes and eukaryotes,	
	6	Inhibitors of replication (any 3 examples).	
II		Gene Expression	11
	7	Transcription in prokaryotes and eukaryotes, enzymes involved in	
		transcription, Post transcriptional modification (brief outline only).	
	8	Inhibitors of transcription (any 3 examples).	
	9	Genetic codon (characteristics of codon), Wobble hypothesis (brief	
		concept).	
	10	Translation in prokaryotes and eukaryotes	

	11	Inhibitors of translation (any 3 examples)	
III		Regulation of Gene Expression	11
	12	Regulation of gene expression in prokaryotes: Jacob and Monod's operon	
		concept, structural gene, regulator gene. Inducible operon (lac operon as	
		an example) and repressible operon (tryptophan operon as an example, attenuation).	
	13	Regulation of gene expression in eukaryotes-Alternate splicing, Cytoplasmic control of mRNA stability, Induction of transcription by environmental and biological factors, Transcription factors, Chromatin remodelling, Gene silencing, DNA methylation and imprinting (Brief outline only)	
IV	Mutation and Repair		
	14	Mutation in Prokaryotes: Various types of mutation- spontaneous and induced mutation, point mutation- substitution (transition, transversion), insertion, deletion, missense, nonsense, frame-shift mutation, mutagens- different types. Ames test.	
	15	Chromosome variation- aneuploidy, polyploidy, duplication, deletion, inversion and translocation (Brief outline).	
	16	Repair in prokaryotes - direct, excision, mismatch, recombination and SOS.	
V		Practical	30
	17	Isolation of DNA and RNA	
	18	Estimation of DNA by Diphenylamine method	
	19	Estimation of RNA by Orcinol method	
	20	Institute visit	

References

- 1. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2022). Molecular Biology of the Cell (7th ed.). W. W. Norton & Company.
- 2. Lewin, B. (2017). Genes XI (11th ed.). Jones & Bartlett Learning.
- 3. Cox, M. M., Doudna, J. A., & O'Donnell, M. (2015). Molecular Biology: Principles and Practice (1st ed.). W. H. Freeman.
- 4. Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., & Martin, K. C. (2020). Molecular Cell Biology (9th ed.). W. H. Freeman.
- 5. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2013). Molecular Biology of the Gene (7th ed.). Pearson.
- 6. Tropp, B. E. (2012). Principles of Molecular Biology (1st ed.). Jones & Bartlett Learning.
- 7. Hartl, D. L., & Caveney, R. J. (2017). Lewin's Essential GENES (3rd ed.). Jones & Bartlett Learning.
- 8. Twyman, R. M. (2013). Advanced Molecular Biology: A Concise Reference. Garland Science.

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addressed
CO-1	Describe the concept of genome organization and DNA replication in prokaryotes and eukaryotes	R, U	1, 4

CO-2	Explain the events occurring during gene expression in prokaryotes and eukaryotes	R, U	1,4
CO-3	Restate the processes involved in regulation of gene expression in prokaryotes and eukaryotes	R, U	1,4
CO-4	Illustrate the different types of mutation and repair system	R, U	1,4
CO-5	Employ methods to isolate and quantitate genetic material in organisms	R, U, Ap	1, 2, 4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Molecular Biology

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cogniti ve Level	Knowledge Category	Lecture (L)/Tutori al (T)	Practic al (P)
CO-1	Describe the concept of genome organisation and DNA replication in prokaryotes and eukaryotes	1,4	R, U	F, C	L/T	
CO-2	Explain the events occurring during gene expression in prokaryotes and eukaryotes	1,4	R, U	F, C	L/T	
CO-3	Restate the processes involved in regulation of gene expression in prokaryotes and eukaryotes	1,4	R, U	F, C	L/T	
CO-4	Illustrate the different types of mutation and repair system	1,4	R, U	F, C	L/T	
CO-5	Employ methods to isolate and quantitate genetic material in organisms	1,2,4	R, U, Ap	F, C, P		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-						
CO 2	3	-	-	-						
CO 3	3	-	1	-						
CO 4	3	-	1	-						
CO 5	-	3	-	-						

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark

CO 4	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark

University of Kerala

Discipline	BIOCHEMISTRY	ľ				
Course	UK5DSCBCH304	UK5DSCBCH304				
Code						
Course	ENVIRONMENT	ENVIRONMENTAL BIOCHEMISTRY				
Title						
Type of	DSC27					
Course						
Semester	V					
Academic	300-399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per	per	per week	Hours/W	
		week	week		eek	
	4	4 hours	-	-	4	
Pre-	Nil					
requisites						
Course	Environmental bioche	emistry studi	es the bioche	emical process	ses and	
Summary	interactions between	living organi	sms and thei	r environmen	t, including the	
	impact of pollutants, toxins, and natural compounds on biological systems.					
	t encompasses topics such as biodegradation, bioaccumulation, and the					
		iochemical mechanisms of detoxification and adaptation in response to				
	environmental change	es.				

Module	Unit	Content	Hrs
Ι		Environmental pollution	12
	1	Environmental pollution- types- air, water, soil, marine and noise pollution.	
	2	Air Pollutants – Carbon monoxide, Oxides of Nitrogen, sulphur dioxide, hydrocarbons and photochemical smog, Green house gases, suspended particulate matter.	

			٦
	3	Water Pollutants- Organic pollutants - pesticides, insecticides,	
		detergents, oil spills, toxic organic chemicals, Inorganic pollutants -	
	-	heavy metals – Hg, Pb, As, Cd. Thermal pollution of water	
	4	Soil pollutants-organic pollutants-pesticides, natural pollutants-acid	
		rain, anthropogenic pollutants-industrial wastes, inorganic pollutants-	
		heavy metals	
	5	Marine pollutants-marine debris, plastics including microplastics, ocean	
		acidification, nutrients, toxins and underwater noise.	_
	6	Noise pollution-sources-domestic, industrial, automobiles, aircraft,	
		social events	
II		Analysis of pollution using physicochemical parameters	12
	7	Air pollution analysis parameters-Air Quality Index (AQI), Carbon	
		monoxide (CO), Nitrogen monoxide (NO), Nitrogen dioxide (NO2),	
		Ozone (O3), Sulphur dioxide (SO2), Ammonia (NH3), particulate	
		matter.	
	8	Water Analysis -Physical parameters- pH, temperature, color, odour,	
		turbidity, total dissolved solids. Chemical parameters- total hardness	
		chloride, nitrate, fluoride. Dissolved oxygen, BOD, pesticide residue,	
		trace/ toxic metals, microbiological.	
	9	Soil analysis- Physical parameters- soil texture, water holding capacity,	
		bulk density, particle density. Chemical parameters- pH, Organic	
		matter content, available Phosphorous, Potassium and nitrogen	
III		Environmental health impacts	6
111	10	Health impacts of environmental pollution – pulmonary, cardiovascular,	U
	10	endocrine, reproductive, neurological and other diseases	
IV		Heavy metal and Pesticide toxicity	15
1,	11	Heavy metals-Lead, mercury, arsenic and cadmium toxicity,	10
	11	mechanism of heavy metal toxicity-neurotoxicity, cardiovascular	
		toxicity, nephrotoxicity, hepatotoxicity, skin toxicity, immunological	
		toxicity, reproductive and developmental toxicity, genotoxicity and	
		carcinogenesis	
	12	Pesticides - Classification of Pesticides- based on chemical nature and	
	12	by site of action. Pesticide formulation. Pesticide labels and labelling,	
		Material Safety Data Sheet (MSDS), determination of the signal word- based on toxicity category (category I, II, III and IV), importance of	
	14	reading and understanding pesticide labels.	
	14	Tests on pesticides for determining human health risk- types of toxicity-	
		(acute - LD50 or LC50), chronic, teratogenicity, gene mutation,	
X 7		chromosome aberration, neurotoxicity, immunotoxicity).	15
V	15	Environmental protection and sustainable development	15
	15	Environment protection acts, environment protection policies and	
	1.0	management	<u> </u>
	16	Bioremediation Technologies- <i>in situ, ex situ,</i> bioreactor, natural	
		attenuation, and phytoremediation. Bioindicators and biosensors for the	
		detection of environmental pollution, Biomaterial as substituents for	
		non-biodegradable materials- Bioplastics.	1

References:

1. Dykeman, J. (2017). Environmental Biochemistry. CRC Press.

- 2. Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U., & Wehrli, B. (2006). Global change and water quality. Science, 313(5790), 1072–1077.
- 3. Hocking, M. B. (2006). Handbook of Chemical Technology and Pollution Control (3rd ed.). Academic Press.
- 4. Brack, W., Hollender, J., & Schulze, T. (Eds.). (2018). The Handbook of Environmental Chemistry: Synthetic Organic Chemicals in the Environment (Vol. 10). Springer.
- 5. Carson, R. (2002). Silent Spring. Houghton Mifflin Harcourt. (Original work published 1962).
- 6. Snoeyenbos-West, O. L. O., & West, S. A. (2019). Environmental Biochemistry: Methods and Applications. Wiley.
- 7. Townsend, C. R., Harper, J. L., & Begon, M. (2000). Essentials of Ecology. Blackwell Science.
- 8. Hoag, G. E. (2006). Bioremediation: An Overview. Encyclopedia of Environmental Microbiology, 2, 497–513.
- 9. Mitra, S., & Lippincott, R. L. (2022). Environmental Biochemistry and Health. In Encyclopedia of Environmental Health (2nd ed., Vol. 2, pp. 185-193). Elsevier.
- 10. Tchounwou, P. B., & Kossmann, T. (2007). Biochemical and Physiological Toxicology. In Encyclopedia of Environmental Health (Vol. 2, pp. 185–195). Elsevier

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO Addressed
CO-1	Students will understand the complex biochemical interactions between living organisms and their environment, including the effects of pollutants, toxins, and other environmental stressors on biological systems	U	1
CO-2	Students will learn how to analyze processes such as biodegradation and bioaccumulation and their implications for environmental and human health.	U,An	1,3
CO-3	Students will explore the biochemical mechanisms organisms use to detoxify harmful substances and adapt to changing environmental conditions.	R, U	1
CO-4	Students will gain skills in assessing the environmental impact of various substances on ecosystems and human health, including the use of biochemical assays and analytica techniques.	R, U	1,2
CO-5	Students will learn how to apply their knowledge of environmental biochemistry to develop sustainable solutions for environmental problems, including strategies for pollution control and remediation	R,U,Ap	1,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Environmental Biochemistry

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognit ive Level	Knowled ge Category	Lecture (L)/Tutor ial (T)	Practic al (P)
CO-1	Students will understand the complex biochemical interactions between living organisms and their environment, including the effects of pollutants, toxins, and other environmental stressors on biological systems	1	U	F, C	L/T	
CO-2	Students will learn how to analyze processes such as biodegradation and bioaccumulation and their implications for environmental and human health.	1,3	U, An	Р	L/T	
CO-3	Students will explore the biochemical mechanisms organisms use to detoxify harmful substances and adapt to changing environmental conditions.	1	R, U		L/T	
CO-4	Students will gain skills in assessing the environmental impact of various substances on ecosystems and human health, including the use of biochemical assays and analytical techniques.	1,2	R, U		L/T	
CO-5	Students will learn how to apply their knowledge of environmental biochemistry to develop sustainable solutions for environmental problems, including strategies for pollution control and remediation	1,3	R, U, Ap		L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	P S 0 1	PS O 2	PS O 3	PSO4	PS O5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-	Ι	-	2					

CO 2	3	_	2	-	_	_	2			
CO 3	3	-	-	-	-	-	3			
CO 4	3	2	-	-	-	-	2			
CO 5	3	-	3	_	_	-	3			

Correlation Levels:

Level	Correlation
_	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	BIOCHE	BIOCHEMISTRY						
Course Code	UK5DSC	CBCH305						
Course Title	CANCE	R BIOLOGY						
Type of Course	DSC28							
Semester	V							
Academic Level	-							
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week			
	4	4		-	4			
Pre-requisites								
Course Summary	molecular	se provides an unders r mechanisms underlyin iagnosis and therapeuti	ng the initiation	n and progress	sion of malignant			

Module	Unit	Content	Hrs						
Ι		Introduction to Epidemiology	10						
	1 Definition of Cancer, Differences between normal cells and cancerous cells								
	2	2 Types of tumors, Types of cancer, Properties of malignant cells							
	3	Carcinogens- Physical, Chemical & Biological							
	4	Lifestyle risk factors- Smoking, Alcoholism, Obesity, Workplace & Environmental							
		factors							
II		Molecular Oncology	14						
	5	Oncogenes, Tumor suppressor genes, Mutation and tumor initiation, Cell proliferation, Tumor progression, Clonal selection and malignancy, Metastasis.							
	6	Tumor Markers: Hormones- HCG, calcitonin; Oncofetal antigens- AFP, CEA; Lineage Specific Proteins- PSA, M-Protein; DNA Markers- EGFR mutations, KRAS mutations, BRAF V600E mutation; Mucin & Other Glycoproteins- CA125, CA19-9, CA15-3; Enzymes- LDH, ALP							
III		Oncovirology	12						
	10	Oncoviruses and immune system, Oncoviral antigens							

	11	Oncoviral integration – EBV as model, Oncoviruses- HPV, HBV, HCV, Human Polyomaviruses, KSHV	
	12	Viral Oncogenic mechanism – Inhibition of Apoptosis, reprogramming host metabolism, modulation of cellular microenvironment, attenuation of host immune control, transcriptional reprogramming, epigenomic reprogramming	
	13	Vaccination strategies in oncovirology	
IV		Cancer Diagnosis	12
	14	Principle of diagnostic procedures: Complete blood count, Cytogenetic analysis, Immunophenotyping, Tumor biopsy, Bone marrow aspiration,	
	15	Principle of Endoscopic examination and Pap Smear test. Imaging Tests: CT scan, MRI scan, Mammography, PET-CT, MUGA scans & Ultrasound scan,	
	16	Staging tests – Bone scans & X-ray, Cancer stages – TNM classification	
V		Principles of Cancer management	12
	17	Surgery – Resection, Excision and Reconstruction	
	18	Radiation therapy – Physical and biological basis of radiation therapy, Principle of hyperthermia, photodynamic therapy	
	19	Chemotherapeutic agents- folate antagonists, purine & pyrimidine antimetabolites, alkylating agents, antitumor compounds, anthracyclines, DNA intercalators, microtubule targeted anticancer drugs, vinca alkaloids, taxanes, epothilones, asparaginase & DNA topoisomerases;	
	20	Biotherapeutics, Endocrine therapy, Bone marrow transplantation	
	21	Targeted therapy, Precision medicine and Palliative care	

References

- 1. Weinberg, R. A., & Weinberg, R. A. (2006). *The biology of cancer*. WW Norton & Company.
- 2. Hesketh, R. (2023). Introduction to cancer biology. Cambridge University Press.
- 3. Pecorino, L. (2021). Molecular biology of cancer: mechanisms, targets, and therapeutics. Oxford university press.
- 4. Pezzella, F., Tavassoli, M., & Kerr, D. J. (Eds.). (2019). Oxford textbook of cancer biology. Oxford University Press.
- 5. Yaro, A. (2021). Oncoviruses: Cellular and Molecular Virology. AuthorHouse.
- 6. DeVita, V. T., Lawrence, T. S., & Rosenberg, S. A. (2012). *Cancer: principles & practice of oncology: primer of the molecular biology of cancer.* Lippincott Williams & Wilkins.
- 7. Stein, G. S., & Luebbers, K. P. (Eds.). (2019). Cancer: Prevention, early detection, treatment and recovery. John Wiley & Sons.
- 8. De, S. K. (2022). Fundamentals of cancer detection, treatment, and prevention. John Wiley & Sons.
- 9. Velcheti, V., & Punekar, S. R. (2021). Handbook of Cancer Treatment-Related Symptoms and Toxicities. Elsevier Health Sciences.
- 10. Jain, B. P., & Pandey, S. (Eds.). (2022). Understanding Cancer: From Basics to Therapeutics. Academic Press.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the molecular basis of malignant transformations	R, U,	1
CO-2	Viral infections and oncogenesis -types and prevention	R, U, Ap	1

Course Outcomes

CO-3	Advanced technniques in cancer diagnosis	R, U,Ap	1
CO-4	Summarize the events in cancer therapeutics	R, U	1,4
CO-5	Anticancerous drug development strategies	R, U, Ap	1

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Cancer Biology

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
				F, C		
				Р		

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	_	-	_	_	-						
CO 2	1	2	_	_	_	-						
CO 3	-	-	2	-	-	-						
CO 4	-	-	2	3	-	-						
CO 5	-	1	-	-	-	-						
CO 6	_	_	_	3	-	-						

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam

- Programming Assignments Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	BIOCHEMISTRY								
Course Code	UK5DSEBCH300	UK5DSEBCH300							
Course Title	Inborn Errors of N	Aetabolism							
Type of Course	DSE5								
Semester	V								
Academic	300-399								
Level									
Course Details	Credit	Credit Lecture Tutorial Practical Total							
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	UK5DSCBCH300, U	JKDSCBCH.	301						
Course	Inborn errors of metabo	olism are gene	tic disorders c	caused by muta	tions that affect				
	the function of enzymes and metabolic pathways, leading to the accumulation of								
		oxic substances or the deficiency of essential compounds. This course covers the							
	biochemical basis, diag				•				
	various inherited metab	olic disorders	, such as pher	ylketonuria an	d cystic fibrosis.				

Module	Unit	Content	Hrs
Ι		Inherited metabolic disorders of carbohydrate metabolism	13

			1
	1	Disorders of fructose, galactose and lactose metabolism -	
		Fructosuria, Hereditary fructose intolerance, fructose 1,6-bisphosphatase	
		deficiency, Galctosemia, Galctokinase deficiency, UDP-galactose 4-	
		epimerase deficiency and lactose intolerance.	
	2	Disorders of glycolysis and Krebs cycle- Deficiency of Hexokinase,	
		Phosphofructokinase, Triose phosphate isomerase, Aldolase, Pyruvate	
		kinase, aKG-dehydrogenase, Succinate dehydrogenase and Fumerase.	
	3	Disorders of pyruvate metabolism - Pyruvate dehydrogenase	
		deficiency, Pyruvate carboxylase deficiency	
	4	Glycogen storage diseases (Von Gierke Disease, Pompe Disease,	
		Cori Disease, Anderson disease McArdle Disease, Hers disease and	
		Lafora disease	
	5	Disorders of gluconeogenesis- PEP carboxykinase deficiency, Glucose-	
		6-phosphatase deficiency	
	6	Disorders of HMP shunt pathway-Glucose 6-phosphate dehydrogenase	
		deficiency, Ribose-5-phosphate isomerase deficiency, Wernicke-	
		Korsakoff Syndrome	
II		Inherited metabolic disorders of mitochondria	5
	7	MM (Mitochondrial myopathies), MEALS (Mitochondrial	
		encephalopathy	
	8	lactic acidosis and stroke-like episodes) syndrome, LHON (Leber	
		hereditary optic neuropathy)	
	9	Leigh syndrome, Kearns-Sayre syndrome, MERRF (Myoclonic	
		epilepsy and ragged-red fiber disease)	
III		Inborn Errors of Lipid Metabolism	9
	10	Inherited disorders fatty acid oxidation and accumulation of polyenoic	
		fatty acids-Deficiency of Carnitine Palmitoyl transferase	
	11	Deficiency of Medium Chain Acyl-CoA Dehydrogenase (Reye-like	
		syndrome or sudden infant death syndrome), Refsum disease, SIDS,	
		Zellweger syndrome.	
	12	Lipid storage diseases-Tay-Sachs disease, Fabry disease, Gaucher	
		disease, Krabbe disease, Farber disease.	
	13	Metachromatic leukodystrophy, Niemann-Pick disease	
IV		Inborn errors of Amino acids, Urea cycle and Heme metabolism	15
	14	Phenylketonuria, Tyrosinemia type I and II, Alkaptonuria	
	15	Homocysteinemia, Homocystinuria, Cystinuria, Histidinemia,	
		Hyperlysinemia, Maple Syrup Urine disease	
	16	Isovaleric acidemia, Hyperprolinemia type I and II, Hyperornithinemia-	
		hyperammonemia-homocitrullinuria (HHH) syndrome	
	17	Hypermethioninemia, Methylmalonic aciduria, Propionic acidemia,	
		Glutaric aciduria, Albinism	
	18	Deficiencies of Urea cycle enzymes - Carbamoyl Phosphate Synthetase,	
		Ornithine Transcarbamoylase, Argininosuccinate Synthetase,	
		Argininosuccinate Lyase, Arginase	
	19	Acute Intermittent Porphyria, Crigler-Najjar syndrome	
V		Inborn errors of Nucleic acid and Metal metabolism	3
•	20	Gout, Lesch-Nyhan syndrome, Arts syndrome, MNGIE (Mitochondrial	
		T GORG LOOM TAYNAN SYNALOMO, AND SYNALOMO, WITNOID (WITNOID) INNUMIAN	1
	20		
	20	neuro gastrointestinal encephalopathy syndrome) Orotic aciduria type I and II, Hereditary Xanthinuria,	

22	Hypouricemia, SCID; Wilson disease, hemochromatosis	
23	Practical	30
	• Estimation of bilirubin	
	• Estimation of Glucose 6-phosphate dehydrogenase	
	Estimation of Arginase	
	• Urine analysis for abnormal constituents	
	• Visit to hospitals for monitoring diseases related to inborn errors of metabolism	

References:

- 1. Textbook of biochemistry with clinical correlations. Devlin, T. M. (Ed.). (2010). John Wiley & Sons. ISBN 0-471-41136-1.
- 2. Textbook of Medical Biochemistry for Medical Students by DM Vasudevan and Sreekumari S. 5th edition, Japee Brothers, Medical Publishers, ISBN 81-8448-124- 1:9788184481242.
- 3. Biochemistry by U. Styanarayana and U. Chakrapani, 5th edition, Elsevier publication, ISBN: 9788131248850.
- 4. Biochemistry (2004) by Donald Voet, Judith G. Voet Publisher: John Wiley & Sons Inc ISBN: 047119350X ISBN-13: 9780471193500, 978-0471193500.
- 5. Principles Of Biochemistry (1995) by Geoffrey L Zubay, William W Parson, Dennis E Vance. Publisher: McGraw-hill Book Company – Koga ISBN:0697142752 ISBN-13: 9780697142757, 978-0697142757.
- Principles Of Biochemistry, 4/e (2006) by Robert Horton H , Laurence A Moran, Gray Scrimgeour K Publisher: Pearsarson ISBN: 0131977369, ISBN-13:9780131977365, 978-0131977365
- 7. Biochemistry (2008) by Rastogi Publisher: McGraw Hill ISBN: 0070527954 ISBN-13: 9780070527959, 978-0070527959.

Suggested Readings:

- Candlish, J. K., & Crook, M. (1993). Notes on clinical biochemistry. World Scientific Publishing Company.
- Kumar, V., & Gill, K. D. (2018). Basic concepts in clinical biochemistry: a practical guide. Springer Singapore.
- Marshall, W. J., & Bangert, S. K. (Eds.). (2008). Clinical biochemistry: metabolic and clinical aspects. Elsevier Health Sciences.
- Marks, D. B., Marks, A. D., & Smith, C. M. (1996). Basic medical biochemistry: a clinical approach.
- Smith, C. (1987). Mark's Basic Medical Biochemistry.
- Tietz, N. W., Burtis, C. A., & Ashwood, E. R. (1994). Tietz textbook of clinical chemistry. W. B. Saunders Co., Philadelphia.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand various metabolic disorders and inborn errors of metabolism	U	1
CO-2	Analyse possible metabolic pathways and remember factors that lead to disorders in metabolism	R, An	1
CO-3	Evaluate various factors that lead to inborn errors	Е	1,3
CO-4	Understand and evaluate various methods for the identification of inborn errors in metabolism	U, E	1,2,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Inborn Errors of Metabolism

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand various metabolic disorders and inborn errors of metabolism	1	U	F, C	L/T	
CO-2	Analyse possible metabolic pathways and remember factors that lead to disorders in metabolism	1	R, An	F, C	L/T	
CO-3	Evaluate various factors that lead to inborn errors	1,3	Е	F, C	L/T	
CO-4	Understand and evaluate various methods for the identification of inborn errors in metabolism	1,2,3	U, E	F, C	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	
--	------	------	------	------	----------	----------	-----	-----	-----	-----	-----	-----	--

CO 1	2	-	-	-	-	-	1			
CO 2	1	-	-	-	-	-	1			
CO 3	2	-	1	-	-	-	1			
CO 4	2	1	1	-	-	-	2			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	BIOCHEMISTRY						
Course Code	UK5DSEBCH301						
Course Title	FOOD AND DAIRY SCIENCE						
Type of Course	DSE6						
Semester	V						
Academic Level	300 - 399						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	NA	L					
Course	Food and dairy science						
Summary	and safety of food and dairy products. The course encompasses topics such as						
-	food preservation techniques, quality control, nutritional analysis, and the						
	development of new food products, with a focus on ensuring food safety and optimizing nutritional content.						
	opunitzing nutritional C						

Module	Unit	Content	Hrs
Ι	Food		
	1	Outline of chemical composition of: cereals, pulses, tubers, milk, egg, fish, meat, fruits, alcoholic beverages, soft drinks, coffee, tea, jaggery, honey and spices.	
	2	Brief mention about the different antinutritional factors in food- phytic acid, lectins, tannins, saponins, amylase inhibitors and protease inhibitors.	
	3	Food borne-diseases: Lathyrism, Favism, Ergotism and Epidemic dropsy.	
	4	Analysis of moisture content-evaporation method, distillation method (Dean and Stark method), chemical reaction method (Karl-Fischer titration and gas production method), physical method (basics of	

		Hydrometry) and spectroscopic method (basic principle of microwave and IR only). Determination of total solid ash, total carbohydrates and fat.	
Π	Food Preservation and Adulteration		
	1	Preservation of foods: Low temperature (chilling and freezing), high temperature (boiling, pasteurization, autoclaving)	
	2	canning-steps involved in canning), dehydration, high osmotic pressure, chemical preservatives, cold sterilization and anaerobic conditions.	
	3	Food additives: Permitted colors, permitted	
		food preservatives, emulsifying agents, flavoring agents, artificial sweeteners (saccharine)	
	4	Food adulteration: FSSA definition of an adulterant. Common adulterants in milk, coffee powder,	
		mustard seeds, curry powders, butter, honey, rice, wheat, black pepper and vegetable oils. Health hazards due to adulteration	
	5	Elementary study on qualitative detection of adulteration in milk, edible oils and detection of saccharine.	
III	Dairy Technology		
	1	Processing, storage, packing, distribution &transportation of dairy products. Enzymes in Dairy industry.	
	2	Heat treatment of milk- sterilization and pasteurization (LTH and HTST).	
	3	Tests to assess quality of milk-reductase test and resazurin test.	
	4	Outline study on the production of cheese, bread and fermented milk	
		products (curd, kefir and yogurt).	
	4	Detection of Adulterants in Milk- detection of cane sugar, starch, cellulose, added urea, formalin, gelatin, ammonium compounds, sulphates, anionic detergents, skimmed milk powder, sodiumpowder, sodium compounds, sulphates, anionic detergents, skimmed milk powder, sodium chloride and neutralizers.Isolation of protein from milk.	
IV	Food Safety and Quality Management		
	1	Food safety: definition and basic concepts of toxicity and hazard	

	2	Food quality and safety management systems: Good Manufacturing Practices (GMP), Good Handling Practices (GHP), Hazard Analysis	
	3	Critical Control Points (HACCP). Product certification/grading – BIS and AGMARK (basic approach	
		only).Food standards: Codex Alimentarius, ISO and Codex India. Brief studyof the following: FSSAI, PFA 1954, FSSA 2006, FPO and essentialcommodity Act.	
V		V: Food Analysis (practical)	30
	23	Qualitative Testing of adulterants like metanil yellow (in turmeric & jaggery), rhodamine-B (in chilly powder), chicory (in coffee), sodium bicarbonate (in flour & jaggery), lead chromate (in pulses), vanaspati, coal tar dye &starch (in ghee), added sugar (in honey) prohibited colors, argemone oil & cotton seed oil (in edible oil).	15
	24	QuantitativeEstimation of cholesterol in egg.Estimation of fructose in honey.Estimation of pentose in grapes.Estimation of sucrose in jaggery.Estimation of ascorbic acid in orange juice.Isolation and estimation of starch from potato	15

References

- 1. Fellows, P. J. (2016). Food Processing Technology: Principles and Practice (4th ed.). Woodhead Publishing.
- 2. Fox, P. F., McSweeney, P. L. H., Cogan, T. M., & Guinee, T. P. (2017). Cheese: Chemistry, Physics and Microbiology (4th ed.). Academic Press.
- 3. Chandan, R. C., & Kilara, A. (2013). Manufacturing Yogurt and Fermented Milks (2nd ed.). Wiley-Blackwell.
- 4. Tamime, A. Y. (Ed.). (2013). Yoghurt: Science and Technology (3rd ed.). John Wiley & Sons.
- Ohlsson, T., & Bengtsson, N. (2012). Minimal Processing Technologies in the Food Industry (2nd ed.). Woodhead Publishing.
- Hill, A. R. (1996). Chemistry of the Natural Cheese Rind and Processed Cheese. In J. R. Whitaker, A. G. J. Voragen, & D. W. Wong (Eds.), Handbook of Food Chemistry (pp. 751–782). Marcel Dekker.
- 7. Smit, B. A., Engels, W. J. M., & Alewijn, M. (Eds.). (2019). Dairy Processing and Quality Assurance. John

Wiley & Sons.

- 8. Clark, S., Costello, M., Drake, M., & Bodyfelt, F. (2009). The Sensory Evaluation of Dairy Products (2nd ed.). Springer.
- 9. Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Food Chemistry (4th ed.). Springer.
- 10. Robinson, R. K., & Batt, C. A. (2010). Encyclopedia of Food Microbiology (2nd ed.). Academic Press.

Course Outcomes

No.	Upon completion of the course the graduate will be able	Cognitive	PSO
	to	Level	addressed

CO-1	Describe the chemical composition of different types of food.Estimate the quantity of specific biomolecule in the given food sample	U, An	1
CO-2	Explain methods used to detect various components in foods.	R, U	1
CO-3	Explain the various food preservation techniques employed.	U	1
CO-4	Identify the common adulterants in food, Detect the presence of adulterants in different food sample	R, An	2
CO-5	Gain knowledge about the methods used in the production of dairy products	U	1
CO-6	Explain the importance of food safety & management system	U	1,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Food and Diary Science

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Describe the chemical composition of different types of food.Estimate the quantity of specific biomolecule in the given food sample	1	U,An	F, C	L/T	
CO-2	Explain methods used to detect various components in foods.	1	R, U	Р		Р
CO-3	Explain the various food preservation techniques employed.	1	U	F, C	L/T	
CO-4	Identify the common adulterants in food, Detect the presence of adulterants in different food sample	2	R, An	F, C	L/T	
CO-5	Gain knowledge about the methods used in the production of dairy products	1	U	F, C	L/T	
CO-6	Explain the importance of food	1,3	U	F, C	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	PS O5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	-	-	-	-	1					
CO 2	1	-	-	-	-	-	1					
CO 3	1	-	-	-	-	-	2					
CO 4	-	3	-	-	-	-	1					
CO 5	1	-	-	-	-	-	2					
CO 6	2	-	3	-	-	-	3					

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark		\checkmark

Mapping of COs to Assessment Rubrics :

University of Kerala

Discipline	Biochemist	Biochemistry								
Course Code	UK5DSEB	UK5DSEBCH302								
Course Title	Intermedia	Intermediary Metabolism and Bioenergetics								
Type of	DSE24	DSE24								
Course										
Semester	5	5								
Academic	300-399									
Level										
Course	Credit	Lecture per week	Tutorial	Practical	Total Hours/Week					
Details			per week	per week						
	4	3 hours	-	2 hours	5					
Pre-	Nil									
requisites										
Course	The course	provides an overview	of bioenergeti	cs and energy p	production in metabolism					
Summary	of carbohy	drate, lipids, nucleic aci	d and amino aci	ds.						

Module	Unit	Content	Hrs
Ι		Carbohydrate metabolism	10
	1	Reactions and energetics of glycolysis (aerobic and anaerobic), (structure not required)	
	2	Oxidative decarboxylation- TCA cycle (structure not required),	
	3	Anaplerotic reaction	
	4	Gluconeogenesis, (structure not required)	
	5	HMP shunt. (structure not required)	
	6	Galactosemia, Fructosuria, Essential pentosuria.	
	7	Glycogen Metabolism and regulation, cori cycle(structure not required)	
	8	brief study of the Glycogen storage diseases	
		Lipid Metabolism	
II	9	Fatty acid biosynthesis- saturated. (structure not required)	9
	10	Biosynthesis of triacylgycerol and phospholipid (structure not required)	
	11	Biosynthesis of Cholesterol (structure not required)	
	12	Fatty acid oxidation- beta oxidation, alpha and omega oxidation. (structure not required)	
	13	Ketone bodies: formation, utilization and excretion(structure not required)	
III		Amino acid metabolism	8

	14	Amino acid pool, glucogenic and ketogenic amino acids	
	15	Biosynthesis and degradation of tyrosine and phenylalanine	
	16	Transamination, deamination and decarboxylation,.	
	17	Urea cycle (structure not required) and regulation.	
		Alkaptonuria, phenylketonuria	
IV			7
	18	Nucleic acid metabolism	
		Sources of atoms of purines and pyrimidines,.	
	19	Biosynthesis and Degradation of purines and pyrimidines	
		(structure not required)	
	20	de novo and salvage pathways with regulation, (structure not	
		required)	
	21	Gout, Lesch Nyhan syndrome	
V		Bioenergetics	11
V			11
V	22	Laws of thermodynamics-Role of high energy phosphates in	11
V	22	Laws of thermodynamics-Role of high energy phosphates in energy transfer, concept of free energy. Biological oxidation,	11
V		Laws of thermodynamics-Role of high energy phosphates in energy transfer, concept of free energy. Biological oxidation, redox potential, coupled reactions.	11
V	22	Laws of thermodynamics-Role of high energy phosphates in energy transfer, concept of free energy. Biological oxidation, redox potential, coupled reactions. Enzymes involved in oxidation and reduction-oxidases,	11
V	23	Laws of thermodynamics-Role of high energy phosphates in energy transfer, concept of free energy. Biological oxidation, redox potential, coupled reactions. Enzymes involved in oxidation and reduction-oxidases, dehydrogenases, hydroperoxides, oxygenases.	11
V		Laws of thermodynamics-Role of high energy phosphates in energy transfer, concept of free energy. Biological oxidation, redox potential, coupled reactions. Enzymes involved in oxidation and reduction-oxidases, dehydrogenases, hydroperoxides, oxygenases. Outline study of Electron Transport Chain.	11
V	23	Laws of thermodynamics-Role of high energy phosphates in energy transfer, concept of free energy. Biological oxidation, redox potential, coupled reactions. Enzymes involved in oxidation and reduction-oxidases, dehydrogenases, hydroperoxides, oxygenases.	11
V	23	Laws of thermodynamics-Role of high energy phosphates in energy transfer, concept of free energy. Biological oxidation, redox potential, coupled reactions. Enzymes involved in oxidation and reduction-oxidases, dehydrogenases, hydroperoxides, oxygenases. <i>Outline study of Electron Transport Chain.</i> Inhibitors of electron transport chain.	11
V	23 24 25	Laws of thermodynamics-Role of high energy phosphates in energy transfer, concept of free energy. Biological oxidation, redox potential, coupled reactions. Enzymes involved in oxidation and reduction-oxidases, dehydrogenases, hydroperoxides, oxygenases. <i>Outline study of Electron Transport Chain.</i> Inhibitors of electron transport chain. <i>Oxidative phosphorylation:</i> -Hypothesis – brief study	11
V	23	Laws of thermodynamics-Role of high energy phosphates in energy transfer, concept of free energy. Biological oxidation, redox potential, coupled reactions. Enzymes involved in oxidation and reduction-oxidases, dehydrogenases, hydroperoxides, oxygenases. <i>Outline study of Electron Transport Chain.</i> Inhibitors of electron transport chain.	11

Practical (30 hours)

- Quantitative analysis of glucose by Nelson Somogyi method
- Quantitative analysis of ketose by Roe-Papadopoulos method
- Quantitative analysis of pentose by Orcinol method
- Quantitative analysis of protein by Biuret method
- Quantitative analysis of protein by Folin-Lowry Method
- Quantitative analysis of Amino acids by Ninhydrin method
- Quantitative analysis of Cholesterol by Zak's Method
- Quantitative analysis of DNA by Diphenyl Amine Method
- Quantitative analysis of RNA by Orcinol Method.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe pathways and energetics involved in the metabolism of Charbohydrates, Lipids, Nucleic acid and Amino acids.	R, U	1
CO-2	Explain the role of enzymes involved under physiological conditions.	R, U	1,3
CO-3	Explain the metabolic regulatory mechanisms of biomolecule synthesis	R, U	1,3
CO-4	Understanding the energetics and the mechanism of transport of these biomolecules in the body.	R, U	1
CO-5	Qualitatively analyse these biomolecules in a given test sample	R, U, Ap	1,2

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Intermediary Metabolism and Bioenergetics Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Describe pathways and energetics involved in the metabolism of Charbohydrates, Lipids, Nucleic acid and Amino acids.	1	R, U	F, C	L/T	
CO-2	Explain the role of enzymes involved under physiological conditions.	1,3	R, U	F, C	L/T	
CO-3	Explain the metabolic regulatory mechanisms of biomolecule synthesis	1,3	R, U	F, C	L/T	
CO-4	Understanding the energetics and the mechanism of transport of these biomolecules in the body.	1	R, U	F, C	L/T	
CO-5	Qualitatively analyse these biomolecules in a given test sample	1,2	R, U, Ap	Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	_	-	-	-	1					
CO 2	2	-	1	-	-	-	1					
CO 3	2	-	1	-	-	-	1					
CO 4	3	-	-	-	-	-	1					
CO 5	1	3	-	-	-	-	1					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

1. Nelson, D. L., & Cox, M. M. (2021). Lehninger Principles of Biochemistry (8th ed.). W. H. Freeman.

- 2. Berg, J. M., Tymoczko, J. L., & Stryer, L. (2022). Biochemistry (9th ed.). W. H. Freeman.
- 3. Devlin, T. M. (2010). Textbook of Biochemistry with Clinical Correlations (7th ed.). Wiley-Liss.
- 4. Rodwell, V. W., Bender, D. A., Botham, K. M., & Kennelly, P. J. (2022). Harper's Illustrated Biochemistry (32nd ed.). McGraw-Hill.
- 5. Greenberg, D. M. (1960). Metabolic Pathways. Academic Press.
- 6. Nicholls, D. G., & Ferguson, S. J. (2013). Bioenergetics (4th ed.). Academic Press.
- 7. Voet, D., Voet, J. G., & Pratt, C. W. (2019). Fundamentals of Biochemistry: Life at the Molecular Level (5th ed.). Wiley.
- 8. Frayn, K. N. (2019). Metabolic Regulation: A Human Perspective (4th ed.). Wiley-Blackwell.
- 9. Michal, G., & Schomburg, D. (2012). Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (3rd ed.). Wiley-Blackwell.
- Cortassa, S., Aon, D., & Westerhoff, P. J. (2002). Introduction to Metabolic and Cellular Engineering. CRC Press.

University of Kerala

Discipline	Biochemistry								
Course Code	UK5SECBCH300								
Course Title	Basic Techniques in	Basic Techniques in Biochemistry							
Type of Course	SEC3	SEC3							
Semester	V								
Academic	300 - 399								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	3	2 hours	_	2 hours	4				
Pre-requisites									

Course Summary	The course provides a thorough understanding of different techniques used in the biochemical field including types of microscopy, staining techniques, colorimetry, spectrophotometry, centrifugation method, different types of chromatographic and electrophoretic techniques. The course also provides an overview on different spectroscopic and histopathologic techniques.
-------------------	---

Module	Unit	Content	Hrs					
Ι		Microscopy & Photometry	6					
	1	Principle, instrumentation and applications of Simple microscope						
	2	2 Principle, instrumentation and applications of compound microscope						
	3	3 Basic staining techniques (Gram staining)						
	4	4 Colorimeter and spectrophotometer						
II	Methods in Homogenization & Centrifugation							
	5	Methods of tissue homogenization, Subcellular fractionation						
	6	Principle, instrumentation, and applications of different types of centrifugations (Differential and density gradient),						
	7	Ultracentrifugation.						
	8	Different types of rotors.						
	Chromatography & Electrophoresis							

	0							
	9	Principle, procedure, and applications of Paper chromatography, TLC						
	10	Ion exchange, Molecular sieve chromatography						
	11	HPLC						
	12	12 Agarose gel electrophoresis, SDS PAGE						
IV		Spectroscopy	6					
	13	Flame Photometry, Fluorimeter						
	14	ESR and NMR spectroscopy						
	15	GC MS and HPLC MS						
V		Basics of Histopathology	6					
	1.5							
	16	Basic knowledge on histopathology						
	17	Different steps such as fixation, tissue processing, cutting, staining						
		and analysis						
	18	Immunohistochemistry						
	19	Practical	30					
		• Solvent preparation for chromatography						
		• Paper chromatography and TLC						
		 Development of chromatogram 						
		Mechanical homogenization by mortar and pestle						
		• Serum separation by centrifugation						
		Demonstration of electrophoresis						

References

- 1. Keith Wilson and John Walker, Principles and Techniques of Biochemistry and Molecular Biology. 2010.
- 2. U Satyanarayana, Biochemistry, Books and Allied (p) Limited, 2014.
- 3. Cox, Michael M. Lehninger principles of biochemistry. Freeman, 2013
- 4. Tymoczko, John L, Stryer . Biochemistry , Macmillan , 2012
- 5. Biologist's Guide to Principles and Techniques of Practical Biochemistry by BryanL.Williams, Keith Wilson Hodder Education, ISBN 071312461X (0-7131-2461-X).
- 6. The Tools of Biochemistry by Cooper, T. G.1977. Publisher: John Wiley & Sons.
- 7. Biophysical Chemistry Principles & Techniques Handbook (2003) by AvinashUpadhyay, KakoliUpadhyay, Nirmalendu Nath Publisher: Himalaya Publishing House SBN:8178665883 ISBN-13:9788178665887, 978-8178665887.
- 8. Physical Biochemistry by David Freifelder Publisher: W.H.Freeman & Co Ltd (September 1976) ISBN-10: 0716705591 ISBN-13: 978-0716705598.
- 9. Research Methodology for Biological Sciences (2006) by Gurumani N Publisher: MJP Publishers ISBN: 8180940160 ISBN-13: 9788180940163, 978-8180940163.
- 10. Instrumental Methods of Chemical Analysis (2006) by M.S. Yadav Publisher: Campus Books International ISBN: 8187815620 ISBN-13: 9788187815624, 978-8187815624.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the basic principle, instrumentation and applications of different microscopic techniques and photometry.	R, U	1
CO-2	Explain the different methods of homogenization, subcellular fractionation, and centrifugation.	R, U	1
CO-3	Gain knowledge on different types of chromatographic, electrophoretic and spectroscopic techniques.	R, U	1
CO-4	Understand the basic concept of histopathology	R,U	1
CO-5	Gain confidence to do various chromatographic and centrifugation techniques	R, U, Ap	1,2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Basic Techniques in Biochemistry

Credits: 2:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand the basic principle, instrumentation and applications of different microscopic techniques and photometry.	1	R, U	F, C	L/T	
CO-2	Explain the different methods of homogenization, subcellular fractionation, and centrifugation.	1	R, U	F, C	L/T	
CO-3	Gain knowledge on different types of chromatographic, electrophoretic and spectroscopic techniques.	1	R, U	F, C	L/T	
CO-4	Understand the basic concept of histopathology	1	R,U	F, C	L/T	
CO-5	Gain confidence to do various chromatographic and centrifugation techniques	1,2	R, U, Ap	Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-	-	-	1					
CO 2	2	-	-	-	-	-	1					
CO 3	2	-	-	-	-	-	2					
CO 4	2	-	-	-	-	-	1					
CO 5	1	3	-	-	-	-	3					

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation		
-	Nil		
1	Slightly / Low		
2	Moderate / Medium		
3	Substantial / High		

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	BIOCHEMISTRY					
Course Code	UK5SECBCH301					
Course Title	QUALITY ASSES	SMENT AN	D QUALIT	Y CONTRO	L	
Type of Course	SEC4					
Semester	V					
Academic	300 - 399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	3	2 hours	-	2 hours	4	
Pre-requisites	NIL					
Course	To provide high	h-quality p	products a	nd services	5,	
Summary	Organizations depe		· ·	0		
	techniques. Two		1	1 .	·	
	management are qua			1 2		
	(QC). This certific		0			
	foundational underst					
	open up employmen	1 1	-	•		
	across various sector	rs including o	clinical and p	harmaceutica	l	
	industry.					

Module	Unit	Content	Hrs
Ι		Basic concepts of QA and QC	8
	1	Definition, Objectives of QA, difference between QA	
		& QC, Quality testing, Functions of QA & QC	
	2	QA Processes, QC Procedures, Advantages and disadvantages of QA, Sources of quality variation (raw materials, processes, packaging, labelling, finished products, manual errors -personal, instrumental, and documentation).	
	3	Components of Quality control: Inspection, testing, statistical process control, documentation and records, documentation skills, corrective actions, training and education, Continuous Improvement.	
	4	Importance and benefits of Quality control, Quality Control methods. (X-Bar Chart, Taguchi Method, 100% Inspection Method). Basic tools of quality control	
II		Quality Management system	8
	5	Quality management systems in Food, pharmaceutical industries, health care and health care equipment.	
	6	Standards in Food Industry-GMP, GHP, HACCP, BIS, AGMAK, FSSAI, FSSA2006, Codex Alimentarius. Standards in Pharmaceutical Industry-ISO 9001, ISO 14001, ISOP 27701, ISO 45001, ISO22000, ISOGDPR.	

	7	Standards in Health Care- MDR, ISO13485, ISO	
		41001, ISO22301, ISO 37001, ISO27001, ISO9001,	
		ISO14001.	
III		Sample Preparation, Preservation, Storage	7
	8	Basics of sample preparation, preservation and storage,	
		handling of glassware, chemicals and biological samples	
	9	Good Storage Practices, Laboratory hazards and	
		management (Chemical, biological, physical hazards),	
	10	Safety measures in handling and safety equipment.	
		GLP	
IV	I	Samiliarizing Lab Equipment and Experimental Approaches	7
	11	Theoretical Aspects: SOP of Electronic balance, pH	
		meter, colorimeter, UV-Vis Spectrophotometer,	
		microscope, micropipette-elementary level and hand	
		on training.	
	12	Practical Aspects: Preparation of Solutions	
		(Normal, Molar and percentage solution), preparation	
		of buffers	
V		Practical	30
	13	Institute visit: Acquainting with cell culture lab,	
		Animal house facilities	
	14	GLC, HPLC	
	15	Industry visit: QA QC lab of Industries	

References

- 1. Dave, B. P., & Mishra, D. D. (2006). Food Quality Assurance: Principles and Practice. S. Chand & Company Ltd. 4.
- 2. Ossewaarde, D. W. (2011). Food Safety and Quality Assurance.
- 3. Alli. (2003). Food quality assurance: Principles & practices. CRC Press.
- 4. Andre Gordon. (2020). Food Safety and Quality Systems in Developing Countries: Technical and Market Considerations (V5). Academic Press.
- 5. Anjaneyulu, Y. (2017). Quality assurance and quality management in the pharmaceutical industry. BSP Books.
- 6. Haider, I., & Asif, S. (2018). Quality control training manual: Comprehensive training guide for API, pharmaceutical & biotechnology laboratories. CRC Press.
- 7. Sarker, K. (2008). Quality systems & control for the pharmaceutical industry. Wiley

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Differentiate between quality assurance and quality control	U, R	4
CO-2	Develop familiarity with quality and its concept	R, U	4
CO-3	Familiarize sampling and analytical methodologies	R, U	4

	involved in quality assessment		
CO-4	Acquaint with minor and sophisticated instruments used in quality testing	R, U, Ap	4
CO-5	Understand the working of QA & QC labs in industries	R, U	2, 4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: QAQC

Credits: 2:0:1 (Lecture:Tutorial:Practical)
------------------	-----------------------------

CO No.	CO	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tuto rial (T)	Practical (P)
1	1	1,4	U, R	F, C	L, T	
2	2	1,4	R, U	F, C	L, T	
3	3	1,4	R, U	F, C	L, T	
4	4	1,4	R, U, Ap	F, C	L, T	
5	5	1, 4	R, U	F, C, P	L, T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	_	1	-	-	1	-		-	-	
CO 2	_	1	-	-	1	-	1	_	_	
CO 3	_	1	-	-	1	-	-	-	-	1
CO 4	_	1	-	-	1	-	-	-	-	1
CO 5	-	1	-	1	1	1		-	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		√
CO 3	\checkmark	\checkmark		√
CO 4	\checkmark	\checkmark		√
CO 5	\checkmark	\checkmark		\checkmark

Mapping of COs to Assessment Rubrics :

University of Kerala

Discipline	BIOCHEMISTRY					
Course Code	UK6DSCBCH300					
Course Title	CLASSICAL AND	MOLECU	LAR GENE	TICS		
Type of Course	DSC29					
Semester	VI					
Academic	300 - 399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3 hours	-	2 hours	5	
Pre-requisites	Nil					
Course	The objective of the	course is to	make stude	ents aware of	the Mendelian	
Summary	genetics and the devia	genetics and the deviations from Mendelian principles. It deals with genome				
		rganization, replication, transcription, translation and mutations. It also				
	deals with genome se	quencing tec	hnologies an	d application	s.	

Module	Unit	Content	Hrs
Ι	GENETICS		15
	1	Model genetic organisms (brief outline with examples).	

		1	1					
	2	Basic principles of heredity- Mendel's laws, monohybrid, dihybrid and						
		test cross (pea plant).						
	3	Extensions of Mendelian principles: Gene interaction- Allelic gene						
		interaction (complete dominance, co-dominance and incomplete						
		dominance- brief outline with example) and non-allelic gene interaction						
		(epistasis- duplicate recessive, recessive, dominant, dominant inhibitory						
		and duplicate dominant epistasis-brief outline with example).						
	4	Penetrance, expressivity, genetic anticipation and genomic imprinting						
	•							
	5	(definition with examples). Sex linked characteristics (eye colour of drosophila): Brief outline of						
	5							
	6	Morgan's studies. Maternal inheritance (kappa particles in paramecium, male sterility in						
	0							
		maize) and maternal effect (shell coiling in snails).						
	7	Pedigree analysis and applications - autosomal dominance, autosomal						
		recessive, X-linked recessive (brief outline).						
	8	Bacterial and Viral Genetic Systems- Transformation, transduction and						
		conjugation. Transposons and multiple drug resistance (brief outline).						
II		GENOME ORGANISATION AND REPLICATION	6					
	9	Genome organization (prokaryotes and eukaryotes), chromatin,						
		centromere, and telomere. Central Dogma.						
	10	DNA replication in prokaryotes, enzymes involved in replication,						
		replication inhibitors (any 3 examples).						
III		MUTATION AND REPAIR	5					
	11	Mutation in Prokaryotes: Various types of mutation- spontaneous and	-					
	11	induced mutation, point mutation- substitution (transition,						
		transversion), insertion, deletion, missense, nonsense, frame-shift						
	10	mutation, mutagens- different types. Ames test.						
	12	Chromosome variation- aneuploidy, polyploidy, duplication, deletion,						
	10	inversion and translocation (Brief outline).						
	13	Repair in prokaryotes - direct, excision, mismatch, recombination and						
		SOS.						
IV		GENE EXPRESSION	10					
	14							
		Transcription in prokaryotes, enzymes involved in transcription,						
		Transcription in prokaryotes, enzymes involved in transcription, transcription inhibitors (any 3 examples). Post transcriptional						
	15	transcription inhibitors (any 3 examples). Post transcriptional modification						
	15	transcription inhibitors (any 3 examples). Post transcriptional						
		transcription inhibitors (any 3 examples). Post transcriptional modificationEukaryotic transcription and post transcriptional modification (brief outline only).						
	15 16	 transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief 						
	16	 transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). 						
		 transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post 						
V	16	 transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post translational modification 	0					
V	16 17	transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post translational modification REGULATION OF GENE EXPRESSION	9					
V	16 17 18	transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post translational modification REGULATION OF GENE EXPRESSION Operon- Structural gene and regulator gene	9					
v	16 17 18 19	transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post translational modification REGULATION OF GENE EXPRESSION Operon- Structural gene and regulator gene Jacob and Monod's operon concept .	9					
V	16 17 18 19 20	transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post translational modification REGULATION OF GENE EXPRESSION Operon- Structural gene and regulator gene Jacob and Monod's operon concept . Inducible operon (lac operon as an example)	9					
V	16 17 18 19	transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post translational modification REGULATION OF GENE EXPRESSION Operon- Structural gene and regulator gene Jacob and Monod's operon concept . Inducible operon (lac operon as an example) Repressible operon (tryptophan operon as an example), Attenuation						
V	16 17 18 19 20	transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post translational modification REGULATION OF GENE EXPRESSION Operon- Structural gene and regulator gene Jacob and Monod's operon concept . Inducible operon (lac operon as an example) Repressible operon (tryptophan operon as an example), Attenuation PRACTICAL	9					
V	16 17 18 19 20	transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post translational modification REGULATION OF GENE EXPRESSION Operon- Structural gene and regulator gene Jacob and Monod's operon concept . Inducible operon (lac operon as an example) Repressible operon (tryptophan operon as an example), Attenuation PRACTICAL Isolation of DNA						
V	16 17 18 19 20	transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post translational modification REGULATION OF GENE EXPRESSION Operon- Structural gene and regulator gene Jacob and Monod's operon concept . Inducible operon (lac operon as an example) Repressible operon (tryptophan operon as an example), Attenuation PRACTICAL						
V	16 17 18 19 20	transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post translational modification REGULATION OF GENE EXPRESSION Operon- Structural gene and regulator gene Jacob and Monod's operon concept . Inducible operon (lac operon as an example) Repressible operon (tryptophan operon as an example), Attenuation PRACTICAL Isolation of DNA						
V	16 17 18 19 20	transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post translational modification REGULATION OF GENE EXPRESSION Operon- Structural gene and regulator gene Jacob and Monod's operon concept . Inducible operon (lac operon as an example) Repressible operon (tryptophan operon as an example), Attenuation PRACTICAL Isolation of DNA Estimation of DNA by Diphenylamine method Estimation of RNA by Orcinol method						
v	16 17 18 19 20	transcription inhibitors (any 3 examples). Post transcriptional modification Eukaryotic transcription and post transcriptional modification (brief outline only). Genetic codon (characteristics of codon), Wobble hypothesis (brief concept). Translation in prokaryotes, translation inhibitors (any 3 examples). Post translational modification REGULATION OF GENE EXPRESSION Operon- Structural gene and regulator gene Jacob and Monod's operon concept . Inducible operon (lac operon as an example) Repressible operon (tryptophan operon as an example), Attenuation PRACTICAL Isolation of DNA Estimation of DNA by Diphenylamine method						

References:

- Griffiths, A. J. F., Wessler, S. R., Carroll, S. B., & Doebley, J. (2020). An Introduction to Genetic Analysis (12th ed.). W. H. Freeman.
- 2. Snustad, D. P., & Simmons, M. J. (2018). Principles of Genetics (7th ed.). Wiley.
- 3. Klug, W. S., & Cummings, M. R. (2016). Concepts of Genetics (12th ed.). Pearson.
- 4. Hartl, D. L., & Ruvolo, M. (2018). Genetics: Analysis and Principles (6th ed.). McGraw-Hill Education.
- 5. Griffiths, A. J. F., Gelbart, W. M., Miller, J. H., & Lewontin, R. C. (2002). Modern Genetic Analysis (3rd ed.). W. H. Freeman.
- 6. Brown, T. A. (2017). Genomes (4th ed.). Garland Science.
- 7. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2013). Molecular Biology of the Gene (7th ed.). Pearson.
- 8. Brooker, R. J. (2014). Genetics: Analysis and Principles (5th ed.). McGraw-Hill Education.
- 9. Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., & Martin, K. C. (2020). Molecular Cell Biology (9th ed.). W. H. Freeman.
- 10. Stansfield, W. D., & Hatfield, T. (2012). Schaum's Outline of Theory and Problems of Genetics (5th ed.). McGraw-Hill Education.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Illustrate the type of inheritance of a trait in organisms	An	1,2,3
CO-2	Summarise the process of replication in prokaryotes	U	1
CO-3	Explain the various kinds of mutation, chromosomal aberrations and repair systems	U	1,2
CO-4	Discuss the mechanisms of gene expression	U	1
CO-5	Compare different regulatory mechanisms in prokaryotes	U	1

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Classic and Molecular Genetics

Credits: 3:0:1 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Illustrate the type of inheritance of a trait in organisms		An	F, C	L/T	
CO-2	Summarise the process of replication in prokaryotes	1	U	F, C	L/T	

CO-3	Explain the various kinds of mutation, chromosomal aberrations and repair systems	1,2	U	F, C	L/T	
CO-4	Discuss the mechanisms of gene expression	1	U	F, C	L/T	
CO-5	Compare different regulatory mechanisms in prokaryotes	1	U	F, C	L/T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	2	2	-	I	-	3					
CO 2	3	-	-	-	-	-	1					
CO 3	2	1	-	-	-	-	2					
CO 4	3	-	-	-	-	-	1					
CO 5	2	-	-	-	-	-	1					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	nternal Exam Assignment		End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark

CO 2	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark

University of Kerala

Discipline	BIOCHEMISTRY				
Course Code	UK6DSCBCH301				
Course Title	CLINICAL BIOCI	HEMISTRY	& MOLEC	CULAR DIA	GNOSTICS
Type of Course	DSC30				
Semester	VI				
Academic	300 - 399				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	NIL				
Course	The course will give				1
Summary	nature of clinical d				
	diagnosis, interpretin	ng and mana	gement of va	rious clinical	conditions

Module	Unit	Content	Hrs				
Ι		An introduction to Clinical Biochemistry	9				
	1	Scope of clinical biochemistry in Diagnosis					
	2	2 Collection and preservation of biological fluids and clinical samples					
	3 Clinical importance of biomolecules: Carbohydrates; hyper and						
		hypoglycemia. Lipids: Lipid profile and atherosclerosis. Proteins:					
		hypoalbuminemia, Bence jones proteins, Proteins in CSF					
	4	Quality control and safety measures in clinical laboratory					
	Cell biology and genetics in diagnostics						
	5	Chromosomal aberrations and Cytogenetic analysis					
Π	6	Disease identification and Genetic tests for following disorders-					
		Thalassemia, Sickle Cell anemia, Alzheimer's					
	7	Molecular basis of cancer, oncogenes, tumor suppressor genes. Gene					
		therapy and other molecular based therapeutic approaches.					
Ш		Molecular diagnostics	9				
111		molecular ulagnostics	,				

	8	Basics of Molecular diagnostics and its advantages over serological						
	0	testing						
	9	Molecular Techniques for diagnosis – PCR and its modifications, FISH,						
		Genotyping, Microarrays and mass spectrometry						
	10 Immunodiagnostics: Antibody Structure and Function antibody cl							
	10	isotypes, and characteristics, Production of Monoclonal antibodies,						
	Immunoassay Systems; ELISA (direct and indirect, sandwich,							
		competitive assays) Western blotting; immunocytochemistry						
	11	Ethical considerations in molecular diagnosis						
		Organ function tests and therapeutic drug monitoring	9					
	12	Functions of liver, Liver function tests and clinical significance						
IV	13	Structure of nephron, urine formation and renal function tests						
	14	Thyroid hormones, Thyroid function tests, clinical implications of TFT,						
		Pancreatic function tests and cardiac function tests						
	15	Therapeutic drug monitoring: Definition, applications and Monitoring						
		methods						
		Diagnostic enzymology	9					
	16	Fundamentals of enzymology: Activation energy, holoenzyme,						
		apoenzyme, prosthetic group, active site, Enzyme units- IU, Katal,						
V		specific activity and turnover number						
	17	Enzymes in health and diseases: Distribution and application of clinically						
		important enzymes, Enzymes as diagnostic markers						
	18	Isoenzymes and its clinical importance. Enzymes as reagents, analytical						
		agents and therapeutic agents						
		Practical	30					
	19	Estimation of glucose, Total proteins, Lipid profile						
	20	Kidney function test and Liver function test						
	21	Blood estimations: ESR, Hb, PCV, Blood grouping, Differential count						
		of WBC						
		Awareness of Genetic tests						

References

- 1. Burtis, C. A., Ashwood, E. R., & Bruns, D. E. (Eds.). (2020). Tietz Textbook of Clinical Chemistry and Molecular Diagnostics (7th ed.). Elsevier.
- 2. Armstrong, D. T. (Ed.). (2021). Molecular Diagnostics: Techniques and Applications for the Clinical Laboratory (3rd ed.). Academic Press.
- 3. Kumar, P., & Clark, M. (2021). Clinical Medicine (10th ed.). Elsevier.
- 4. Lippincott Williams & Wilkins. (2021). Clinical Chemistry: Principles, Techniques, and Correlations (9th ed.). Lippincott Williams & Wilkins.
- 5. Larson, J. A., & Ashwood, E. R. (Eds.). (2014). Fundamentals of Molecular Pathology. Springer.
- 6. Gaw, A., Murphy, M. J., Cowan, R. A., & O'Reilly, D. S. (2018). Clinical Biochemistry: An Illustrated Colour Text (5th ed.). Elsevier.
- 7. Harr, R. R. (2018). Medical Laboratory Science: Clinical Chemistry (7th ed.). F. A. Davis Company.
- 8. Nieman, D. C., & DeRuisseau, K. C. (2020). Clinical Exercise Physiology (4th ed.). Human Kinetics.
- 9. Lopez-Garrido, J. A. (Ed.). (2021). Molecular Diagnostics: New Insights into Principles and Practices. Springer.
- 10. Kumar, P., & Mittal, B. (2022). Advance1s in Molecular Diagnostics and Personalized Medicine. Springer.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understanding the basic of a clinical biochemistry lab	U, E	1
CO-2	Apply molecular biology in diagnosis and interpretation of various diseases	Ap, E	2
CO-3	Attain comprehensive knowledge on performing organ function tests and therapeutic drug monitoring	R, U	1,2,3
CO-4	Acquire proficiency in laboratory testing of various blood parameters	Ap, E	2,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: Clinical Biochemistry and Molecular Diagnostics

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understanding the basic of a clinical biochemistry lab	1	U,E	F, C	L/T	
CO-2	Apply molecular biology in diagnosis and interpretation of various diseases	2	Ap, E	Р		Ρ
CO-3	Attain comprehensive knowledge on performing organ function tests and therapeutic drug monitoring	1,2,3	R,U	F, C	L/T	
CO-4	Acquire proficiency in laboratory testing of various blood parameters	2,4	Ap, E	Ρ		Ρ

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
			-	-			1					
CO 1	2	-			-	-						
	-			-			2					
CO 2		3	-		-	-						

CO 3	2	2	2	-	-	-	2			
CO 4	-	2	-	2	-	-	3			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		/
01				v
	\checkmark	\checkmark		
CO 2				\checkmark
	\checkmark	\checkmark		
CO 3		-		\checkmark
	\checkmark	\checkmark		
CO 4				\checkmark

University of Kerala

Discipline	BIOCHEMISTRY
Course Code	UK6DSCBCH302
Course Title	Endocrinology
Type of Course	DSC31
Semester	VI
Academic Level	300-399

Course Details	Credit	Lecture per week	Tutorial	Practical	Total Hours/Week			
			per week	per week				
	4	4			4			
Pre-requisites	NIL							
Course Summary	endocri hormor	urse equips students nology, covering fu ne action, functions of endocrine disorders	ndamental of hormones	concepts, m	echanisms of			

Module	Unit	Content	Hrs
Ι	duction to Endocrinology and mechanism of action of	14	
	horm	Hormones–definition. Chemical signalling–endocrine, paracrine and autocrine mechanisms	
	2 Chemical diversity of hormones, Transport of hormones in circulation and half–lives. Regulation of hormones a	Chemical diversity of hormones, Transport of hormones in the circulation and half–lives. Regulation of hormones and feedback mechanisms	
	3	Hormone receptors–extracellular and intracellular. Mechanism of action of hormones–group I (Sterol derived hormones and Iodothyronine) and group II (Peptide hormones)	

	1		
	4	Receptor-hormone binding. G-protein coupled receptors, second messengers-cAMP, cGMP, IP ₃ , DAG and Ca ²⁺ . Effector systems-Adenylate cyclase, Guanylate cyclase, Phosphodiesterases and Phospholipase C. Protein kinases (PKA, PKB, PKC and PKG). Signalling by NO	
II	• •	halamo-pituitary System, Hormones Regulating Metabolism	14
		alcium Homeostasis	
	5	Hypothalamo–pituitary regulatory system : anatomy and secretions (in brief)	
	6		
		Physiological and biochemical actions of hypothalamic hormones, anterior pituitary hormones and associated disorders (Gigantism, Acromegaly and Dwarfism); Posterior pituitary hormones–physiology and biochemical roles of Oxytocin and Vasopressin, Diabetes insipidus	
	7	Structure and functions of thyroid gland. Thyroid hormones: biosynthesis and biological functions. Physiological and biochemical actions of thyroxine. Hyper–and hypothyroidism: Goitre, Graves' disease, Cretinism and Myxoedema	
	8	Structure and functions of parathyroid gland, Biological functions of Parathyroid hormone (PTH). Regulation of calcium homeostasis by PTH, Vitamin D and calcitonin. Hyper–and hypoparathyroidism	
III	Hormo	ones of the Adrenals	10
	9	Structure and anatomy of adrenal cortex and medulla. Mineralocorticoids, Glucocorticoids and Sex corticoids	
	10	Regulation of synthesis and biochemical functions of adrenal steroids, the Renin–Angiotensin system. Physiology and biochemical actions of Aldosterone and Cortisol	
	11	Adrenal medullary Hormones : Epinephrine and Norepinephrine. The Fight or Flight response	
	12	Pathophysiology and clinical features of Addison's disease, Conn's syndrome, Cushing's syndrome	

IV	Pancre	eatic, GI Tract and Adipose Hormones	12				
	13	Endocrine regions and hormones of the pancreas : Structure, synthesis, regulation, physiology and biochemical actions of insulin, glucagon and somatostatin					
	14 Pathophysiology – Type I and type II Diabetes mellitus						
	15 Cells involved in the release of gastrointestinal hormones, Gastrin family of hormones (Gastrin, CCK and caerulein). The secretin family of hormones, Incretins and Ghrelin						
	16	Adipocyte hormones: Adiponectin and leptin; Appetite and satiety control					
V	Reproductive Hormones						
	17	Hormones secreted by gonads					
	18	Cell types of the testis. Spermatogenesis and control of testicular function, Biological actions of androgens					
	19	Cell types of the ovaries, Hormones : Oestrogens and progesterone. The ovarian cycle, Interplay of hormones during ovarian and uterine phases of menstrual cycle, Placental hormones					
	20	Role of hormones during parturition and lactation. Hormone based contraception and hormone therapy					

References

- 1. Introduction to Endocrinology by Chandra S.Negi
- 2. Essentials of Physiology for Dental Students by K Sembulingam, Prema Sembulingam
- 3. Tortora's Principles of Anatomy and Physiology by Gerard J. Tortora, Bryan H. Derrickson
- 4. Clinical endocrinology by Dana Stoian
- 5. Harrison's Endocrinology by J. Larry Jameson
- 6. Williams Textbook of Endocrinology by Wilson, Jean D., Larsen, P. Reed, Kronenberg, Henry, Foster, Daniel W.

Course Outcomes

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the basics of Endocrinology	R	1
CO-2	Outline the mechanism of action of different classes of hormones	U, R	1
CO-3	Explain the functions of hormones	U, R	1
CO-4	Discuss the Pathophysiology and clinical features of endocrine disorders	U, R	1,2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Endocrinology

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/P S O	Cogniti ve Level	Knowledge Category	Lecture (L)/Tuto rial (T)	Practical (P)
CO-1	Understand the basics of Endocrinology	1	R	F,C		
CO-2	Outline the mechanism of action of different classes of hormones	1	U, R	F,C		
CO-3	Explain the functions of hormones	1	U, R	F,C		
CO-4	Discuss the Pathophysiology and clinical features of endocrine disorders	1,2	U, R	F,C		

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	_	-	_	-	-	1					

CO 2	3	-	-	-	-	-	1			
CO 3	3	-	-	-	-	-	1			
CO 4	2	3	-	-	-	-	1			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

Discipline	BIOCHEMISTRY									
Course Code	UK6DSCBCH303	JK6DSCBCH303								
Course Title	CLINICAL BIOCHEMISTRY									
Type of Course	DSC32									
Semester	VI									
Academic Level	300-399									
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours/Week					
	4	3 hours	-	2 hours	5					
Pre-requisites	NIL									
Course	The course is intended	l to impart bas	sic knowledge	of clinical dis	orders,					
Summary	demonstrating the appl	ication of biod	hemical parar	neters and labo	oratory methods					
	in diagnosing disease	s.								

Module	Unit	Content	Hrs						
Ι		An introduction to Clinical Biochemistry	9						
	1	Scope of clinical biochemistry in Diagnosis							
	2	Collection and preservation of biological fluids and clinical samples							
	3	Quality control and safety measures in clinical laboratory							
		Organ function tests	9						
	4 Liver function tests: - Serum Bilirubin: Total Bilirubin – Direct & Indirect,								
II		VD Bergh reaction, Liver enzymes: AST, ALT, ALP & GGT							
	5	Renal Function tests: tests of glomerular functions, measurement of							
		GFR, Clearance tests (creatinine and inulin clearance), Plasma							
		creatinine, urea, β2-microglobulin							
	6	Thyroid function tests: TSH, T3, T4							
Ш		Molecular diagnostics	9						
	7	Basics of Molecular diagnostics and its advantages over serological							
		testing							
	8	Molecular Techniques for diagnosis – PCR and its modifications, FISH							
	9	Immunodiagnostics: Antibody Structure and Function antibody classes,							
		isotypes, and characteristics. ELISA, Western blotting;							
		immunocytochemistry							

	10	Ethical considerations in molecular diagnosis										
		Metabolic disorders	9									
	11	Carbohydrate metabolism-Hyperglycaemia, galactosemia, Lactose										
IV	IV intolerance.											
	12	Nucleic acid metabolism-Hypo and hyper uricemia, gout.										
	13	Lipid Metabolism – Atherosclerosis, fatty liver, Taysach's and Niemann										
		Pick diseases										
		Instrumentation in Clinical Biochemistry laboratory										
	14	Semi auto and fully auto analyser (wet & dry chemistry)										
	15	ELISA, ELFA, CLIA, ECLIA, HPLC (HbA1C) Nephelometry,										
V		Immunochromatography methods										
		Practical	30									
	16	Estimation of AST, ALT, Total proteins, Lipid profile, Glucose, RFT										
	17	Blood estimations: ESR, Hb, PCV, Blood grouping, Differential count of										
		WBC										

References

- 1. Burtis, C. A., Ashwood, E. R., & Bruns, D. E. (Eds.). (2020). Tietz Textbook of Clinical Chemistry and Molecular Diagnostics (7th ed.). Elsevier.
- 2. Bruns, D. E., & Tietz, N. W. (2015). Fundamentals of Clinical Chemistry and Molecular Diagnostics (7th ed.). Elsevier.
- 3. Rifai, N., Horvath, A. R., & Wittwer, C. T. (Eds.). (2018). Principles and Applications of Molecular Diagnostics (2nd ed.). Elsevier.
- 4. Marshall, W. J., Lapsley, M., Day, A. P., & Ayling, R. M. (2014). Clinical Biochemistry: Metabolic and Clinical Aspects (4th ed.). Elsevier.
- 5. Gaw, A., Murphy, M. J., Cowan, R. A., & O'Reilly, D. S. (2018). Clinical Biochemistry: An Illustrated Colour Text (5th ed.). Elsevier.
- 6. Harr, R. R. (2018). Medical Laboratory Science: Clinical Chemistry (7th ed.). F. A. Davis Company.
- 7. Katki, H. A. (2019). Essentials of Clinical Chemistry and Hematology in Laboratory Medicine. Springer.
- 8. Smith, A. F. (2021). Clinical Biochemistry: An Illustrated Manual. Wiley-Blackwell.
- 9. Crook, M. A. (2020). Clinical Biochemistry and Metabolic Medicine (9th ed.). CRC Press.
- 10. Vasudevan, D. M., & Sreekumari, S. (2018). Textbook of Biochemistry for Medical Students (8th ed.). Jaypee Brothers Medical Publishers.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO Addressed
CO-1	Understanding the basic set up and quality control in a clinical biochemistry lab	U	1
CO-2	Develop ability to handle biological fluids and clinical samples	U, E	1,2
CO-3	Attain the proficiency of performing organ function tests	E, An, Ap	1,2,3
CO-4	Understanding of various metabolic disorders associated with carbohydrates, lipids and nucleic acid metabolism	A, An, U	1,2,3
CO-5	Acquire ability to handle basic biochemistry laboratory instruments	Ap, C	2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Clinical Biochemistry

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PS	0	Cognit Level	ive	Know Catego	0	Lectur (L)/Tu (T)		Practical (P)
CO-1	Understanding the basi and quality control in a biochemistry lab		1		U		F, C	I	L/T	
CO-2			1,2 U,		U,E	Р				Р
CO-3	Attain the proficiency of performing organ funct		1,2,	3	E, An,	Ар	Р			Р
CO-4	Understanding of vario metabolic disorders ass with carbohydrates, lip nucleic acid metabolis	sociated bids and	1,2,	3	A,An,	U	F, C		L/T	
CO-5	Acquire ability to hand biochemistry laborator instruments		2		Ap, C		Р			Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PS O 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	1					
CO 2	2	3	-	-	-	-	2					
CO 3	1	2	2	-	-	-	3					
CO 4	2	2	3	-	-	-	3					
CO 5	-	3	-	-	-	-	2					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

	\checkmark		
CO 5		\checkmark	\checkmark

University of Kerala

Discipline BIOCHEMISTRY						
Course Code	UK6DSCBCH304					
Course Title	Advanced biochemistry					
Type of Course	DSC33					
Semester	VI					
Academic Level	300-399					
Course Details	Credit	Lecture per eek	Tutorial per week	Practical per week	Total Hours/Week	
	4	4 hours	-	-	4	
Pre-requisites	Basic knowledge in Biology					
Course Summary	The Course describes anatomy, physiological and biochemical functions of specialised tissues of the body and biological membranes.					

Module	Unit	Content	Hrs		
Ι		Principles of Gene Cloning	12		
	1 Introduction, history, the advent and importance of gene cloning PCR, real time PCR				
	2	Outline study of recombinant DNA technology.			
	3	DNA manipulating enzymes, palindromes.			
	4	Cloning vectors in prokaryotes and eukaryotes (pBR 322, pUC18, M13, Cosmids, Phagemids, yeast vectors, animal viral vectors, plant viral vectors, Ti plasmids).			
	5	Construction of genomic library and c-DNA library.			
II		DNA technology	12		
	6	Isolation and purification of total cell DNA.			
	7	DNA sequencing methods (Maxam Gilbert sequencing, Sanger's method).			
	8	Principle and applications of In situ hybridization, DNA fingerprinting, DNA foot printing, RFLP, RAPD, AFLP, and STR analysis.			
	9	Outline study of Site- directed mutagenesis, DNA-protein interaction Assays.			
III		Elements of Nanoscience	12		
	10	Basics and scale of nanotechnology, different classes of nanomaterials: Liposomes, quantum dots shell structures, metal oxides and semiconductors (Definition & Physico-chemical properties and application only).			
	11	Synthesis of nanomaterials- Physical & Chemical Methods.			
	12	Characterization of nanostructures: DLS, FTIR & X-ray diffraction (Basic idea).			

	13	Types of nanostructures: one dimensional, two dimensional and three-dimensional nano- structured materials.	
IV		Nanobiotechnology	12
	14	Nano biomaterials, Structural & functional principles of bio nanotechnology: Size, zeta potential, bioavailability, and excretion.	
	15	Protein and DNA based nanostructures (Definition and examples only),	
	16	Nano bio-analytics, nanotechnology in food, medicine and health science application.	
V		Omics	12
	17	Basic concepts and tools of proteomics.	
	17 18	Basic concepts and tools of proteomics. Quantitative and targeted proteomics, proteogenomic, metabolomics, metabolomic data analysis, genomics.	
	-	Quantitative and targeted proteomics, proteogenomic, metabolomics, metabolomic data	

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Illustrate the principle and techniques involved in gene cloning	R, U	1, 3, 4
CO- 2	Explain the principle and techniques of DNA isolation and characterisation	R, U	1, 3, 4
CO- 3	Summarise the methods to synthesise and characterise various types of nanomaterials	R, U	1, 3, 4
CO- 4	Describe the biological applications of nanotechnology	R, U	1, 3, 4
CO- 5	Discuss the different branches of Omics and their biological application	R, U	1, 3, 4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Advanced Biochemistry

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Illustrate the principle and techniques involved in gene cloning		R, U	F, C	L,T	

CO-2	Explain the principle and techniques of DNA isolation and characterisation		R, U	F, C	L,T	
CO-3	Summarise the methods to synthesise and characterise various types of nanomaterials		R, U	F, C	L,T	
CO-4	Describe the biological applications of nanotechnology	1, 3, 4	R, U	F, C	L,T	
CO-5	Discuss the different branches of Omics and their biological application	1, 3, 4	R, U	F, C	L,T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	_	1	1	-	-	1					
CO 2	1		1	1	-	-	1					
CO 3	1	-	1	1	-	-	1					
CO 4	1	-	1	1	-	-	1					
CO 5	1		1	1	-	-	1					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

		Internal Exam	Assignment	Project Evaluation	End Semester Examinations
C	CO 1	\checkmark	\checkmark		\checkmark
C	CO 2	\checkmark	\checkmark		\checkmark
C	CO 3	\checkmark	\checkmark		\checkmark
C	CO 4	\checkmark	\checkmark		\checkmark
C	CO 5	\checkmark	\checkmark		\checkmark

References

- 1. Gene Cloning and DNA Analysis: An Introduction, 6th Edition, T. A. Brown, WileyBlackwel.
- 2. Principles of Gene Manipulation & Genomics 7th Edition Sandy B. Primrose, Richard Twyman-Blackwell 30
- 3. Chemistry of nanomaterials: Synthesis, properties and applications by CNR Rao et.al.
- 4. Nanoparticles: From theory to applications G. Schmidt, Wiley Weinheim 2004.
- 5. Instrument E L Principe, P Gnauck and P Hoffrogge, Microscopy and Microanalysis (2005), 11: 830- 831, Cambridge University Press.
- 6. Processing & properties of structural nanomaterials- Leon L. Shaw, Nano chemistry: A
- 7. Chemical Approach to Nanomaterials, Royal Society of Chemistry, Cambridge UK 2005.
- 8. Bernhard O. Palsson, Sangeeta N. Bhatia, "Tissue Engineering" Pearson Publishers 2009.
- 9. Meyer, U.; Meyer, Th.; Handschel, J.; Wiesmann, H.P. Fundamentals of Tissue Engineering and Regenerative Medicine.2009.

University of Kerala

Discipline	BIOCHEMISTRY
Course Code	UK6DSCBCH305
Course Title	GENERAL INFORMATICS AND BIOINFORMATICS
Type of Course	DSC34

Semester	VI				
Academic Level	300-399				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	NIL	L			
Course Summary	General informatics and bioinformatics involve the application of computational tools and data analysis techniques to manage, analyze, and interpret large datasets, particularly in the context of biological research. This course covers topics such as algorithms, data storage, and visualization, as well as the use of bioinformatics tools in areas like genomics, proteomics, and drug discovery.				

Module	Unit	Content	Hrs	
Ι		Introduction to Bioinformatics	10	
	1 Fundamentals of computers-Generations of computers, types of computers, components of a computer, Software, Hardware, Data storage and memory, Basics of operating system, Computer network and internet, Introduction to programming. Computer security and privacy			
	2 Programming languages for Bioinformatics- Python, Perl and R			

	3	Scope of Bioinformatics- genomics, proteomics, computer-aided drug design, systems biology, Human genome project	
	4	Applications of Bioinformatics	
II		Biological databases	8
	5	Introduction to biological databases- classification based on the type of data stored- primary, secondary and composite databases	
	6	Classification based on composition of data types- sequence databases, metabolite databases, structure databases, chemical databases, bibliographic databases	
	7	Nucleic acid sequence databases (EMBL, GenBank, DDBJ)	
	8	Protein sequence databases (SwissProt, PIR, TrEMBL)	
	9	Genome databases (ArrayExpress, Ensembl)	
	10	Micro-array databases (ArrayTrack)	

	11	Metabolite databases (KEGG, EcoCyc,MetaCyc)	
	12	Structure databases (PDB, CATH, SCOP)	_
	13	Chemical databases (ACToR)	
	14	Bibliographic databases (PubMed, Google Scholar)	
	15	Biomolecular and model organism databases (FlyBase, SGD, AGR)	_
Ш		Sequence alignment	8
	16	Sequence alignment, Pairwise sequence alignment-Global and Local alignment	
	17	Multiple sequence alignment -Progressive and Iterative methods	
	18	Sequence analysis tools – BLAST, FASTA, CLUSTAL W	
IV		Molecular Phylogenetics	6
	19	Phylogenetic tree, representation of phylogenetic tree- dendrogram and cladogram. Methods of construction of phylogenetic tree – maximum parsimony, maximum likelihood and distance-based methods	
	20	Phylogenetic tree construction steps	
	21	Phylogenetic analysis using PHYLIP	
	22	Applications of phylogenetic tree	
V		Structural Bioinformatics	13

23	Protein structure classification- protein structure databases-CATH and SCOP	
24	Molecular modelling – homology modelling and <i>ab inito</i> modelling	
25	Protein structure prediction -Overview of protein structure prediction methods	
26	Molecular visualization software-PyMOL, VMD	
27	Drug discovery pipeline-overview of drug discovery process, role of computational methods in drug discovery	
28	Computer – Aided Drug Discovery and Designing (CADD)- principles of CADD in drug discovery	
29	Molecular Docking-Introduction to molecular docking in drug design	
30	Ethical issues in Bioinformatics-Ethics in genome projects, Ethical considerations in personalized medicine, responsible conduct of research in bioinformatics	
	Practical	30
	Bioinformatics: Internet basics, Introduction to NCBI Web sites, Introduction to Da Sequence alignment, Phylogenetic analysis, Protein structure predi Computer-aided drug designing	

References:

- a. Alexis and Mathews Leon, Fundamentals of Information and Technology. Alexis Leon. Vikas Publishing. ISBN 08125907890.
- b. Bioinformatics: A Beginner's Guide. By Jean-Michel Claverie and Cedric Notredame; Wiley Publishing, Inc.2003.
- c. Bioinformatics: A Practical approach. K.Mani and N.Vijayaraj, Aparna Publication, 2004. 12
- d. Introduction to Bioinformatics T.K. Atwood and D.J. Parry Smith Publisher Pearson Education Pvt. Ltd ISBN 81-7808-507. 2002.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed	
-----	---	--------------------	------------------	--

CO-1	Students will learn to manage, organize, and analyze large datasets using computational tools and methods, including data preprocessing, cleaning, and transformation.	U	1
CO-2	Students will gain proficiency in bioinformatics software and databases, using them to perform tasks such as sequence alignment, gene expression analysis, and protein structure prediction.	U, Ap	2,3
CO-3	Students will develop skills in applying algorithms and computational methods to solve complex biological problems, such as identifying genetic variants or modeling biological systems.	Ap, An	2,3
CO-4	Students will learn how to present and interpret biological data effectively using data visualization techniques, enabling them to communicate findings clearly and persuasively.	Ap, E	2,3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: GENERAL INFORMATICS AND BIOINFORMATICS

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PS O	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Students will learn to manage, organize, and analyze large datasets using computational tools and methods, including data preprocessing, cleaning, and transformation.	1	U	F, C	L/T	
PCO-2	Students will gain proficiency in bioinformatics software and databases, using them to perform tasks such as sequence alignment, gene expression analysis, and protein structure prediction.	2,3	U, Ap	Р		Р
CO-3	Students will develop skills in applying algorithms and computational methods to solve complex biological problems, such as identifying genetic variants or modeling biological systems.	2,3	Ap, An	Р		Р
CO-4	Students will learn how to present and interpret biological data effectively using data visualization techniques, enabling them	2,3,4	Ap,E	C,P	L/T	Р

to communicate findings			
clearly and persuasively.			

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	1	-	-	_	-	-
CO 2	-	2	3	-	-	-	1	1	-	-	-	-
CO 3	-	3	2	-	_	-	1	2	_	_	_	-
CO 4	-	2	1	2	-	-	1	2	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar •
- Midterm Exam -
- Programming Assignments Final Exam •
- •

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

Dissipling	DIOCHEMISTRY				1				
Discipline	BIOCHEMISTRY								
Course Code	UK6DSEBCH300	UK6DSEBCH300							
Course Title	MICROBIAL BIO	CHEMISTI	RY						
Type of Course	DSE7								
Semester	VI								
Academic	300 - 399								
Level									
Course Details	Credit	Credit Lecture Tutorial Practical Total							
		per	per week	per week	Hours/Week				
		week							
	4	3 hours	-	2 hours	5				
Pre-requisites	NIL								
-									
Course	Microbial biochemist	ry is the stuc	ly of the bioc	hemical proc	esses within				
Summary	microorganisms, inclu	nicroorganisms, including bacteria, archaea, fungi, and viruses, and their							
	nteractions with the environment. This course covers topics such as								
	microbial metabolism			1					
	of microbes in bioged	•		-					
		•							

1 Morphology and classification: History of microbiology. Principles of classification of microbes; A brief introduction to major groups of microorganisms - bacteria, viruses, fungi, protozoa, algae. 2 Ultrastructure of bacteria, Chemical composition of cell wall, Staining techniques-simple, differential, special staining techniques and negative staining. 3 Viruses: Morphology, classification, nomenclature and replication of viruses, DNA viruses and RNA viruses. 4 Bacteriophage - general characteristics, viral oncogenes and retroviruses, virus-host interaction, viral infections- Emerging infectious diseases. 11 MICROBIAL GENETICS AND METABOLISM 5 Microbial genotypic changes, mutations, plasmids, bacterial recombination, bacterial conjugation, transduction, and bacterial transformation. 6 Genetic engineering of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 Microbial genotypic changes, mutations, plasmids, bacterial transformation. 8 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial ogents: Biosafety, Identification of microorganisms from specime - direct identification, culture-based methods, isolation of purculture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of hincrobial actenia, Physical agents: Characteristics of an ideal	Module	Unit	Content	Hrs
classification of microbes; A brief introduction to major groups of microorganisms - bacteria, Chemical composition of cell wall, Staining techniques-simple, differential, special staining techniques and negative staining. 3 Viruses: Morphology, classification, nomenclature and replication of viruses, DNA viruses and RNA viruses. 4 Bacteriophage - general characteristics, viral oncogenes and retroviruses, virus-host interaction, viral infections- Emerging infectious diseases. 11 MICROBIAL GENETICS AND METABOLISM 5 Microbial genetics: The inheritance of characteristics and variability, phenotypic and genotypic changes, mutations, plasmids, bacterial transformation, degroup of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 Microbial electron transport chain, Fermentation 11 CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specime - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents - Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practi	Ι		INTRODUCTION TO MICROBIAL WORLD	9
microorganisms - bacteria, viruses, fungi, protozoa, algae. 2 Ultrastructure of bacteria, Chemical composition of cell wall, Staining techniques-simple, differential, special staining techniques and negative staining. 3 Viruses: Morphology, classification, nomenclature and replication of viruses, DNA viruses and RNA viruses. 4 Bacteriophage - general characteristics, viral oncogenes and retroviruses, virus-host interaction, viral infections - Emerging infectious diseases. II Microbial genetics: The inheritance of characteristics and variability, phenotypic and genotypic changes, mutations, plasmids, bacterial transformation. 6 Genetic engineering of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fermentation III CLINICAL AND APPLED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents - Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical ag		1	Morphology and classification: History of microbiology. Principles of	
microorganisms - bacteria, viruses, fungi, protozoa, algae. 2 Ultrastructure of bacteria, Chemical composition of cell wall, Staining techniques-simple, differential, special staining techniques and negative staining. 3 Viruses: Morphology, classification, nomenclature and replication of viruses, DNA viruses and RNA viruses. 4 Bacteriophage - general characteristics, viral oncogenes and retroviruses, virus-host interaction, viral infections - Emerging infectious diseases. II Microbial genetics: The inheritance of characteristics and variability, phenotypic and genotypic changes, mutations, plasmids, bacterial transformation. 6 Genetic engineering of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fermentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of bacteria, microscopic and molecular methods, and Indirect identification of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccati				
2 Ultrastructure of bacteria, Chemical composition of cell wall, Staining techniques-simple, differential, special staining techniques and negative staining. 3 Viruses: Morphology, classification, nomenclature and replication of viruses, DNA viruses and RNA viruses. 4 Bacteriophage - general characteristics, viral oncogenes and retroviruses, virus-host interaction, viral infections- Emerging infectious diseases. II MICROBIAL GENETICS AND METABOLISM 5 Microbial genetics: The inheritance of characteristics and variability, phenotypic and genotypic changes, mutations, plasmids, bacterial recombination, bacterial conjugation, transduction, and bacterial transformation. 6 Genetic engineering of microorganisms for biotechnology - recombinat microbes, recombinant plants, recombinant animals. 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fernentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 10 Biochemical agents: Characteristics of an ideal antimicrobial action, Physical agents - Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12				
Itechniques-simple, differential, special staining techniques and negative staining. itechniques-simple, differential, special staining techniques and negative staining. 3 Viruses: Morphology, classification, nomenclature and replication of viruses, DNA viruses and RNA viruses. 4 Bacteriophage - general characteristics, viral oncogenes and retroviruses, virus-host interaction, viral infections- Emerging infectious diseases. II MICROBIAL GENETICS AND METABOLISM 5 Microbial genetics: The inheritance of characteristics and variability, phenotypic and genotypic changes, mutations, plasmids, bacterial transformation. 6 Genetic engineering of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fermentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of bacteria, microscopic and molecular methods, and Indirect identification of bacteria, microscopic and molecular methods, and Indirect identification of bacteria, microscopic and molecular methods, and Indirect identification of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY		2		
staining. 3 Viruses: Morphology, classification, nomenclature and replication of viruses. DNA viruses and RNA viruses. 4 Bacteriophage - general characteristics, viral oncogenes and retroviruses, virus-host interaction, viral infections- Emerging infectious diseases. II MICROBIAL GENETICS AND METABOLISM 5 Microbial genetics: The inheritance of characteristics and variability, phenotypic and genotypic changes, mutations, plasmids, bacterial transformation. 6 Genetic engineering of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial operication, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. 11 Antimicrobial agents: Conditions influencing antimicrobial chemical agents. Characteristics of an ideal antimicrobial chemical agents. Characteristics of an ideal antimicrobial chemical agents. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action, Physical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-		_	1 0	
viruses, DNA viruses and RNA viruses. 4 Bacteriophage - general characteristics, viral oncogenes and retroviruses, virus-host interaction, viral infections. Emerging infectious diseases. II MICROBIAL GENETICS AND METABOLISM 5 Microbial genetics: The inheritance of characteristics and variability, phenotypic and genotypic changes, mutations, plasmids, bacterial recombination, bacterial conjugation, transduction, and bacterial transformation. 6 Genetic engineering of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial olectron transport chain, Fermentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents.			staining.	
virus-host interaction, viral infections- Emerging infectious diseases. II MICROBIAL GENETICS AND METABOLISM 5 Microbial genetics: The inheritance of characteristics and variability, phenotypic and genotypic changes, mutations, plasmids, bacterial recombination, bacterial conjugation, transduction, and bacterial transformation. 6 Genetic engineering of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fernentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 9 11 Antimicrobial agents: Conditions influencing antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 12 Chemical agents. 13 Antimicrobial Drugs-Interaction between dru		3		
II MICROBIAL GENETICS AND METABOLISM 9 5 Microbial genetics: The inheritance of characteristics and variability, phenotypic and genotypic changes, mutations, plasmids, bacterial recombination. 6 6 Genetic engineering of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 8 Microbial electron transport chain, Fermentation 9 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of bacteria, microscopic and molecular methods, and Indirect identification, Physical agents: Conditions influencing antimicrobial action, Physical agents - Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of phanols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-		4		
5 Microbial genetics: The inheritance of characteristics and variability, phenotypic and genotypic changes, mutations, plasmids, bacterial recombination, bacterial conjugation, transduction, and bacterial transformation. 6 Genetic engineering of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fermentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents: Conditions influencing antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14				0
phenotypic and genotypic changes, mutations, plasmids, bacterial recombination, bacterial conjugation, transduction, and bacterial transformation. 6 Genetic engineering of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fermentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents - Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphen	11			9
recombination, bacterial conjugation, transduction, and bacterial transformation. 6 Genetic engineering of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fermentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents - Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. <t< td=""><td></td><td>5</td><td></td><td></td></t<>		5		
Image: space of the system				
6 Genetic engineering of microorganisms for biotechnology - recombinant microbes, recombinant plants, recombinant animals. 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fermentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 1				
microbes, recombinant plants, recombinant animals. 7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fermentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents: Conditions influencing antimicrobial action, Physical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borme diseases, microbiology of fermented food.				
7 Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fermentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents - Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Pencicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food.		6	Genetic engineering of microorganisms for biotechnology - recombinant	
phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fermentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 13 Applied environmental microbiology- water purification and sanitary analysis				
phosphate pathway, Entner-Doudoroff pathway. 8 Microbial electron transport chain, Fermentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 13 Applied environmental microbiology- water purification and sanitary analysis		7	Microbial metabolism: Glycolysis, Tricarboxylic acid cycle, Pentose	
8 Microbial electron transport chain, Fermentation III CLINICAL AND APPLIED MICROBIOLOGY 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.				
III CLINICAL AND APPLIED MICROBIOLOGY 9 9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 9 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 9 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation. <td< td=""><td></td><td>8</td><td></td><td></td></td<>		8		
9 Clinical Microbiology: Biosafety, Identification of microorganisms from specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.	ш			9
specimen - direct identification, culture-based methods, isolation of pure culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.	111	0		,
culture. 10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 9 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.		9		
10 Biochemical tests used for the identification and differentiation of bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.				
bacteria, microscopic and molecular methods, and Indirect identification of infectious agents. infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 9 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 9 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 9 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation. 1		10		
of infectious agents. IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of food- food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.		10		
IV CONTROL OF MICROBES AND ANTIMICROBIAL THERAPY 9 11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of food- food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.			-	
11 Antimicrobial agents: Conditions influencing antimicrobial action, Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of food- food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.				
Physical agents – Temperature, Desiccation, Osmotic pressure, Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of food- food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.	IV			9
Radiation, Surface tension, Interfacial tension and Filtration. 12 Chemical agents: Characteristics of an ideal antimicrobial chemical agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of food-food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.		11	Antimicrobial agents: Conditions influencing antimicrobial action,	
agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.				
agent, Mode of action and practical applications of Phenols, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.		12	Chemical agents: Characteristics of an ideal antimicrobial chemical	
Halogens, Heavy metals, Dyes, Detergents, Quaternary ammonium compounds, Aldehydes and Gaseous agents. Evaluation of antimicrobial chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of foodfood spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.				
v Applied Microbiology and antimicrobial food spoilage, controlling food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation.				
chemical agents. 13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 9 14 Applied Microbiology and antimicrobial therapy: Microbiology of food-food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation. Practical 1				
13 Antimicrobial Drugs-Interaction between drugs and microbes, antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of food-food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation. Practical .				
antimicrobial action of important antibiotics-Penicillin, Streptomycin, Tetracyclin, Chloramphenicol and Rifampicin, Antibiotic resistance. V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 14 Applied Microbiology and antimicrobial therapy: Microbiology of food- food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation. Practical .		13		
V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 9 14 Applied Microbiology and antimicrobial therapy: Microbiology of food-food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation. Practical		15	• •	
V APPLIED MICROBIOLOGY AND ANTIMICROBIAL THERAPY 9 14 Applied Microbiology and antimicrobial therapy: Microbiology of food- food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 9 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation. 9 Practical				
14 Applied Microbiology and antimicrobial therapy: Microbiology of food-food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation. Practical	X 7	A T		0
food spoilage, controlling food spoilage, types of food-borne diseases, microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation. Practical	v			9
microbiology of fermented food. 15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation. Practical		14		
15 Applied environmental microbiology- water purification and sanitary analysis. Biodegradation, bioremediation, bioaugmentation. Practical				
analysis. Biodegradation, bioremediation, bioaugmentation. Practical				
Practical		15		
Practical			analysis. Biodegradation, bioremediation, bioaugmentation.	
16 Sterilization techniques - Chemical agents for the control of			Practical	30
		16	Sterilization techniques - Chemical agents for the control of	
microbial growth. Physical agents for the control of microbial				

	growth. Preparation of media: Liquid, solid, and semi solid media. (Deep, Slant and plate preparation).
17	Staining techniques: Simple, Differential and Special staining. Motility test: Hanging drop method. Pure culture techniques: Streak plate, Pour plate. Total viable count determination - streak plate, pour plate.
18	Biochemical tests for identification: IMViC reactions, Oxidase, catalase, Urease, Carbohydrate fermentation. Detection of enzyme activity- amylase, caseinase, and Phosphatase test for the quality of milk. Water analysis.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO Addressed
CO-1	List out components of blood and explain their function	R, U	1
CO-2	Identify disorders resulting from abnormality in blood count and structure of hemoglobin	U, An	1,2
CO-3	Describe the formation of blood cells, blood coagulation process, respiratory regulation of acid- base balance, muscle contraction, nerve impulse transmission, digestion and absorption of biomolecules	U	1
CO-4	Explain types of immunity, immune responses, antibody production	U	1
CO-5	Identify compatible blood groups	U, Ap	1,2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Namof the Course: Microbial Biochemistry

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	со	PO/PSO	Cognitiv e Level	Knowled ge Category	Lecture (L)/Tutor ial (T)	Practical (P)
CO-1	List out components of blood and explain their function	1	R, U	F, C	L/T	
CO-2	Identify disorders resulting from abnormality in blood count and structure of hemoglobin	1,2	U, An	F, C	L/T	
CO-3	Describe the formation of blood cells, blood	1	U	F, C	L/T	

CO-4	coagulation process, respiratory regulation of acid- base balance, muscle contraction, nerve impulse transmission, digestion and absorption of biomolecules Explain types of immunity, immune responses, antibody	1	U	F, C	L/T	
	production					
CO-5	Identify compatible blood groups	1,2	U, Ap	Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	-	-	-	-	1	_	_	-	-	-
CO 2	1	2	-	-	-	-	1	-	-	-	-	-
CO 3	2	-	-	-	-	-	1	-	-	-	-	-
CO 4	1	-	-	-	-	-	1	-	-	-	-	-
CO 5	1	3	-	-	-	-	2	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

Mapping of COs to Assessment Rubrics :

References

1. Pelczar, M. J., E. C. S. Chan, and N. R. Krieg. *Microbiology. Fifth edition, Tata Mcgrawhill Publishing Company Ltd., New Delhi* (2009).

2. Willey, J., Sandman, K., D, Wood. *Prescott's Microbiology- 11th international ed.*: McGraw-Hill Higher Education, 2020.

3. Pommerville, Jeffrey. *Alcamo's fundamentals of microbiology: Body systems*. Jones & Bartlett Publishers, 2012.

4. Microbiology by Tortora, Funke and Case.

Discipline	BIOCHEMISTRY
Course Code	UK6DSEBCH301
Course Title	Molecular Immunology

Semester	VI								
Academic Level	300-399	9							
Course Details	Credit	Lecture per week Tutorial Practical Total Hours/Weel							
			per week	per week					
	4	3		2	5				
Pre-requisites	NIL								
Course Summary	immun	The course aims to provide a comprehensive understanding of immunology, from fundamental concepts to advanced topics relevant to clinical applications and therapeutic interventions							

Module	Unit	Content	Hrs
Ι	Overv	iew of the Immune System	9
	1	Introduction and historical perspectives; Ontogeny of the immune system	
	2	Cells of immune system. Cells of the myeloid lineage- Neutrophils, Basophils, Mast cells, Eosinophils; Antigen presenting cells–Monocytes, Macrophages and Dendritic cells; Cells of the Lymphoid lineage–B and T cells; Cluster of Differentiation (CD) antigens, T–Lymphocyte subpopulations in humans	

	3	Dumony and appendant leversheed argans Thereas Dever	1
	3	Primary and secondary lymphoid organs–Thymus, Bone marrow, Lymph node, Spleen and MALT–specific roles	
	4	Types of immunity. Innate immunity–anatomical and physiological barriers to infection, Phagocytosis and Inflammatory responses. Adaptive immunity–Specificity, Diversity, Memory, Self and nonself discrimination. Passive and active immunity. Role of lymphocytes in adaptive immunity– humoral and cell–mediated immunity. Interactions between innate and adaptive immunity	
	5	Role of complement proteins in innate and adaptive immunity	
П	Antige	ens and Antibodies	9
	6	Antigens, Immunogenicity and antigenicity, Factors affecting immunogenicity, Adjuvants, Epitopes, Haptens, Super antigens, Pattern–recognition receptors (PRR)	
	7	Antibodies–Structure, Complementarity determining regions (CDRs), Effector functions of antibodies–Opsonisation, Complement activation, Antibody dependent cell–mediated cytotoxicity	
	8	Antibody classes and biological activities. Genetic basis of antibody diversity (Outline only); Antigenic determinants– Isotype, Allotype, Idiotype and Immunoglobulin superfamily	
	9	Monoclonal antibodies–production and clinical uses, Hybridoma technology, Immunotoxins, Abzymes	
	10	Antigen–antibody interactions, Antibody–affinity and avidity. Precipitation, Immunoelectrophoresis and immunodiffusion. Agglutination, Radioimmunoassay (RIA), ELISA, Western blotting, Immunofluorescence	
III	Biolog	y of Lymphocytes and molecules of immune response	9
	11	B cell maturation and selection, B cell activation, Theory of clonal selection, Formation of plasma and memory cells, Humoral response, T-dependent and T-independent responses	
	12	Structure and role of T cell receptor and co-receptor, T cell development, selection and differentiation; Cell mediated cytotoxic responses, Effector T cells and cytotoxic T cells	
	13	Natural killer cells, NKT cells and antibody dependent cellular cytotoxicity (ADCC)	

	14	MHC complex-organization and classes, pathways of antigen	
		processing and presentation	
	15	Cytokines, Cytokine secretion by T_{H}^{1} and T_{H}^{2} subsets	
IV	Immu	nopathologies	9
	16	Hypersensitivity, Gell and Coombs classification–IgE mediated (Type I) hypersensitivity, Antibody mediated cytotoxic (Type II) hypersensitivity, immune complex mediated (type III) hypersensitivity and delayed type (Type IV) hypersensitivity	
	17	Immunological tolerance and autoimmunity, Mechanisms of autoimmunity, Organ specific autoimmune diseases– Hashimoto's thyroiditis, IDDM, Graves' disease, Myasthenia gravis; Systemic diseases–SLE, Rheumatoid arthritis, Multiple sclerosis	
	18	Therapy for immunological diseases–Immune complex disease, Immunosuppression and immunomodulation	
	19	Primary and secondary immunodeficiencies. Humoral, cellular, combined, complement related and phagocytic immunodeficiency diseases (In brief). Secondary Immunodeficiency diseases–AIDS, Immunoprophylaxis	
V	Trans	plantation immunology and vaccines	9
	20	Transplantation–immunologic basis of graft rejection, Clinical manifestations, Immunosuppressive therapy	
	21	Tumor antigens, Basics of cancer immunotherapy (In brief)	
	22	Vaccine development: Properties of different types of vaccines– Killed and live, Attenuated vaccines, Sub–unit and conjugate vaccines, Toxoids, m-RNA vaccines. Vaccines against AIDS, COVID and tropical infectious diseases – Leprosy, Malaria and TB. Viral vector vaccines, DNA vaccines	
	23	Immunization – Active and passive modes. Therapy for immunological diseases. Immuno therapy for cancer, Concept of "Herd Immunity" and its relation to vaccination	

24	PRACTICAL	30
	Serum and plasma separation Blood smear identification of leucocytes by Giemsa stain Isolation of lymphocytes from blood. Assays based on agglutination reactions - Blood typing. Assays based on precipitation reactions - Ouchterlony double diffusion (ODD) and Mancini radial immunodiffusion.	

References

1. Mark Peakman, Basic and Clinical Immunology; Churchill Livingstone. 2nd Ed., 2009.

2. Talwar GP, Rao KVS and Chauhan VS, Recombinant and Synthetic Vaccines; Narosa, New Delhi. 1994.

3. Benjamini E, Coico R and Sunskise G,;Immunology – A short course, Wiley – Liss Publication, NY. Ed.4; 2000.

4. Kuby J, Immunology, WH Freeman and Co. NY. Ed.4; 1997.

5. Clark WR, The Experimental Foundations of Modern Immunology; John Wiley and Sons Inc. New York. 1991.

6. Leslie Hudson and Frank C. Hay., Practical Immunology. Wiley. Ed.3; 1989.

7. Noel R. Rose, Herman Friedman, John L. Fahey., Manual of Clinical Laboratory Immunology. ASM. Ed.3; 1986.

Course Outcomes

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Develop a comprehensive understanding of the immune system,Understand types of immunity , Define antigens, immunogenicity, and antigenicity	U, R	1
CO-2	Describe the structure, functions, and effector mechanisms of antibodies, including antigen-antibody interactions	U	1

CO-3	Discuss hybridoma technology, Immunotoxins, Abzymes, Explain immunological techniques	U,R	1
CO-4	Understand hypersensitivity, autoimmune and immunodeficiency disorder	U	1,2
CO-5	Understand the concepts of vaccination and immunization	U	1,2,3
CO-6	Outline the basic concepts of transplantation immunology and cancer immunotherapy	U	1.

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Molecular Immunology

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	CO	PO/PS O	Cogniti ve Level	Knowledg e Category	Lectur e (L)/Tu torial (T)	Prac tical (P)
CO-1	Develop a comprehensive understanding of the immune system,Understand types of immunity, Define antigens, immunogenicity, and antigenicity	1	U,R	F,C	L/T	
CO-2	Describe the structure, functions, and effector mechanisms of antibodies, including antigen-antibody interactions	1	U	F,C	L/T	
CO-3	Discuss hybridoma technology, Immunotoxins, Abzymes, Explain immunological techniques	1	U,R	F,C	L/T	
CO-4	Understand hypersensitivity, autoimmune and immunodeficiency disorder	1,2	U	F,C	L/T	
CO-5	Understand the concepts of vaccination and immunization	1,2,3	U	F,C	L/T	
CO-6	Outline the basic concepts of transplantation immunology and cancer immunotherapy	1.	U	F,C	L/T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2	-	-	-	_	-	1					
CO 2	2	-	-	-	-	-	1					
CO 3	2	-	-	-	-	-	2					
CO 4	2	2	-	-	_	-	1					
CO 5	1	3	3	-	-	-	3					
CO 6	2	-	-	-	-	-	1					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark		

Discipline	BIOCHEMISTRY	BIOCHEMISTRY							
Course Code	UK5DSEBCH302	UK5DSEBCH302							
Course Title	Physiology, Nutrition	n & Endocrin	ology						
Type of Course	DSE 11								
Semester	VI	VI							
Academic Level	300 - 399	300 - 399							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	Nil								
Course	The course provides	a comprehen	sive study of	f systems in c	our body which				
Summary	includes the physiolog	includes the physiology of blood, physiology of respiration, specialized tissues,							
	digestive system ,et	ndocrine sys	tem and as	sociated disor	rders & basic				
	understanding of nutri	tion.							

Module	Unit	Content	Hrs
Ι		Blood Physiology	10
	1	Basic idea of circulatory system, general functions of blood.	
	2	Blood components: Blood, plasma and serum. Formed elements: function and	
		clinical significance of (i) RBC (ii) WBC and (iii) platelets, plasma proteins -	
		function	
	3	Haemoglobin – structure and functions. Plasma Proteins-types & functions.	
	4	Abnormal Haemoglobin: Thalassemia and hemoglobinopathies. (Outline only).	
	5	Blood forming organs, hemopoiesis: erythropoiesis, leukopoiesis and	
		thrombopoiesis.	
	6	Hemostasis: Blood coagulation- Intrinsic and Extrinsic pathways	
II		Respiratory & Renal Physiology	9
	7	Basic structure of lungs	
	11	Exchange of gases in alveoli and tissues, transport of oxygen & carbon dioxide	
		in blood	
	12	O ₂ dissociation curve, Bohr effect, Chloride shift, Carbonic anhydrase reaction	
	13	Structure of nephron, mechanism of formation of urine	
	14	Acid base balance: Respiratory regulation, Acid base disturbances- (respiratory	
		acidosis and alkalosis, metabolic acidosis and alkalosis), Compensation	
		mechanism (basic idea only)	
III		Specialized Tissues	8
	15	Muscle: Structure of muscle, muscle proteins, energy sources for muscle	
		contraction and sliding filament theory. Biochemical events during muscle	
		contraction.	
	16	Neuron: Structure of neuron, glial cells	
		Nerve impulse generation & propagation- resting membrane potential, action	
		potential, threshold stimulus, all or none law, refractory period, saltatory	
		conduction, synapses- synaptic transmission, neurotransmitters.	
IV	Nutrif	tion, Digestion& Absorption	9
	17	Calorific value of food, determination of calorific value –Bomb	-
	17	calorimeter, Basal metabolic rate, factors affecting BMR, Specific	
		Dynamic Action of food (SDA).	
		Nutritional significance of carbohydrates, proteins and fat. Essential fatty	
		acids, essential amino acids, limiting amino acids and significance of dietary	
		fibre. Balanced diet and Recommended Daily Allowance (RDA).	
	18		
		Vitamins-Fat and water soluble vitamins- Functions and deficiency diseases	
X 7	19	Digestion and absorption of carbohydrates, proteins & lipids	0
V	20	Endocrinology	9
	20	Hormones –Introduction ,classification	
	21	Functions of the following hormones-Thyroxin, GH, TSH, LH, FSH, ADH	
		and oxytocin, cortisol, cortisone, corticosterone, aldosterone, epinephrine	
		and nor-epinephrine , testosterone, estrone and estrasdiol (structures of	
		hormones not expected)	
	22	Salient features of endocrine disorders- Addisons disease, cushings	
		syndrome, diabetes mellitus, goitre, hypothyroidism and hyperthyroidism,	
		hashimotos thyroiditis, diabetes insipidius, acromegaly.	
		nasimilotos uryfolditis, diabetes insipiditis, actomegary.	
	23	Practica	30
	23		30 hrs

 Different methods of blood collection- capillary and venous Separation of serum, plasma and blood cells. Determination of RBC and TC/DC count using hemocytometer Determination of Hemoglobin by Sahli's method. Determination of ESR Preparation of dietary charts. Case study based on deficiency of Vit A, D, B1 and C
*Visit to a clinical laboratory to experience the advanced methods in haematology.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe hemostasis ,identify different types of blood cells & haematological disorders	R, U,Ap	1,2,4
CO-2	Demonstrate the gaseous exchange in lungs, mechanism of urine formation & compensatory mechanism involved in acid-base disturbances	R, U	1
CO-3	Understand the basic concepts of nutrition & restate the digestion and absorption of biomolecules	R, U	1,2
CO-4	Discuss the biochemical events occurring in specialised tissues	R, U	1
CO-5	Explain functions of hormones & disorders associated with it & develop skills in interpreting clinical signs and symptoms associated with endocrine disorders	R, U,Ap	1,2,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Describe hemostasis ,identify different types of blood cells & haematological	1,2,4	R, U,Ap	F, C	L/T	Р

	disorders					
2	Demonstrate the gaseous exchange in lungs,mechanism of urine formation & compensatory mechanism involved in acid- base disturbances	1	R, U	F,C	L/T	
3	Understand the basic concepts of nutrition & restate the digestion and absorption of biomolecules	1,2	R, U	F,C	L/T	Р
4	Discuss the biochemical events occurring in specialised tissues	1	R, U	F,C	L/T	
5	Explain functions of hormones & disorders associated with it & develop skills in interpreting clinical signs and symptoms associated with endocrine disorders	1,2,4	R, U,Ap	F,C	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	-	2	-	-						
CO 2	2	-	-	-	-	-						

CO 3	3	2	-	-	-	-			
CO 4	3	-	-	-	I	-			
CO 5	2	3	2	-	-	-			

Correlation Levels:

Leve	Correlation
1	
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignme nt	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark	\checkmark	\checkmark

References

- 1. Textbook of Medical Physiology, by Arthur C Guyton, John E Hall Prism Saunders 9th Edition ISBN: 81-7286-034-X.
- 2. Arthur Vander, James Sherman, and Dorothy Luciano Vander et al. Human Physiology: The Mechanism of Body Function, Eighth Edition, The McGraw-Hill Companies.
- 3. Granner, Robert K. Murray Darryl K., and Peter A. Mayes Victor W. Rodwell. Harper's Illustrated Biochemistry (Harper's Biochemistry).McGraw-Hill Medical, 2006.
- 4. Human Physiology an integrated approach by Dee Ungulaub Silverthorn
- 5. Principles of Anatomy and Physiology by Gerard J. Tortora and Bryan Derrickson, 13 th Edition
- 6. Textbook of Human Nutrition. Anjana Agarwal and Shobha A Udipi. Jaypee Brothers Medical Publishers (P) Ltd.
- 7. Nutrition (4th edition). Insel P, Ross D, McMahon K and Bernsteind M. Jones and Bartlett Publishers. Boston 2012, 387-502.
- 8. Eastwood, M. (2003). Principles of Human Nutrition. Atlantic Publishers & Distributors.
- 9. Barrett, K. E., Barman, S. M., Boitano, S., & Brooks, H. L. (2019). Ganong's Review of Medical Physiology.
- Gupta, R. C., & Bhargava, S. (Eds.). (2022). Practical Biochemistry. CBS Publishers and Distributors. New Delhi.
- 11. Sherwood, L. (2015). Brooks/Cole Human Physiology: From Cell to System.
- 12. Widmaier, E. P., Raff, H., & Strang, K. T. (2019). Vander's Human Physiology The Mechanism of Body Function. McGraw Hill. New York.
- 13. Martini, F. H., & Nath, J. L. (2009). Fundamentals of Anatomy and Physiology (8th ed.). Pearson Publications.

University of Kerala

Discipline	BIOCHEMISTRY							
Course Code	UK6SECBCH300							
Course Title	Analytical Biochem	nistry						
Type of Course	SEC5							
Semester	VI	VI						
Academic	300-399	300-399						
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	_	2 hours	5			
Pre-requisites	.NIL							

Course	The course provides an overview of phytochemical analysis, health and
Summary	environmental risks of pesticides, qualitative methods employed in the
Summary	detection of adulterants in common food commodities, methods used for
	chemical and bacteriological analysis of water and methods employed in
	the detection of toxic metals in food and biological samples.

Module	Unit	Content	Hrs
Ι		Phytochemical Analysis	9
	1	Preparation of plant materials for extraction (Pre-washing, drying and	
		grinding), methods of solvent extraction (sonication, soxhlet	
		extraction, maceration using solvents in the increasing order of	
		polarity) and freeze drying.	
	2	Plant metabolites-Distinction between primary and secondary	
		metabolites, Major classes and importances of secondary metabolites-	
		Alkaloids, terpenoids, flavonoids, phenolics, steroids, coumarins,	
		quinines, glycosides, amines and non-protein amino acids, gums, and	
		resins (structure not needed).	
	3	Phytochemical analysis of secondary metabolites- Alkaloid	
		(Dragendorff's test, Wagner test), Anthraquinone (Borntrager's test),	
		Cardiac glycosides (Kellar – Kiliani test), Flavonoid (Shinoda test),	
		Phenol (Phenol test), Reducing sugar (Fehling test), Saponin (Foam	
		test), Steroid (Zaks test), Tannin (Braymer's test), Terpenoid	
		Salkowski test).	
	4	Isolation of bioactive compounds using separation techniques such as	
		TLC, column chromatography, flash chromatography, Sephadex	
		chromatography and HPLC	
II		Pesticides: Health & Environmental Risks	10
	5	Classification of Pesticides- based on chemical nature-	
		(organochlorine, organophosphate, carbamates, pyrethrum,	
		biopesticides), site of action (stomach toxicants, contact toxicants,	
		fumigants, systemic toxicants, chemical repellents).	
	6	Environmental consequences of pesticide use and natural pesticides.	
	7	Pesticide labels and labelling, Material Safety Data Sheet (MSDS),	
		determination of the signal word-based on toxicity category (category	
		I, II, III and IV), importance of reading and understanding pesticide	
	-	labels.	-
	8	Tests on pesticides for determining human health risk- types of	
		toxicity- (acute - LD50 or LC50), toxic effects on mammalian tissues-	
		teratogenicity, gene mutation, chromosome aberration, neurotoxicity,	
		immunotoxicity).	-
	9	Pesticide residue in foods: Maximum residue level (MRL), Acceptable	
		daily intake (ADI), analysis of pesticide residue in foods- Gas	
		chromatography.	-
III	10	Food Adulteration and Detection	7
	10	Definition of adulterants, Familiarisation of common adulterants	

		-	
	11	Basic concepts of toxicity and hazard (physical, chemical and	
		biological) in food	
	12	Detection of adulterants in milk, edible oils, fats, cereal flour, sugar,	
		pulses, cereals, green vegetables and honey, Spices and condiments	
		(turmeric powder, chilli powder, coriander powder, black pepper	
		powder, asafoetida)- qualitative aspects only	
IV		Water Analysis	9
	13	Physical parameters-temperature, pH, colour, odour, turbidity, total	
		dissolved solids.	
	14	Chemical parameters- total hardness (titrimetric method), detection of	
		chloride (Argentometric method), Nitrate (Phenoldisulphonic acid	
		(PDA) method, fluoride (zirconium alizarin method).	
	15	Dissolved oxygen, BOD (Winkler method), COD (dichromate	
		method), pesticide residue (gas chromatography).	
	16	Toxic metal detection- Cadmium, Lead, Mercury (Atomic Absorption	
	10	Spectroscopy (AAS).	
	17	Bacteriological analysis- test for coliform bacteria-multiple tube	
		dilution method (presumptive, confirmed and completed test).	
V		Analysis of Toxic Metals in Food and Biological Samples	10
	18	Toxicology of metals - analysis of metal elements in food using	
		colorimetry- copper (carbamate method), lead and mercury - by	
		dithizone method, arsenic (molybdenum blue method)	
	19	Outline study of action and detection of alcohol in beverage	
		(colorimetric method using sodium dichromate)	
	20	Mechanism of toxic action of lead, mercury, arsenic, cyanide and	
		carbon monoxide (outline only). Detection of copper, lead, mercury,	
		arsenic, cyanide and carbon monoxide in biological samples.	
	1	alle and end on monoride in croisgien sumptos.	I

	Practical	30
21	Qualitative analysis of phytochemicals in Plant extract.	
22	Quantitative Analysis of Phytochemicals-Total Phenolic Content (Modified Folin-Ciocalteau method), Total Flavonoid Content (Zhishen et al method), Total Alkaloid Content (Sodium metaperiodate method)	
23	Testing of adulterants like metanil yellow (in turmeric & jaggery), rhodamine-B (in chilli powder),chicory (in coffee), sodium bicarbonate (in flour & jaggery), lead chromate (in pulses), vanaspati, coal tar dye & starch (in ghee), added sugar (in honey) prohibited colors, argemone oil & cotton seed oil (in edible oil).	
24	Paper Chromatography/Thin layer Chromatography	

Course Outcomes

No. Upon completion of the course the graduate will able to	be Cognitive Level	PSO addressed
---	-----------------------	------------------

CO-1	Describe the methods used in phytochemical extraction and qualitatively analyze different phytochemicals present in an extract.	R, U, Ap	1, 2, 4
CO-2	Identify and explain the different types of pesticides, their toxicological impact, and tests to detect toxicity.	R, U	1, 2,
CO-3	Understand the type of adulterants mixed in common food products and describe and analyze the qualitative methods used in adulterant detection.	R, U, Ap	1, 3, 4
CO-4	Outline and describe the different methods used in the chemical and bacteriological analysis of water.	R, U	1, 2, 4
CO-5	Discuss the methods used in the analysis of toxic metals in food and biological samples and explain the mechanism of action of toxic elements in our body system.	R, U	1, 2. 3, 4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Analytical Biochemistry

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutor ial (T)	
CO-1	Describe the	1, 2, 4	R, U, Ap	F, C, P	L	Р

	methods used in phytochemical extraction and qualitatively analyze different phytochemicals present in an extract.					
CO-2	Identify and explain the different types of pesticides, their toxicological impact, and tests to detect toxicity.	1, 2,	R, U	F, C, P	L	Р
CO-3	Understand the type of adulterants mixed in common food products and describe and analyze the qualitative methods used in adulterant detection.	1, 3, 4	R, U, Ap	F, C, P	L	Р
CO-4	Outline and describe the different methods used in the chemical and bacteriological analysis of water.	1, 2, 4	R, U	Р	L	Р
CO-5	Discuss the methods used in the analysis of toxic metals in food and biological samples and explain the mechanism of action of toxic elements in our body system	1, 2. 3, 4	R, U	F, C, P	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	2	-	1	-	-	1	-	-	-	-	-
CO 2	1	1	-	-	-	-	1	-	-	-	-	-
CO 3	2	-	3	2	-	-	1	-	-	-	-	-

CO 4	1	2	-	1	-	-	2	-	-	-	-	-
CO 5	2	3	2	3	-	-	3	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

1Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

References

- Laboratory Handbook on Biochemistry. S.Shanmugam, J.Satish Kumar, K. Panneerselvam Publisher: PHI Learning Private Limited New Delhi ISBN 976-81-2030-4103-
- Toxicology: Principles and methods. M. A. Subramanian. Publisher: MJP Publishers; 2nd edition. ISBN-10: 9788180940781.
- Food Science Chemistry and Experimental Foods. Dr. M.S. Swaminathan Publisher: The Bangalore Printing and Publishing Co. Ltd. ISBN-13 5551234022180.
- Microbiology by Lansing M. Prescott, John P. Harley and Donald A. Klien. 5th edition. Publisher: McGraw- Hill Higher Education. ISBN- 13: 978-0072320411.
- Parikh's Textbook of Medical Jurisprudence Forensic Medicine and Toxicology, 6th edition, Dr. C. K. Parikh. CBS Publishers & Distributors. ISBN-13: 978-8123906751.
- Parikh's Textbook of Medical Jurisprudence Forensic Medicine and Toxicology, 6th edition, Dr. C. K. Parikh. CBS Publishers & Distributors. ISBN-13: 978-8123906751.
- TextBook of Microbiology. R. C. DUBEY AND D.K. Maheswary. Revised Edition .Publisher: S. Chand ISBN-10: 8121925592.
- Environmental Toxicology. Satake M. Publisher: Discovery Publishing Pvt. Ltd. ISBN: 8171413501.

University of Kerala

Discipline	BIOCHEMISTRY								
Course Code	UK7DSCBCH400								
Course Title	CELL SIGNALLIN	NG							
Type of Course	DSC35								
Semester	VII								
Academic	400-499								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	4 hours	-	-	4				
Pre-requisites	Completed 300-399 l	evel courses							
Course	Cell signaling is the process by which cells communicate with each other through								
Summary	chemical signals, allow			•					
	such as growth, develop	pment, and res	sponses to env	rironmental cu	es.				

Module	Unit	Content	Hrs			
Ι	Introduction to Cell Signalling					
	1	Overview of Cell Signalling				
	2	Types of Cell Signalling: Autocrine, Paracrine, Endocrine, and				
		Juxtacrine				
	3	Signal Transduction				
	4	Receptors and Ligands				
II		INTRACELLULAR SIGNALLING	10			
	5	G-Protein Coupled Receptors (GPCRs)				
	6	Receptor Tyrosine Kinases (RTKs)				
	7	Ion Channel Receptors				
	8	Intracellular Receptors				
III		SIGNALLING PATHWAYS	15			
	9	MAPK/ERK Pathway				
	10	PI3K/AKT Pathway				
	11	JAK-STAT Pathway				
	12	Wnt Signalling Pathway				
	13	NF-kB Pathway				
	14	TGF-beta pathway				
	15	Notch signaling pathway				

	16	Hedgehog signaling pathway	
	17	mTOR pathway	
IV		CELLULAR RESPONSES TO SIGNALLING	10
	18	Gene Expression	
	19	Cell Cycle Control	
	20	Apoptosis	
	21	Cell Migration and Adhesion	
V		ADVANCED TOPICS IN CELL SIGNALLING	15
	22	Signalling in Cancer	
	23	Signalling in Neurological Disorders	
	24	Therapeutic Targeting of Signalling Pathways	
	25	Recent Advances in Cell Signalling Research	

References

- 1. Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., & Martin, K. C. (2020). Molecular Cell Biology (9th ed.). W. H. Freeman.
- 2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). Molecular Biology of the Cell (6th ed.). Garland Science.
- 3. Kreis, W., & Vale, R. D. (2019). Cell Signaling Principles and Mechanisms (1st ed.). Garland Science.
- 4. Cooper, G. M. (2015). The Cell: A Molecular Approach (7th ed.). Sinauer Associates.
- 5. Nelson, D. L., & Cox, M. M. (2021). Lehninger Principles of Biochemistry (8th ed.). W. H. Freeman.
- 6. Bruce, A. (2022). Cell Biology and Biochemistry (4th ed.). Oxford University Press.
- 7. Raven, P. H., Johnson, G. B., Losos, J. B., Singer, S. R., & Mason, K. A. (2019). Biology (12th ed.). McGraw-Hill Education.
- 8. Tuteja, N. (Ed.). (2020). Molecular Signaling in Plant Biology (1st ed.). Wiley-Blackwell.
- 9. Brüning, J. C., & Lehnert, H. (Eds.). (2012). Molecular Endocrinology: Metabolism and Molecular Medicine (1st ed.). Springer.
- Pawson, T., & Nash, P. (2002). Protein-protein interactions define specificity in signal transduction. Genes & Development, 14(9), 1027-1047.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the fundamental concepts and principles of cell signaling, including signal transduction pathways and their regulation	U	1
CO-2	Identify and describe the various types of cell signaling molecules, receptors, and downstream effectors involved in signal transduction.	U,An	1
CO-3	Analyze the mechanisms of cell signaling across different cellular contexts and biological systems.	An	1,3

CO-4	Explain the role of cell signaling in physiological	An,E	1,3
	processes such as development, immune response,		
	and homeostasis		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Cell Signalling

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand the fundamental concepts and principles of cell signaling, including signal transduction pathways and their regulation	1	U	F, C	L/T	
CO-2	Identify and describe the various types of cell signaling molecules, receptors, and downstream effectors involved in signal transduction.	1	U, An	F, C	L/T	
CO-3	Analyze the mechanisms of cell signaling across different cellular contexts and biological systems.	1,3	An	F, C	L/T	
CO-4	Explain the role of cell signaling in physiological processes such as development, immune response, and homeostasis	1,3	An, E	F, C	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	
--	------	------	------	------	----------	----------	-----	-----	-----	-----	-----	-----	--

CO 1	3	-	-	-	-	-	1	-	-	-	-	-
CO 2	3	-	-	-	-	-	2	-	-	-	-	-
CO 3	2	-	2	-	-	-	1	-	-	-	-	-
CO 4	1	-	3	-	-	-	2	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	BIOCHEMISTR	RY									
Course Code	UK7DSCBCH401	UK7DSCBCH401									
Course Title	ADVANCED TE	CHNIQUES IN	N BIOCHEM	IISTRY							
Type of Course	DSE36										
Semester	VII										
Academic	400-499										
Level											
Course Details	Credit	Lecture per	Tutorial	Practical	Total						
		week	per week	per week	Hours/Week						
	4	3 hours	-	2 hours	5						
Pre-requisites	Completed 300-399 le	evel courses									
Course Summary	The course provid techniques used in knowledge on engineering and knowledge in ch analysis.	n the field of Bi PCR, electrop genome mappi	ochemistry. S phoresis, sp ing. The cou	Students will ectroscopy, urse also pro	be able to gain plant genetic vides practical						

Module	Unit	Content	Hrs
Ι		PCR, Electrophoresis and Blotting.	9
	1	DNA amplification by PCR - Conventional, Reverse-Transcriptase,	
		Inverse, Quantitative Real-time, Nested and Multiplex PCR. Primer	
		designing.	
	2	Electrophoresis: Basic principles, instrumentation and applications	
		of electrophoresis. Factors affecting electrophoresis. Electrophoretic	
		techniques –zone electrophoresis, 2-D gel electrophoresis and Pulse	
		field, Factors affecting electrophoresis.	
	3	Blotting techniques (Southern, Northern and Western) Principle,	
		methodology and applications.	
П	F	low Cytometry, histopathology & Immunological techniques	9

	4	Flow cytometry - fluidics, optics and electronics, data analysis and applications.	
	5	Hemagglutination inhibition assay, HLA typing, leukocyte	
		migration inhibition assay, complement fixation,	
		Immunofluorescence, Immunodiffusion, Immuno electrophoresis,	
		Radioimmunoassay (RIA), ELISA (indirect, direct, sandwich,	
		chemiluminescence, ELISPOT assay).	
		cheminuminescence, ELISTOT assay).	
Ш	Spectroscopy		
	6	Principle, instrumentation, working and application of UV, Visible	
		and IR spectroscopy, spectrofluorimetry, flame photometry, Atomic	
		Absorption Spectrometry and luminometry.	
		Matrix-assisted laser desorption/ionization, Time- of Flight Mass	
		spectroscopy (MALDI-TOF MS), X-ray crystallography.	
IV		Plant Genetic engineering	9
	7	Direct gene transformation methods: chemical treatment,	-
	/	electroporation, particle bombardment and microinjection.	
		Indirect gene transfer methods: vector mediated, Ti and Ri plasmid as	
	0	vectors.	
	8	Identification of transgenic plants: reporter genes, transient gene assays, molecular markers RFLP, AFLP and QLT.	
V		Genome mapping	9
	0		
	9	DNA sequencing, DNA profiling, Radiation hybrid mapping,	
		Fluorescence <i>in situ</i> hybridization (FISH), Sequence tagged site	
		mapping (STS), expressed sequence tag mapping (EST),	
	10	chromosome jumping, chromosome walking.	
	10	CRISPR-Cas9, TALE nucleases and Zinc-finger nucleases	
		Practical	30
		• Separation of serum and plasma from blood by centrifugation method	
		Purification of protein by dialysis	
		method	
		Ouantitative estimation of	
		Quantitative estimation of biomolecules by colorimetric	
		• Quantitative estimation of biomolecules by colorimetric method.	
		biomolecules by colorimetric method.	
		biomolecules by colorimetric	
		biomolecules by colorimetric method.Separation of biomolecules by TLC	
		 biomolecules by colorimetric method. Separation of biomolecules by TLC Separation of DNA by agarose gel 	
		 biomolecules by colorimetric method. Separation of biomolecules by TLC Separation of DNA by agarose gel electrophoresis. Separation of protein by agarose 	

	immunohistochemistry from an authorized histopathology laboratory.	

- 1. Nelson, D. L., & Cox, M. M. (2021). Lehninger Principles of Biochemistry (8th ed.). W. H. Freeman.
- 2. Berg, J. M., Tymoczko, J. L., Gatto, G. J., & Stryer, L. (2019). Biochemistry (8th ed.). W. H. Freeman.
- 3. Wilson, K., & Walker, J. (2018). Principles and Techniques of Biochemistry and Molecular Biology (8th ed.). Cambridge University Press.
- 4. Harvey, R. A., & Ferrier, D. R. (2019). Lippincott Illustrated Reviews: Biochemistry (8th ed.). Lippincott Williams & Wilkins.
- 5. Scarlata, S. F., & Pande, A. (2019). Biophysical Techniques: Insights into Structure and Function of Biological Molecules (2nd ed.). Springer.
- 6. Moore, J. A. (2015). Chromatography: Fundamentals and Applications of Chromatographic and Electromigration Techniques (3rd ed.). John Wiley & Sons.
- 7. Viola, M. J. (2018). Protein Analysis: Methods and Protocols (3rd ed.). Springer.
- 8. Scarlata, S. F. (2022). Biophysics: Essentials and Techniques. Springer.
- 9. Lutz, R. (Ed.). (2015). Flow Cytometry and Cell Sorting. Springer.
- **10.** Roux, B. (Ed.). (2016). Membrane Protein Structure: Experimental Approaches. Springer

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Gain knowledge on techniques like PCR, electrophoresis and blotting	U	1
CO-2	Develop an understanding about the principle and application of flow cytometry, immunological techniques and spectroscopy.	R, U	1
CO-3	Understand the different processes used in plant genetic engineering and genome mapping.	U, R	1
CO-4	Summarize latest genome editing tools	U,	1

CO-5 Analyse and training on different techniques of An Si biochemistry

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Advance Techniques in Biochemistry

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	со	PO /PS O	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Gain knowledge on techniques like PCR, electrophoresis and blotting	1	U	F, C	L/T	
CO-2	Develop an understanding about the principle and application of flow cytometry, immunological techniques and spectroscopy.		R, U	F, C	L/T	
CO-3	Understand the different processes used in plant genetic engineering and genome mapping.	1	U, R	F, C	L/T	
CO-4	Summarize latest genome editing tools	1	U,	F, C	L/T	
CO-5	Analyse and training on different techniques of biochemistry	1	An	Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	-	-	-	-	1	-	-	-	-	-
CO 2	2	-	-	-	-	-	1	-	_	-	-	-
CO 3	2	_	-	-	-	-	1	-	-	-	-	-

CO 4	2	_	_	_	-	_	1	_	_	_	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	BIOCHEMISTRY								
Course Code	UK7DSCBCH402								
Course Title	RESEARCH MET	RESEARCH METHODOLOGY							
Type of Course	DSC37								
Semester	VII								
Academic	400 - 499								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	Completion of 30	0-399 level o	courses						
	Research methodology								
	and analyzing scientific		÷						
		ethical. This course covers topics such as research design, data collection and							
	analysis, and interpreta	-	0						
	needed to carry out rob	ust studies and	d critically eva	aluate existing	research.				

Module	Unit	Content	Hrs
Ι		INTRODUCTION TO RESEARCH METHODOLOGY	9
	1	Goal and characteristics of Research	
	2	Types of research – Descriptive vs. Analytical, Applied vs. Fundamental,	
		Quantitative vs. Qualitative, Conceptual vs. Empirical.	
	3	Research Design: Basic Principles- Need of research design — Features of good design – Important concepts relating to research design –	
		Observation and Facts, Laws and Theories, Prediction and explanation,	
		Induction, Deduction, Development of Models. Developing a research	
		plan - Exploration, Description, Diagnosis, Experimentation.	
		Determining experimental and sample designs.	
	4	Research Formulation – Defining and formulating the research problem,	
		Selecting the problem, Importance of literature review, Literature review	
		– Primary and secondary sources. Identifying gap areas from literature	
		review - Development of working hypothesis	
II		DATA HANDLING AND ANALYSIS	9
	5	Significance of statistical methods in biological investigations	
	6	Probability theory (addition and multiplication theory). Probability	
		distributions (binomial, Poisson and normal)	
	7	Stages of statistical investigation	

	0		
	8	Data collection: types of data collection (primary and secondary), methods of data collection- census and sampling, sampling techniques- random (simple, stratified, systematic) and non-random (purposive,	
	-	quota, convenience)	
	9	Data presentation- tabular, diagrammatic (line, bar, pie diagram), graphical (line graph, histogram, frequency polygon, frequency curve, Ogive curve)	
	10	Data analysis- measures of central tendency (arithmetic mean), measure of dispersion (standard deviation), standard error. Correlation and regression	
	11	Testing of significance- student's t-test (paired and unpaired), chi- square test, ANOVA- One way and two-way.	
III		ETHICS IN RESEARCH	9
	12	Research involving animals: outline of the controversy. Ethical issues raised by animal research - pain, distress and suffering. Methods of euthanasia.	
	13	CPCSEA guidelines for ethical animal use and prevention of animal cruelty in research. Three Rs principle.	
	14	Bioethics involving research with humans: Research on human subjects and samples. Importance of informed consent.	
	15	Privacy, ethics and legal issues. Ethical issues involving human embryo and stem cell research.	
	16	Research output- Honesty and integrity of a good researcher.	
	17	Ethical issues- Plagiarism, fabrication and falsification.	
	18	Misrepresentation of information. Proper interpretation of results and	
	10	proper scientific presentation.	
	19	Software to check plagiarism in publications.	
	20	Legal implications of plagiarism and research fabrication.	
IV	20	SCIENTIFIC WRITING AND PRESENTATION	9
1 V	21	Characteristic logical format for writing thesis and papers - Essential	9
	21	features of abstract, Introduction, Review of literature, Materials and methods, results and discussion	
	22	Effective illustration, Tables and figures, reference style- Harvard and Vancouver system.	
	23	Citation and Acknowledgement, ISBN & ISSN. Peer review.	
	24	Impact factor and H- index of journals.	
	25	Presentation tools: oral and poster, Microsoft Power Point and PDF slides	
\mathbf{V}		INTELLECTUAL PROPERTY	9
	26	IPR policy of Government of India	
	27	Indian & International Patent laws	
	28	Types of patents	
	29	Indian Patent Act 1970, Recent Amendments	
	30	Protection of New GMOs	
	31	Financial assistance for patenting-introduction to existing schemes. Procedure for patent application, international	
		harmonization of patent laws	

32	Patenting of life forms -plant, animals, microbes, gene, process and products	
	Practical Perform literature review on a topic Design a research experiment Collect data based on the experiment Present the data using various methods Testing significance using Students t test, ANOVA Study correlation and regression 	30

- 1. Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5th ed.). SAGE Publications.
- 2. Kothari, C. R. (2004). Research Methodology: Methods and Techniques (2nd ed.). New Age International.
- 3. Trochim, W. M. K., & Donnelly, J. P. (2021). The Research Methods Knowledge Base (4th ed.). Cengage Learning.
- 4. Bryman, A. (2016). Social Research Methods (5th ed.). Oxford University Press.
- 5. Yin, R. K. (2018). Case Study Research and Applications: Design and Methods (6th ed.). SAGE Publications.
- 6. Neuman, W. L. (2014). Social Research Methods: Qualitative and Quantitative Approaches (7th ed.). Pearson.
- 7. Punch, K. F. (2014). Introduction to Social Research: Quantitative and Qualitative Approaches (3rd ed.). SAGE Publications.
- 8. Bell, J., & Waters, S. (2018). Doing Your Research Project: A Guide for First-Time Researchers (7th ed.). Open University Press.
- 9. Silverman, D. (2019). Doing Qualitative Research (5th ed.). SAGE Publications.
- 10. Flick, U. (2018). An Introduction to Qualitative Research (6th ed.). SAGE Publications.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Illustrate a research design and research formulation	Ар	1
CO-2	Analyse the significance of a research finding	An	1,2

CO-3	Describe the ethics in research	U	1
CO-4	Demonstrate skills in scientific writing and presentation	Ар	1,2
CO-5	Explain the basics of intellectual property rights	U	1

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Research Methodology

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Illustrate a research design and research formulation	1	Ар	F, C	L/T	
CO-2	Analyse the significance of a research finding	1,2	An	F, C	L/T	
CO-3	Describe the ethics in research	1	U	F, C	L/T	
CO-4	Demonstrate skills in scientific writing and presentation	1,2	Ар	F, C	L/T	
CO-5	Explain the basics of intellectual property rights	1	U	F, C	L/T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-	-	-	1	-	-	-	-	-
CO 2	1	3	-	-	-	-	2	-	-	-	-	-
CO 3	2	-	-	-	-	-	1	_	-	-	_	-

CO 4	1	3	-	-	-	-	2	-	-	-	-	-
CO 5	3	-	-	-	-	-	2	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	Biochemistry								
Course	UK7DSCBCH403								
Code									
Course	Genetic engineer	ring							
Title									
Type of	DSC38								
Course									
Semester	VII								
Academic	400 - 499								
Level									
Course Details	Credit	Lecture	Tutoria l	Practical	Total				
		per	per	per week	Hours/W				
		week	week		eek				
	4	3 hours	-	2 hours	5				
Pre-	Completed 300-399 1	evel courses							
requisites									
Course	Genetic engineering i	nvolves man	ipulating the	DNA of orga	anisms to				
2	introduce new traits o		0	-	0				
	crops, develop medic								
	covers the principles								
	gene editing, cloning,	, and the ethi	cal, legal, an	d societal imp	olications of				
	these technologies.								

Module	Unit	Unit Content						
Ι		Genetic variation at the molecular level						
	1	Recombination, Jumping genes, Poly morphisms						
	2	Gene Mapping-Linkage and Physical mapping						
	3	Molecular Marker's for Gene Mapping- VNTR, STR, microsatellite,						
		SNP. RFLP, RAPD, AFLP, SSR						
	4	Restriction Mapping, Fluorescence in situ hybridization (FISH),						
		Sequence-Tagged Sites (STS) mapping						
П		Gene Isolation and Manipulations	9					
	5	Restriction endonucleases, Types of restriction endonucleases, recognition sequences, cleavage patterns.						

	6	Isolation and Sequencing of DNA-chemical and enzymatic methods	
	7	Next Generation Sequencing, Illumina sequencing, Pyrosequencing,	
		small oligonucleotide ligation and detection system (SOLiD) Sequencing.	
	8	Construction of genomic and cDNA library	
Ш		Vectors	9
	9	 Properties of good vector, Cloning vectors and expression vectors: Plasmids, Bacteriophages, phagemids - pBR322, pUC8, pGEM3Z, M13 and Ti plasmid 	
	10	Lambda vectors; Insertion and Replacement vectors	
	11	Cosmids: Artificial chromosome vectors (YACs; BACs) and Expression vectors	
IV		Gene Cloning	9
	12	Gene Cloning methods: Cohesive end cloning, blunt end cloning, cloning using adapters, linkers and homopolymer tailing.	
	13	Artificial gene transfer methods- Physical methods (Electroporation, Gene gun, Biolistic, Protoplast fusion, Microinjection)	
	14	Chemical Methods (Liposome mediated, Calcium phosphate mediated, PEG mediated gene transfer).	
	15	Selection of transformed cells and identification of recombinants: Blue-	
		white screening, Identification of recombinant phages, colony and plaque	
		hybridization probing.	
V		Genome editing	9
	17	Genome editing: An overview	
	18	Tools for genome editing Cre-Lox, CRISPR CAS, TALEN	
	19	Applications of rDNA technology, Genetic engineering in animals (Transgenic mice) and plants	
		 Practical Isolation of DNA from various sources UV absorption spectrum of DNA and RNA Estimation of DNA by Diphenylamine method Isolation of plasmid DNA and Restriction digestion PCR Agarose gel electrophoresis Gene cloning Virtual labs exercise on rDNA techniques. 	

- 1. Cell and molecular biology: concepts and experiments. Karp, G. (2009). John Wiley & Sons.
- 2. Genes IX. Benjamin Lewin (2008). Jones and Bartlett Publishers. ISBN:0763752223 ISBN-13: 9780763752224, 978-0763752224
- 3. Genetic Engineering: Principles and Applications. Berg, J., Tymoczko, J. S., & Stryer, L. (2008). New York, NY: W. H. Freeman.
- 4. Gene Cloning and DNA Analysis: An Introduction. Brown, T. A. (2016). Hoboken, NJ: Wiley-Blackwell.

- 5. Genomes 5. Brown, T. A. (2023). CRC Press.
- 6. Molecular Cloning: A Laboratory Manual (4th ed.). Green, M. R., & Sambrook, J. (2012). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 7. Principles and applications of recombinant DNA. Glick, B. R., & Pasternak, J. J. (1998). *ASM*, *Washington DC*.
- 8. Genetics: From Genes to Genomes. Goldberg, M. L., Fischer, J. A., Hood, L., & Hartwell, L.
- 9. (2014). (No. QH430 G46 2011). New York, NY: McGraw-Hill Education. Essentials of Genetic Engineering. Joglekar, S. N. (2018). Singapore: Springer.
- Principles of Gene Manipulation: An Introduction to Genome Engineering. Primrose, S., & Mott, R. E. K. (2008). Oxford, UK: Blackwell Publishing.
- 11. Principles of Gene Manipulation and Genomics. Primrose, S. B., & Twyman, R. (2006). Hoboken, NJ: John Wiley & Sons.
- 12. Recombinant DNA: A Practical Manual for Researchers. Watson, J. D., Gilman, M., & Witkowski, J. (2007). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Suggested Readings

- Becker, S., & Boch, J. (2021). TALE and TALEN genome editing technologies. *Gene and Genome Editing*, 2, 100007.
- Chandrasekharan, M. C., et al. (2013). "TALENs: A Versatile Tool for Genome Engineering." Journal of Cellular Physiology, 228(11), 2053–2062.
- Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. *Cell*, 157(6), 1262-1278.
- Doudna, J., & Sternberg, S. (2017). A crack in creation: The new power to control evolution. Random House.
- Church, G. M., & Regis, E. (2012). Regenesis: How Synthetic Biology Can Reinvent Nature and Ourselves. New York, NY: Basic Books.
- Jiang, F., & Doudna, J. A. (2017). CRISPR–Cas9 structures and mechanisms. *Annual review of biophysics*, *46*, 505-529.
- Doudna, J. A., & Sternberg, S. H. (2014). "CRISPR/Cas9: A Revolutionary Tool for Gene Editing." Nature Reviews Molecular Cell Biology, 15(7), 427– 431.
- Doudna, J., & Sternberg, S. (2017). CRISPR: Revolution in Gene Editing. New York, NY: Houghton Mifflin Harcourt.
- Fauconnier, C., et al. (2008). "Zinc Finger Nucleases: A New Frontier in Genome Engineering." Journal of Experimental Botany, 59(10), 2653–2663.
- Mukherjee, S. (2016). The Gene: An Intimate History. New York, NY: Scribner
- Mullis, K. B. (1985). "The Polymerase Chain Reaction: A New Method for Amplifying Nucleic Acids." Cold Spring Harbor Symposia on Quantitative Biology, 51(1), 263–273.
- Sanger, F., et al. (1977). "A New Method for DNA Sequencing: Primer Extension Reactions with dNTPs." Proceedings of the National Academy of Sciences, 74(12), 5463–5467.

• Watson, J. D. (2018). *Molecular Biology of the Gene*. New York, NY: Pearson.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand genome editing and its applications	U	1
CO-2	Remember and understand tools for genome editing	R, U	1
CO-3	Apply techniques of genome editing	А	1,2
CO-4	Analyse and evaluate the results on the use of genome editing tools like Cre-Lox, CRISPR-CAS, TALEN etc	An, E	1,2,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Genetic Engineering

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand genome editing and its applications	1	U	F, C	L/T	
CO-2	Remember and understand tools for genome editing	1	R, U	F, C	L/T	
CO-3	Apply techniques of genome editing	1,2	А	Р	L/T	
CO-4	Analyse and evaluate the results on the use of genome editing tools like Cre-Lox, CRISPR-CAS, TALEN etc	1,2,3	An, E	F, C	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of

COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
							1					
CO 1	2	-	-	-	-	-						
							1					
CO 2	2	-	-	-	-	-						
							2					
CO 3	2	3	-	-	-	-						
							3					
CO 4	2	3	3	-	-	-						

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		J
	\checkmark	\checkmark		v
CO 2				\checkmark
	\checkmark	\checkmark		
CO 3				\checkmark
	\checkmark	\checkmark		
CO 4				\checkmark

BIOCHEMISTRY Discipline UK7DSCBCH405 Course Code NEUROBIOCHEMISTRY AND SENSORY Course Title PHYSIOLOGY **DSC39** Type of Course Semester VII 400 - 499 Academic Level **Course Details** Credit Lecture Tutorial Practical Total Hours/W per per per week week week eek 4 4 hours 4 _ _ Pre-NIL requisites Neurobiochemistry and sensory physiology explore the biochemical processes Course underlying nervous system function and the physiological mechanisms of sensory Summary perception. This course covers the molecular and cellular basis of neural communication, neurotransmission, and the structure and function of sensory systems such as vision, hearing, taste, smell, and touch.

Module	Unit	Content						
Ι		NERVOUS SYSTEM						
	1	Nervous system: Basic structure of neuron. Behaviour-reflex arc- synapse. Organisation of vertebrate nervous system- Central nervous system (CNS) and Peripheral nervous system (PNS). Structure and location of classes of neurons						
	2	Peripheral nervous system (PNS)- Afferent division and efferent division- Autonomous nervous system (ANS)-sympathetic and parasympathetic nervous system-significance-autonomic nerve pathway. Role of adrenal medulla.						
	3	Classes of neurotransmitter receptors- cholinergic, adrenergic and						

I	I	muscarinic receptors. Somatic nervous system. Somatic nervous system	I
		(SNS). Comparison between ANS and SNS	
	4	Central nervous system: Glial cells-components-functions. Features	
	-	protecting CNS- blood brain barrier. Cerebrospinal fluid (CSF).	
		Significance of oxygen and glucose. Major components of brain-	
		functions.	
II		GENERAL PRINCIPLES OF SENSATION	12
	5	Basic senses of human body- Somesthetic sensation. Role of	
		Somatosensory cortex, Sensory homunculus. Primary functions of	
		sensors. Ion channels on sensory cells. Muller's law of specific nerve	
		energies, Weber-Fechner law	
	6	Classification of senses. Classification of receptors based on structure,	
		location and kind of stimulus it perceives.	
	7	Sensory Processes-Transduction and Perception. Mechanism of	
		transduction of stimuli from sensory receptors. Adaptation of receptors-	
		phasic & tonic adaptations.	
III		PHOTORECEPTION	12
	5	Visual system: Structure of eye-layers, fluids. Visual cycle	
	6	Photoreceptor cells-Rods and Cones-functions. Retinal layers (brief	
		outline). Photopigments in photoreceptors.	
	7	Photoreceptor activity in dark and light.	
	8	Phototransduction and initiation of action potential in vertebrate visual	
		pathway.	
	9	Dark adaptation and light adaptation. Colour vision (brief overview)	
	10	Depth perception, visual input and non-sight activities	
IV		MECHANO RECEPTION	12
	13	Tactile sensation. Tactile receptors. Transduction in touch and pressure.	
	14	Pain and Nociceptor. Classes of pain. Types of stimulus exciting pain	
		receptors. Pain Transduction in the pain pathway. Tissue ischemia as	
		cause of pain. Pain suppression. Referred pain. (Brief outline only).	
	15	Proprioception: mechanoreception of motion and position.	
	16	Ears, hearing and mechanoreception of sound waves. Components of	
		ear involved in hearing. Sound transduction.	
V		CHEMO AND THERMORECEPTION	12
	19	Taste: Gustation - definition. Chemoreceptors for taste-taste buds-	
		location.	
	20	Categories of taste qualities-Tastants and receptor potential, Taste	
		transduction	
		Smell-Olfaction -definition. Components of olfactory mucosa and their	
		function	
	21	Olfactory receptors-Odorants-Olfactory pathway	
	22	Thermal sensation in human-thermal receptors-stimulation of thermal	
		receptors-adaptation	

- 1. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., Lamantia, A.-S., & White, L. E. (2018). Neuroscience (6th ed.). Sinauer Associates.
- 2. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2013). Principles of Neural Science (5th ed.). McGraw-Hill Education.

- 3. Bear, M. F., Connors, B. W., & Paradiso, M. A. (2020). Neuroscience: Exploring the Brain (5th ed.). Wolters Kluwer.
- 4. Squire, L. R., Berg, D., Bloom, F. E., du Lac, S., Ghosh, A., & Spitzer, N. C. (Eds.). (2012). Fundamental Neuroscience (4th ed.). Academic Press.
- 5. Siegel, G. J., Albers, R. W., Brady, S. T., & Price, D. L. (Eds.). (2021). Basic Neurochemistry: Principles of Molecular, Cellular, and Medical Neurobiology (9th ed.). Elsevier.
- 6. Nicholls, J. G., Martin, A. R., & Wallace, B. G. (2012). From Neuron to Brain (5th ed.). Sinauer Associates.
- 7. Haines, D. E. (2019). Fundamental Neuroscience for Basic and Clinical Applications (5th ed.). Elsevier.
- 8. Gardner, E., Martin, J. H., & Jessell, T. M. (2016). Principles of Sensory Physiology (2nd ed.). McGraw-Hill Education.
- 9. Shepherd, G. M. (2016). The Synaptic Organization of the Brain (6th ed.). Oxford University Press.
- 10. Meredith, M. (2019). Sensory and Motor Systems in Neuroscience. Springer.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Students will gain a comprehensive understanding of how neurons communicate through synaptic transmission, neurotransmitter release, and receptor activation.	U	1
CO-2	Students will learn about the structure and function of different sensory systems, including vision, hearing, taste, smell, and touch, and how these systems process sensory information.	U	1
CO-3	Students will develop an integrated perspective on how biochemical processes within the nervous system underlie and influence sensory perception and overall physiological function.	U	1
CO-4	Students will learn how neurobiochemical pathways influence behavior and cognitive processes, gaining an understanding of how changes in neurotransmitter levels or receptor functions can affect mood, cognition, and sensory perception.	U, An	1,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Neurobiochemistry and Sensory Physiology

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO	СО	PO/PS	Cogniti	Knowled	Lecture	Practica
			ve	ge		1

No.		0	Level	Category	(L)/Tutor ial (T)	(P)
CO-1	Students will gain a comprehensive understanding of how neurons communicate through synaptic transmission, neurotransmitter release, and receptor activation.	1	U	F, C	L/T	
CO-2	Students will learn about the structure and function of different sensory systems, including vision, hearing, taste, smell, and touch, and how these systems process sensory information.	1	U	F, C	L/T	
CO-3	Students will develop an integrated perspective on how biochemical processes within the nervous system underlie and influence sensory perception and overall physiological function.	1	U	F, C	L/T	
CO-4	Students will learn how neurobiochemical pathways influence behavior and cognitive processes, gaining an understanding of how changes in neurotransmitter levels or receptor functions can affect mood, cognition, and sensory perception.	1,3	U, An	F, C	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of

COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	-	-	-	-	1					
CO 2	2	-	-	-	-	-	1					
CO 3	2	-	-	-	-	-	1					
CO 4	2	-	3	-	_	-	1					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	BIOCHEMISTRY
Course Code	UK7DSCBCH406
Course Title	Omics
Type of Course	DSC40
Semester	VII

Academic Level	400-49	9			
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week
	4	4 hours			4
Pre-requisites					
Course Summary	Transcr Lipidor comple	iptomics, Proteor nics. It also explo	nics, Met its the mo	abolomics, dern techni	elds like Genomics, Glycomics and iques to reveal the sence of biological

Module	Unit	Content	Hrs
Ι		Genomics	15
	1	Introduction to Genomics. Structural and functional Genomics;	
		Structure, organization and composition of eukaryotic and	
		prokaryotic Genomes; Evolution and structure of Mitochondrial	
		and Chloroplast Genomes; C-value paradox	
	2	Split Genes-Introns and Exons; Significance of non-coding DNA; Repetative DNA, CpG islands	
	3	Comparative Genomics–Identification and classification using molecular markers–16S rRNA typing/sequencing	
	4	Single nucleotide polymorphism (SNP), STS; Conventional sequencing techniques–Maxam-Gilbert and Sanger sequencing	
		(Outline only), Evolution of DNA sequencing methods	
	5	Shotgun Genome sequencing; Next Generation Sequencing	
		(NGS) and applications. Human Genome Project; Recognition of	
		coding and non-coding sequences and gene annotation	
	6	Recognition of coding and non-coding sequences and gene	
		annotation; Genome editing, Applications of Genomics to	
		medicine; RNA interference	
	7	Ethical and legal considerations in Genomics	
II		Transcriptomics	12
	8	Transcriptomics, Definition and aims–Transcriptional structure	
		of the genes and transcriptional start site. Post-translational	
		modifications; Type I, II and self-splicing; Types of transcripts	
		(mRNA, tRNA, rRNA, scRNA, snRNA, siRNA, miRNA)	
	9	Steps for generating data on RNA transcripts-Isolation of RNA,	
		EST, Serial and Cap analysis of gene expression (SAGE/CAGE),	
		Microarrays	
	10	RNA-Seq; Sequencing technology platforms commonly used for	
	10	RNA-Seq	
	11	Applications of transcriptomics-Diagnostics and disease	
		profiling, Generation of human and pathogen transcriptomes for individualised treatment, Drug resistance, Gene function	
1		murriduansed incament, Drug resistance, Oche function	

		annotation, Noncoding RNA	
	10		
	12	Fundamentals of transcriptome databases–Gene Expression	
		Omnibus, Expression Atlas, Genevestigator, RefEx.	
		Computational approach to predict the potential targets of	
		miRNAs, RNA Darkmatter	
III		Proteomics	15
	13	Introduction to Proteomics. Functional Protein families,	
		Evolution from Protein Chemistry to Proteomics	
	14	Gel based proteomics [PAGE, 2-D electrophoresis, Two-	
		dimensional Fluorescence Difference Gel Electrophoresis	
		(DIGE), Blue Native PAGE (BN-PAGE)], Gel casting, Staining	
		and Image Analysis, Iso-electric focusing	
	15	Gel free proteomics methods [liquid chromatography, Isotope-	
		Coded Protein Label (ICPL), Combined FRActional Diagonal	
		Chromatography (COFRADIC)]	
	16	Quantitative Proteomics [Stable Isoptope Labeling by	
		Aminoacids in Cell Culture (SILAC), Isotope Coded Affinity Tag	
		(ICAT), Isobaric Tagging for Relative and Absolute	
		Quantification (iTRAQ), Chromatin Immunoprecipitation	
	17	(ChIP)],Protein Chips	
	17	Mass Spectrometry- Ionization sources (ESI and MALDI), MALDI-TOF	
	18	Structural proteomics and protein-protein interaction- Yeast-2-	
		Hybrid, Co-immuno precipitation (CO-IP), Tandem affinity	
		purification (TAP)	
	19	Protein modifications in Proteomics-Phosphoproteins and	
		Glycoproteins; Proteomics applications, Challenges in	
		Proteomics	0
IV	•	Metabolomics	9
	20	Metabolome and Metabolomics; Basic concepts, Metabolic	
		fingerprinting, Metabolic pathway analysis, Single Cell	
	21	Metabolomics with MS	
	21	Metabolism-Centered Screening of Potential Drug Targets,	
		Metabolomic strategies for the identification of new metabolic nethypera Metabolomics for improved drug terreting and	
		pathways, Metabolomics for improved drug targeting and chemical risk analysis	
	22	Metabolic Connectome, Role in the Prediction, Diagnosis, and	
		Treatment of Complex Diseases	
	23	Tools of metabolomics– Capillary electrophoresis, Gas	
	23	chromatography, Electrochemical detectors	
V		Glycomics and Lipidomics	9
	24	Fundamentals of Glycomics, Relationship of glycome to the	-
		Genome and Proteome. Tools for characterizing Glycome-MS,	
		Lectin and Antibody Arrays, Imaging the Glycome by Metabolic	
		and Covalent Labeling	
	25	Comparative Glycomics; Functional Glycomics using Glycan	
1	1		
		where a mornanes channenges of Gryconne data	
	26	Microarrays; Informatics challenges of Glycomic data Lipidomics–Definition, Processes of Lipidomic workflow	

based Lipidomic Approaches-Shotgun lipidomics, Imaging	
based lipidomics, Lipid databases and identification tools	

1. Voet, D., Voet, J. G., & Pratt, C. W. (2016). Fundamentals of biochemistry: life at the molecular level. 5th Edition. John Wiley & Sons.

2. Campbell, A. M., & Heyer, L. J. (2006). Discovering genomics, proteomics, and bioinformatics. 2nd Edition. Pearson.

3. Primrose, S. B., & Twyman, R. (2013). Principles of gene manipulation and genomics. John Wiley & Sons. 4. Glick, B. R., Pasternak, J. J., & Patten, C. L. (2010). Molecular Biotechnology: principles and applications of recombinant DNA. Washington, DC: ASM Press.

5. Cold Spring Laboratory Press.Wilson and Walker's (2018), Principles and Techniques of Biochemistry and Molecular Biology, 8th Ed. Hofmann and Clokie

6. Fundamentals of Advanced Omics Technologies: From Genes to Metabolites 1st Edition - November 15, 2008, Editors: Carolina Simó, Alejandro Cifuentes, Virginia GarcíaCañas

7. Transcriptomics: Expression Pattern Analysis, Virendra Gomase, Somnath Tagore; VDM Publishing

8. Metabolomics, by Ute Roessner, ISBN 978-953-51-0046-1, Hard cover, 364 pages, Publisher: InTech

9. An introduction to bioinformatics algorithms by Neil C. Jones, Pavel Pevzner. MIT Press

10. Introduction to Proteomics - Tools for the New Biology by Daniel C. Liebler, Humana Press.

11. Mass Spectrometry for Biotechnology by Gary Siuzdak, Academic Press.

12. Proteomics for Biological Discovery by Timothy Veenstra and John Yates, Wiley.

13. Metabolomics- Methods and Protocols by Wolfram Weckwerth, Humana Press.

14. Handbook of Glycomics-Richard D. Cummings, J. Michael Pierce Academic Press

15. Lipidomics- Technologies and Applications by Kim Ekroos, Wiley-VCH.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Create an awareness on genome sequence analysis and its importance in different biological processes	U	1
CO-2	Understand the concept of microarray data analysis and RNA-Seq for gene expression	U	1
CO-3	Focus on the advantages, limitations and challenges associated with analysis of the proteome by different techniques	U	1
CO-4	Know the metabolic connectome and its implications in disease Biology	U	1,2
CO-5	Understand the concept of functional Glycomics and method for studying Lipidomics	U	1

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Omics Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cogniti ve Level	Knowle dge Categor y	Lecture (L)/Tutoria l (T)	Practical (P)
CO-1	Create an awareness on genome sequence analysis and its importance in different biological processes	1	U	F,C	L/T	
CO-2	Understand the concept of microarray data analysis and RNA-Seq for gene expression	1	U	F,C	L/T	
CO-3	Focus on the advantages, limitations and challenges associated with analysis of the proteome by different techniques	1	U	F,C	L/T	
CO-4	Know the metabolic connectome and its implications in disease Biology	1,2	U	F,C	L/T	
CO-5	Understand the concept of functional Glycomics and method for studying Lipidomics	1	U	F,C	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	-	-	-	-	1	-	-	-	-	-
CO 2	2	-	-	-	-	-	1	-	-	-	-	-
CO 3	2	-	-	-	-	-	2	-	-	-	-	-
CO 4	3	3	-	-	-	-	3	-	-	-	-	-
CO 5	2	-	-	-	-	-	1	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

• Quiz / Assignment/Discussion / Seminar

- Midterm Exam
- Programming AssignmentsFinal Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	BIOCHEMISTRY					
Course Code	UK7DSEBCH400					
Course Title	TISSUE ENGINE	ERING ANI) 3D BIOPR	INTING		
Type of Course	DSE9					
Semester	VII					
Academic	400-499					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	4 hours	-	_	4	
Pre-requisites	Nil					
Course	Tissue engineering ar	-	0	0		
Summary	biological tissues and	biological tissues and organs using a combination of biomaterials, cells,				
	and advanced fabrication technologies, enabling the development of					
	innovative therapies f	for regenerat	ve medicine	and personal	ized healthcare.	

Module	Unit	Content	Hrs
Ι		Fundamentals of tissue engineering	12
	1	Key milestone in Tissue Engineering, Stem Cell Tissue Engineering,	

	2			
	2	Principles of Tissue Regeneration and repair		
	3	Cell sourses and culture techniques		
	4	Mechanical Forces On Cells		
II		Technologies for Tissue Engineering	12	
	5	Bioreactors, Biomimetic Materials- (Basics only)		
	6	Polymer Scaffold For Tissue Engineering		
	7	Nanocomposite Scaffolds Tissue Engineering		
	8	Regulatory Issues In Tissue Engineering		
III		Applications of Tissue Engineering	12	
	9	Bone Tissue Engineering, Cartilage Tissue Engineering		
	10	Nerve Tissue Engineering, Human Skin Substitute		
	11	Cardiac Tissue and Vascular Graft Tissue Engineering		
	12	Heart Valve Tissue Engineering		
IV		INTRODUCTION OF 3D BIOPRINTING	12	
	13	Overview of 3D printing technologies: stereolithography, extrusion		
		based printing and inkjet printing		
	14	3D Manufacturing: Materials and Methods		
	15	Development of bioinks, Blueprints(Digital models of tissues and		
		organs)		
	16	3D-Bioprinting Technologies, Tools and Bioprinters		
V	APPLICATIONS OF 3D BIOPRINTING			
	17	Applications in prosthetics, implants		
	18	Applications in regenerative medicine		
	19	Ethical and regulatory issues		
	1			

- 1. Lanza, R., Langer, R., & Vacanti, J. (Eds.). (2020). Principles of Tissue Engineering (5th ed.). Academic Press.
- 2. Mironov, V., Kasyanov, V., & Markwald, R. R. (2008). Organ printing: From bioprinter to organ biofabrication line. Current Opinion in Biotechnology, 19(5), 506-512.
- 3. Atala, A., & Lanza, R. (2015). Handbook of Stem Cell and Regenerative Medicine. Elsevier.
- 4. Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773-785.
- 5. Tiwari, S. K., & Venkataprasanna, K. S. (2021). 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine. Elsevier.
- 6. Feng, J., Panwar, A., & Tan, L. P. (2017). The next frontier in 3D printing: Advancing tissue engineering through bioprinting. Trends in Biotechnology, 35(7), 686-698.
- 7. Griffith, L. G., & Naughton, G. (2002). Tissue engineering—Current challenges and expanding opportunities. Science, 295(5557), 1009-1014.
- 8. Holland, I., & Logan, J. (2016). 3D bioprinting and tissue engineering: Moving from research to clinical translation. Science, 352(6280), 990-993.
- 9. Vanderburgh, J., & Fisher, J. P. (2021). 3D bioprinting for tissue engineering: A review of current research and perspectives. Advanced Healthcare Materials, 10(2), 1901255.
- Groll, J., Burdick, J. A., Cho, D. W., Derby, B., Gelinsky, M., Heilshorn, S. C., Jüngst, T., Malda, J., Mironov, V. A., Nakayama, K., Ovsianikov, A., Sun, W., & Woodfield, T. B. F. (2019). A definition of bioinks and their distinction from biomaterial inks. Biofabrication, 11(1), 013001.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the principles and fundamentals of tissue engineering, including biomaterials, cell biology, and scaffold design.	U	1
CO-2	Describe various methods of scaffold fabrication and tissue engineering techniques, such as 3D bioprinting	U	1
CO-3	Discuss the ethical, regulatory, and societal issuesassociated with tissue engineering, including considerations of safety, consent, and access to healthcare.	An	1
CO-4	Describe the properties and characteristics of bioinks used in 3D bioprinting, including rheological behavior, biocompatibility, and cell support.	U,An	1

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course : Tissue Engineering and 3D Printing

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand the principles and fundamentalsof tissue engineering,including biomaterials,cell biology,and scaffold design.	1	U	F, C	L/T	
CO-2	Describe various methods of scaffold fabrication and tissue engineering techniques, such as 3D bioprinting	1	U	F, C	L/T	

CO-3	Discuss the ethical, regulatory, and societal issuesassociated with tissueengineering, including considerations of safety, consent, and	1	U,An	F, C	L/T	
	accesstohealthcare.					
CO-4	Describe the properties and characteristics of bioinks used in 3D bioprinting, including rheological behavior, biocompatibility, and cell support.	1	U	F, C	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	-	-	-	-	1	-	-	-	-	-
CO 2	2	-	-	-	-	-	1	-	-	-	-	-
CO 3	2	-	-	-	-	-	1	-	-	-	-	-
CO 4	2	-	-	-	-	-	1	_	_	_	_	_

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Quiz/ Discussion / Seminar

- Midterm Exam -
- Programming Assignments Final Exam •
- •

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	Biochemistry				
Course Code	UK7DSEBCH401				
Course Title	Plant Tissue cultur	·e			
Type of Course	DSE10				
Semester	VII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	4 hours	-		4
Pre-requisites	NIL				

Course	The course on plant tissue culture offers a comprehensive understanding
Summary	of theory and practical applications. It covers fundamental topics such as tissue culture history, cellular totipotency, and advanced concepts like dedifferentiation and organogenesis. Additionally, students engage in hands-on activities including the preparation and sterilization of media, as
	well as field visits or internships in tissue culture laboratories, providing valuable experiential learning opportunities.

Module	Unit	Content	Hrs			
Ι		Basic Aspects of Plant Tissue Culture	9			
	1	A brief history of plant tissue culture, Cellular totipotency				
	2	Concept of dedifferentiation, redifferentiation, and organogenesis	9			
II	Tissue Culture Media					
	5	Selection of media				
	6	Media composition				
	7	Media preparation and sterilization				
III		Micropropagation	9			
	8	Selection of suitable material				
	9	Stock plant selection				
	10	Size of explant				
	11	Avoidance of diseased tissue				
IV		Brief outline of types of plant tissue culture	9			
	12	Meristem culture				
	13	Callus culture				
	14	Anther culture				
	15	Ovary culture				
	16	Ovule culture				
	17	Pollen culture				
V		Applications of plant tissue culture (Brief outline)				
			9			
		propagation, Clonal propagation				
		tic hybridization				
		ction of disease-free plants				
		action of secondary metabolites				
	±	improvement				
	Production of synthetic seeds					
		ervation of endangered species				
	Cryop	preservation of germplasm				
	Practical					
			15			
		 Preparation of MS medium and its sterilization 				
		• Field visit/Internship in a Tissue culture lab				

- 1. B. R. C. Murthy & V. S. T. Sai (2017). Botany-Plant tissue culture and its biotechnological applications, Venkateswara Publications, Guntur.
- 2. Pullaiah. T. and M.V.Subba Rao. 2009. Plant Tissue Culture. Scientific Publishers, New Delhi.
- 3. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 4. R Keshavachandran and K V Peter. Plant Biotechnology: Methods in Tissue Culture and Gene Transfer. Orient Blackswan.
- 5. S S Bhojwani, M K Razdan (1996). Plant tissue culture: Theory and Practice. Elsevier.
- 6. L Gamborg, G C Philips (Eds.) (2005). Plant cell, tissue, and organ culture: Fundamental methods. Narosa Publishing House
- 7. Kalian Kumar De (2003) An introduction to plant tissue culture, New Central Book Agency Pvt. Ltd.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO Addressed
CO-1	Understand the basic principles of plant tissue culture	U	1
CO-2	Recall different types of plant tissue culture techniques	R, U	1,2
CO-3	Understand the applications of plant tissue culture	U	1
CO-4	Gain practical knowledge of plant tissue culture	Ар	1,2

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Plant Tissue Culture

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	со	PO/PS O	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand the basic principles of plant tissue culture	1	U	F, C	L/T	
CO-2	Recall different types of plant tissue culture	1,2	R, U	F, C	L/T	

	techniques					
CO-3	Understand the applications of plant tissue culture	1	U	F, C	L/T	
CO-4	Gain practical knowledge of plant tissue culture	1,2	Ар	Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of

COs with PSOs and POs :

	PS O1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	_	-	-	-	1					
CO 2	2	3	_	-	-	_	1					
CO 3	2	_	-	_	-	-	1					
CO 4	1	3	-	-	-	-	1					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
--	------------------	------------	-----------------------	------------------------------

	\checkmark	\checkmark	
CO 1			\checkmark
	\checkmark	\checkmark	
CO 2			\checkmark
	\checkmark	\checkmark	
CO 3			\checkmark
	\checkmark	\checkmark	
CO 4			\checkmark

University of Kerala

Discipline	BIOCHEMISTRY									
Course Code	UK8DSCBCH400									
Course Title	Developmental Biol	Developmental Biology								
Type of Course	DSC41									
Semester	VIII									
Academic	400-499									
Level										
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours/Week					
	4	4 hours	-	-	4					
Pre-requisites	Nil									
Course	Developmental biolog	gy studies the	e process by	which organi	sms grow and					
Summary	develop, from fertiliz	ation to the f	ormation of	tissues, organ	s, and body					
	structures. This cours	e explores th	e molecular,	cellular, and	genetic					
	mechanisms that driv	e embryoger	esis, morpho	ogenesis, and	postnatal					
	growth, as well as ho	• •	· •	•	1					
	manipulated in regen	-								

Module	Unit	Content	Hrs
I		Concepts of Ontogeny	12
	1	Potency, Commitment, Specification- Autonomous, conditional and syncytial, determination and differentiation, induction and competence.	

	2	2 Orchestration of embryonic development: Morphogenic gradients in cell specification, cell fate, fate map and cell lineages							
Π		Germ Cell Development and Fertilization	12						
	3	Spermatogenesis and Oogenesis, Germline formation,							
		Specification of primordial germ cells, Migration, Proliferation and							
		differentiation into mature gametes.							
	4	Acrosome reaction, Recognition of egg and sperm, Prevention							
		of polyspermy							
	5	Fusion of genetic material, Cytoplasmic rearrangements, Epigenetic							
		modifications, Activation of the zygote, Mitotic cell division, Cell							
		differentiation.							
III		Embryogenesis and Spatial Patterning	12						

	6 7	Process of transformation of the zygote into embryo (Cleavage, Blastula formation, Gastrulation) Pattern formation in drosophila with a special focus on the genes	
		involved (Maternal genes –bicoid and nanos and hunchback. Gap genes, pair rule genes, segmentation genes, homeotic genes).	
IV		Molecular communications in embryogenesis	12
	8	Paracrine factors in organ induction: Notch and RTK signalling,	
		Fibroblast growth factor, Transforming growth factor-beta family-	
		smad signalling	
	9	Hedgehog proteins, Wnt proteins- canonical and noncanonical	
		signalling	
		Organogenesis	12
V	23	Brief description of limb development, lens induction in amphibians and	
		neuronal differentiation in vertebrates	
	24	Regeneration in vertebrates	
	25	Sex determination: Chromosomal sex determination in drosophila,	
		dosage compensation.	

- 1. Gilbert, S. F. (2016). Developmental Biology (11th ed.). Sinauer Associates.
- 2. Slack, J. M. W. (2013). Essential Developmental Biology (3rd ed.). Wiley-Blackwell.
- 3. Wolpert, L., Tickle, C., & Arias, A. M. (2015). Principles of Development (5th ed.). Oxford University Press.
- 4. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). Molecular Biology of the Cell (6th ed.). Garland Science.
- 5. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., Lamantia, A.-S., & White, L. E. (2018). Neuroscience (6th ed.). Sinauer Associates.
- 6. Gerhart, J., & Kirschner, M. (2009). The Plausibility of Life: Resolving Darwin's Dilemma. Yale University Press.
- 7. Wobus, A. M., & Boheler, K. R. (2005). Embryonic Stem Cells: Methods and Protocols. Springer.
- 8. Nusslein-Volhard, C., & Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature, 287(5785), 795-801.
- 9. Keller, R. (2000). Developmental Biology (6th ed.). Sinauer Associates.
- 10. Peifer, M. (1995). Regulation of cell architecture in Drosophila: the roles of the cytoskeleton, cell adhesion, and signaling during morphogenesis. Current Opinion in Genetics & Development, 5(5), 556-561.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Students will gain a foundational understanding of the stages and processes of development, including cell differentiation, tissue formation, and morphogenesis.	U	1
CO-2	Students will understand the fundamental signaling pathways and molecular mechanisms that guide developmental processes, such as cell-to-cell communication and pattern formation.	U	1
CO-3	Students will become familiar with the genetic basis of development, including the role of regulatory genes, gene expression patterns, and genetic control of developmental pathways.	U	1
CO-4	Students will recognize the interdisciplinary nature of developmental biology, including its connections to genetics, molecular biology, and evolutionary biology, as well as its relevance to medical research and biotechnology.	U	1

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Developmental Biology

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Students will gain a foundational understanding of the stages and processes development, includ cell differentiation, tissue formation, and morphogenesis.	s of ing	U	F, C	L/T	
CO-2	Students will understand the fundamental signalin pathways and molecular mechanis that guide developmental processes, such as co to-cell communication	ms ell- on	U	F, C	L/T	
CO-3	Students will becom familiar with the genetic basis of development, includ the role of regulator genes, gene expressi patterns, and genetic	e 1 ing y on	U	F, C	L/T	

	control of developmental pathways.				
CO-4	Students will recognize the interdisciplinary nature of developmental biology, including its connections to genetics, molecular biology, and evolutionary biology, as well as its relevance to medical research and biotechnology.	U	F, C	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	1	-	-	-	-	-
CO 2	2	-	-	-	-	-	1	-	_	-	-	-
CO 3	2	-	-	-	-	-	1	-	-	-	-	-
CO 4	1	-	-	-	-	-	1	-	-	-	-	-

Correlation Levels:

Level	Correlation			
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to	Assessment Rubrics :
-------------------	----------------------

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	BIOCHEMISTRY					
Course Code	UK8DSCBCH401					
Course Title	Pharmacology					
Type of Course	DSC42					
Semester	VIII					
Academic Level	400-499					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/W eek	
	4	3 hours	_	2 hours	5	

Pre- requisites	NIL
Course	This course gives the students basic understandings of various phases of
Summary	pharmacology include pharmaceutics phase, pharmacokinetic phase,
	pharmacodynamic phase and pharmacogenetics. This course gives an idea
	of how to design a drug, drugs mode of action, absorption, distribution and
	elimination. Mechanisms of action of some important pharmaceuticals are
	also will be explained in this course.

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Sources of drugs and dosage forms	6
	1	Sources of drugs- plants, animals, minerals, synthetic and biosynthetic.	
	2	Dosage forms (definition), ideal dosage form, ED ₅₀ , LC ₅₀ , LD ₅₀ , different dosage forms	
	3	Tablets	
	4	Capsules	
	5	Liquid oral preparations	
	6	Topical preparations	
	7	Nasal preparations, ear preparations	
	8	Powders and granules	
	9	Sterile formulations	
	10	Immunological products	
П		Drug delivery methods	6
	11	Drug administration methods - systemic (enteral and parenteral) and local.	
	12	Novel drug delivery systems	
III		Pharmacokinetics	8
	13	Pharmacokinetics (definition), ADME	
	14	Drug absorption	
	15	Bioavailability- factors affecting bioavailability	
	16	Drug distribution- factors affecting drug distribution	

	17	Biotransformation of drugs - role of cytochrome P450 and enzymes in biotransformation, Phase I and Phase II reactions with example	
	18	Routes of drug elimination	
IV		Pharmacodynamics-molecular mechanisms of drug action	10
	19	Pharmacodynamics (definition)	
	20	Drug-receptor interaction (agonist, antagonist)	
	21	Major types of receptors and their mode of action (with examples)	
	22	General mode of action of drugs	
	23	Antibacterial drugs (Penicillin, Rifampicin and Streptomycin)	
	24	Antifungal drugs (Polyenes, Azoles, Echinocandins)	
	25	Antiparasitic drugs (Aminoquinolines, Benzimidazole)	
	26	Antiviral drugs (Maraviroc, Amantadine, Acyclovir, Raltegravir, Saquinavir, Zanamivir)	
	27	Antineoplastic drugs (5-fluorouracil, Cyclophosphamide, Vinca alkaloids)	
V		Fundamentals of drug discovery, development and approval	15
	28	Phases of drug development process- discovery and development, pre- clinical research, clinical research, regulatory authority review and post-market safety monitoring	
	29	Drug discovery and development – Target discovery, target validation, lead generation and optimization	
	30	Pre-clinical research – Pharmacokinetics, short -term toxicology, formulation, synthesis of drug	
	31	Clinical research - Phase I, Phase II and Phase III trials in humans for safety and effectiveness	
	32	Regulatory authority review -Review of application, approval and marketing	
	33	Post-market safety monitoring – Safety and monitoring of marketed drug (Phase IV)	
	34	Practical	30
		Isolation and characterization of bioactive compounds (from natural sources)	
		Internships/ visit in drug manufacturing companies	

References

- Basic & Clinical Pharmacology by Bertram G. Katzung (2006) Publisher: Mcgraw-hill Medical Publishing ISBN: 0071451536 ISBN-13: 9780071451536, 978-0071451536
- Handbook Of Experimental Pharmacology by Kulkarni SK (2007) Publisher: Vallabh Publications / Prakashan ISBN: 8185731128, ISBN-13: 9788185731124, 978-8185731124
- Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy by David E Golan (2011) Publisher Lippincott Williams and Wilkins ISBN-10: 1608312704, ISBN-13: 978-1608312702

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addresse d
CO-1	understand the sources of drugs and different dosage forms	U	1
CO-2	gain knowledge of different drug delivery methods	R, U	1
CO-3	understand drug absorption, bioavailability, biotransformation and elimination of drugs	R, U	1
CO-4	learn the concepts of molecular mechanisms of drug action and general mode of action of drugs	R, U	1
CO-5	understand the different phases of drug discovery, development, approval by regulatory authority, safety and monitoring of marketed drug	R, U	1

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Pharmacology

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PS O	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	understand the sources of drugs and different dosage forms	1	U	F, C	L/T	
CO-2	gain knowledge of different drug delivery methods	1	R, U	F, C	L/T	
CO-3	understand drug absorption, bioavailability, biotransformatio n and elimination of drugs	1	R, U	F, C	L/T	
CO-4	learn the concepts of molecular mechanisms of drug action and general mode of action of drugs	1	R, U	F, C	L/T	
CO-5	understand the different phases of drug discovery, development, approval by regulatory authority, safety and monitoring of marketed drug	1	R, U	F, C	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of

COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	-	-	-	_	-	1					
CO 2	2	-	-	-	-	-	1					
CO 3	2	-	-	-	-	-	1					
CO 4	3	-	-	-	-	-	1					
CO 5	3	-	-	-	-	-	1					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

Discipline	BIOCH	BIOCHEMISTRY				
Course Code	UK8DS	SCBCH402				
Course Title	Nanoma	aterials for Biomedic	al Applicatio	ons		
Type of Course	DSC3					
Semester	VIII	VIII				
Academic Level	400-499	400-499				
Course Details	Credit	Lecture per week	Tutorial	Practical	Total Hours/Week	
			per week	per week		
	4	3 hours	-	2 hours	5	
Pre-requisites	1. Basic	c infrastructure for t	he synthesis	s of nanoma	iterials	
Course Summary	charact	This course helps the student to become aware of synthesis, characterization and biomedical applications of materials at the nanolevel				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι	Introdu	iction to Nanomaterials	9
	1	Introduction to Nanomaterials–History and scope of Nanoscience. Nanomaterials in nature	
	2	Classification of nanostructures–Carbon-based (Fullerenes, Graphene, Carbon black, Carbon nanotube, Carbon fibre); Organic (Cyclodextrin, Micelles, Liposomes, Dendrimers); Inorganic based nanomaterials (Metal and metal oxide nanomaterials)	
	3	Composite–based nanoparticles; Semiconductor based (Quantum dots, Quantum wires and Quantum wells); Core shell nanostructures	

Image: and macro porous nanomaterials: Classification based on number of dimensions-zero-, one-, two- and three-dimensional nanomaterials II Strategies for the Synthesis of Nanomaterials 9 5 Bottom-up approaches- Sol-gel method, Spinning method, Soft and Hard Templating Method, Pyrrolysis Method, Chemical vapour deposition Method, Solvothermal and Hydrothermal Methods, Reverse Micelle Method, Green Synthesis of Nanoparticles 9 6 Top-down approaches Nanolithography, Mechanical Milling, Thermal Decomposition, Laser Ablation, Sputtering Method, The Arc Discharge Method 9 7 Consolidation of Nano powders-Isostatic pressing, Spark plasma sintering, Microwave assisted sintering 9 8 Introduction to the principles and applications of the techniques used for characterization of nanomaterials 9 9 Characterization of pical, electronic, and electrical properties UV-Vis spectroscopy (DRS), Spectroscopic ellipsometry, Fourier Transform Infrared Spectroscopy (DRS), Spectroscopy (EDX), X-Ray photoelectron spectroscopy (DRS), Sectroscopy (EDX), X-Ray photoelectron spectroscopy (XPS), Morphological and topographical characterization-Scanning Electron Microscopy (STM), Transmission Electron Microscopy (STM), Energy Dispersive Analysis (EDS), Scanning Tunneling Microscopy (STM), Transmission Electron Microscopy (SEM), Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS), Brunauer-Emmett-Teller (BET) method, Barrett-Joyner-Halenda (BJH) method 11 Characterization of thermal properties-Diferential Scanning Calorimetry (DSC), Diferential Thermal Analysis (4	Classification based on pore dimensions-Micro porous, meso porous	
II Strategies for the Synthesis of Nanomaterials 9 5 Bottom-up approaches- Sol-gel method, Spinning method, Soft and Hard Templating Method, Pyrolysis Method, 9 6 Chemical vapour deposition Method, Solvothermal and Hydrothermal Methods, Reverse Micelle Method, Green Synthesis of Nanoparticles 6 6 Top-down approaches Nanolithography, Mechanical Milling, Thermal Decomposition, Laser Ablation, Sputtering Method, The Arc Discharge Method 9 7 Consolidation of Nano powders-Isostatic pressing, Spark plasma sintering, Microwave assisted sintering 9 8 Introduction to the principles and applications of the techniques used for characterization of anomaterials 9 9 Characterization of optical, electronic, and electrical properties UV- Vis spectroscopy, DRS), Spectroscopic ellipsometry, Fourier Transform Infrared Spectroscopy (FTR), Zeta-potential analysis, Cyclic voltammetry (CV), Raman spectroscopy 10 Structural and chemical characterization-X-ray diffraction analysis, Energy-dispersive X-ray spectroscopy (EDX), X-Ray photoeleural characterization-Scanning Electron Microscopy (SEM), Energy Dispersive Analysis (EDS), Scanning Tunneling Microscopy (SEM), Transmission Electron Microscopy (CEM), Transmission Electron Microscopy (TEM), Atomic Fore Microscopy (AFM), Dynamic Light Scattering (DLS), Brunauer-Emmett-Teller (BET) method, Barrett-Joyner-Halenda (BJH) method 11 Characterization of thermal properties-Diferential Scanning Calorimetry (DSC), Diferential Thermal Anal		4		
II Strategies for the Synthesis of Nanomaterials 9 5 Bottom-up approachess-Sol-gel method, Spinning method, Soft and Hard Templating Method, Pyrrolysis Method, Chemical vapour deposition Method, Solvothermal and Hydrothermal Methods, Reverse Micelle Method, Green Synthesis of Nanoparticles 6 Top-down approaches Nanolithography, Mechanical Milling, Thermal Decomposition, Laser Ablation, Sputtering Method, The Arc Discharge Method 7 Consolidation of Nano powders–Isostatic pressing, Spark plasma sintering, Microwave assisted sintering III Characterization Tools for Nanomaterials 9 Characterization of optical, electronic, and electrical properties UV– Vis spectroscopy, Photoluminescence, UV–Vis diffuse reflectance spectroscopy (DS), Spectroscopic ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Zeta-potential analysis, Cyclic voltammetry (CV), Raman spectroscopy (EDX), X-Ray photoelectron spectroscopy (XPS); Morphological and topographical characterization-Scanning Electron Microscopy (SEM), Energy Dispersive Analysis (EDS), Scanning Tunneling Microscopy (STM), Transmission Electron Microscopy (TEM), Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS), Brunauer–Emmet–Teller (BET) method, Barrett–Joyner–Halenda (BH) method 11 Characterization of thermal properties–Diferential Scanning Calorimetry (DSC), Diferential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA). Characterization of mechanical and magnetic properties –Tensometry, Electron Spin Resonance Spectroscopy (ESR) <			*	
5 Bottom-up approaches- Sol-gel method, Spinning method, Soft and Hard Templating Method, Pyrrolysis Method, Chemical vapour deposition Method, Solvothermal and Hydrothermal Methods, Reverse Micelle Method, Green Synthesis of Nanoparticles 6 Top-down approaches Nanolithography, Mechanical Milling, Thermal Decomposition, Laser Ablation, Sputtering Method, The Arc Discharge Method 7 Consolidation of Nano powders-Isostatic pressing, Spark plasma sintering, Microwave assisted sintering III Characterization Tools for Nanomaterials 9 8 Introduction to the principles and applications of the techniques used for characterization of nanomaterials 9 9 Characterization of optical, electronic, and electrical properties UV- Vis spectroscopy (DRS), Spectroscopic ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Zeta-potential analysis, Cyclic voltammetry (CV), Raman spectroscopy 10 Structural and chemical characterization-X-ray diffraction analysis, Energy-dispersive X-ray spectroscopy (BDX), X-Ray photoelectron spectroscopy (XPS); Morphological and topographical characterization-Scanning Electron Microscopy (SEM), Energy Dispersive Analysis (EDS), Scanning Tunneling Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS), Brunauer-Emmett-Teller (BET) method, Barrett-Joyner-Halenda (BJH) method 11 Characterization of thermal properties-Diferential Scanning Calorimetry (DSC), Diferential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA), Characterization			dimensions-zero-, one-, two- and three-dimensional nanomaterials	
Soft and Hard Templating Method, Pyrrolysis Method, Chemical vapour deposition Method, Solvothermal and Hydrothermal Methods, Reverse Micelle Method, Green Synthesis of Nanoparticles 6 Top-down approaches Nanolithography, Mechanical Milling, Thermal Decomposition, Laser Ablation, Sputtering Method, The Arc Discharge Method 7 Consolidation of Nano powders-Isostatic pressing, Spark plasma sintering, Microwave assisted sintering III Characterization Tools for Nanomaterials 9 8 Introduction to the principles and applications of the techniques used for characterization of nanomaterials 9 9 Characterization of optical, electronic, and electrical properties UV– Vis spectroscopy (DRS), Spectroscopic ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Zeta-potential analysis, Cyclic voltammetry (CV), Raman spectroscopy (EDX), X-Ray photoelectron spectroscopy (XPS); 10 Structural and chemical characterization-X-ray diffraction analysis, Energy-dispersive X-ray spectroscopy (EDX), X-Ray photoelectron spectroscopy (XPS); 10 Structural and chemical characterization-Microscopy (SEM), Energy Dispersive Analysis (EDS), Scanning Tunneling Microscopy (STM), Transmission Electron Microscopy (TEM), Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS), Brunauer-Emmett-Teller (BET) method, Barrett-Joyner-Halenda (BJH) method 11 Characterization of thermal properties-Differential Scanning Calorimetry (DSC), Differential Thermal Analysis (DTA), Thermo Gravinmetric Analysis (TGA). Characterizationia di magneti	II		Strategies for the Synthesis of Nanomaterials	9
Methods, Reverse Micelle Method, Green Synthesis of Nanoparticles 6 Top-down approaches Nanolithography, Mechanical Milling, Thermal Decomposition, Laser Ablation, Sputtering Method, The Arc Discharge Method 7 Consolidation of Nano powders–Isostatic pressing, Spark plasma sintering, Microwave assisted sintering III Characterization Tools for Nanomaterials 9 8 Introduction to the principles and applications of the techniques used for characterization of nanomaterials 9 9 Characterization of optical, electronic, and electrical properties UV– Vis spectroscopy (DS), Spectroscopic ellipsometry, Fourier Transform Infrared Spectroscopy (FTR), Zeta-potential analysis, Cyclic voltammetry (CV), Raman spectroscopy 10 10 Structural and chemical characterization–X-ray diffraction analysis, Energy–dispersive X-ray spectroscopy (EDX), X-Ray photolectron spectroscopy (XPS); Morphological and topographical characterization–Scanning Electron Microscopy (SEM), Energy Dispersive Analysis (EDS), Scanning Tunneling Microscopy (STM), Transmission Electron Microscopy (TEM), Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS), Brunauer-Emmett–Teller (BET) method, Barrett–Joyner–Halenda (BJH) method 11 Characterization of thermal properties–Diferential Scanning Gravimetric Analysis (TGA). Characterization of mechanical and magnetic properties –Tensometry, Electron Spin Resonance Spectroscopy (ESR) 9 12 In vitro and in vivo assessment of tissue compatibility 13 2		5	Soft and Hard Templating Method, Pyrrolysis Method,	
Decomposition, Laser Ablation, Sputtering Method, The Arc Discharge Method 7 Consolidation of Nano powders–Isostatic pressing, Spark plasma sintering, Microwave assisted sintering III Characterization Tools for Nanomaterials 9 8 Introduction to the principles and applications of the techniques used for characterization of nanomaterials 9 9 Characterization of optical, electronic, and electrical properties UV- Vis spectroscopy, Photoluminescence, UV-Vis diffuse reflectance spectroscopy (DRS), Spectroscopic ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Zeta-potential analysis, Cyclic voltammetry (CV), Raman spectroscopy 10 Structural and chemical characterization–X-ray diffraction analysis, Energy–dispersive X-ray spectroscopy (EDX), X-Ray photolectron spectroscopy (XPS); Morphological and topographical characterization-Scanning Electron Microscopy (SEM), Energy Dispersive Analysis (EDS), Scanning Tunneling Microscopy (STM), Transmission Electron Microscopy (TEM), Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS), Brunauer–Enmett–Teller (BET) method, Barrett–Joyner–Halenda (BJH) method 11 Characterization of thermal properties–Diferential Scanning Calorimetry (DSC), Diferential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA). Characterization of mechanical and magnetic properties –Tensometry, Electron Spin Resonance Spectroscopy (ESR) IV Tools for Testing the Biocompatibility of Nanomaterials 9 12 In vitro and in vivo assessment of tissue compatibility 13				
III Characterization Tools for Nanomaterials 9 8 Introduction to the principles and applications of the techniques used for characterization of nanomaterials 9 9 Characterization of optical, electronic, and electrical properties UV–Vis spectroscopy, Photoluminescence, UV–Vis diffuse reflectance spectroscopy (DRS), Spectroscopic ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Zeta-potential analysis, Cyclic voltammetry (CV), Raman spectroscopy 10 Structural and chemical characterization–X-ray diffraction analysis, Energy–dispersive X-ray spectroscopy (EDX), X-Ray photoelectron spectroscopy (XPS); Morphological and topographical characterization–Scanning Electron Microscopy (SEM), Energy Dispersive Analysis (EDS), Scanning Tunneling Microscopi (STM), Transmission Electron Microscopy (TEM), Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS), Brunauer–Emmett–Teller (BET) method, Barrett–Joyner–Halenda (BJH) method 11 Characterization of thermal properties–Diferential Scanning Calorimetry (DSC), Diferential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA). Characterization of mechanical and magnetic properties –Tensometry, Electron Spin Resonance Spectroscopy (ESR) IV Tools for Testing the Biocompatibility of Nanomaterials 9 I2 In vitro and in vivo assessment of tissue compatibility Poliferation, Proliferation,		6	Decomposition, Laser Ablation, Sputtering Method, The Arc Discharge	
8 Introduction to the principles and applications of the techniques used for characterization of nanomaterials 9 Characterization of optical, electronic, and electrical properties UV–Vis spectroscopy, Photoluminescence, UV–Vis diffuse reflectance spectroscopy (DRS), Spectroscopic ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Zeta-potential analysis, Cyclic voltammetry (CV), Raman spectroscopy (EDX), X-Ray photoelectron spectroscopy (XPS); Morphological and topographical characterization-Scanning Electron Microscopy (SEM), Energy Dispersive Analysis (EDS), Scanning Tunneling Microscopy (STM), Transmission Electron Microscopy (TEM, Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS), Brunauer–Emmett–Teller (BET) method, Barrett–Joyner–Halenda (BJH) method 11 Characterization of thermal properties–Diferential Scanning Calorimetry (DSC), Diferential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA). Characterization of mechanical and magnetic properties –Tensometry, Electron Spin Resonance Spectroscopy (ESR) IV Tools for Testing the Biocompatibility of Nanomaterials 9 12 In vitro and in vivo assessment of tissue compatibility 13 Cellular assays-Cytotoxicity, Adhesion, Migration, Proliferation,		7		
Instrument of the second sec	Ш		Characterization Tools for Nanomaterials	9
Vis spectroscopy, Photoluminescence, UV–Vis diffuse reflectance spectroscopy (DRS), Spectroscopic ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Zeta-potential analysis, Cyclic voltammetry (CV), Raman spectroscopy 10 Structural and chemical characterization–X–ray diffraction analysis, Energy–dispersive X–ray spectroscopy (EDX), X–Ray photoelectron spectroscopy (XPS); Morphological and topographical characterization-Scanning Electron Microscopy (SEM), Energy Dispersive Analysis (EDS), Scanning Tunneling Microscopy (STM), Transmission Electron Microscopy (TEM), Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS), Brunauer–Emmett–Teller (BET) method, Barrett–Joyner–Halenda (BJH) method 11 Characterization of thermal properties–Diferential Scanning Calorimetry (DSC), Diferential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA). Characterization of mechanical and magnetic properties –Tensometry, Electron Spin Resonance Spectroscopy (ESR) 12 In vitro and in vivo assessment of tissue compatibility 9 12 Cellular assays-Cytotoxicity, Adhesion, Migration, Proliferation, Proliferation,		8		
Image:		9	Vis spectroscopy, Photoluminescence, UV–Vis diffuse reflectance spectroscopy (DRS), Spectroscopic ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Zeta-potential analysis, Cyclic	
Calorimetry (DSC), Diferential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA). Characterization of mechanical and magnetic properties –Tensometry, Electron Spin Resonance Spectroscopy (ESR) IV Tools for Testing the Biocompatibility of Nanomaterials 9 12 In vitro and in vivo assessment of tissue compatibility 13 Cellular assays-Cytotoxicity, Adhesion, Migration, Proliferation,		10	Energy–dispersive X–ray spectroscopy (EDX), X-Ray photoelectron spectroscopy (XPS); Morphological and topographical characterization-Scanning Electron Microscopy (SEM), Energy Dispersive Analysis (EDS), Scanning Tunneling Microscopy (STM), Transmission Electron Microscopy (TEM), Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS), Brunauer–Emmett–Teller	
12 In vitro and in vivo assessment of tissue compatibility 13 Cellular assays-Cytotoxicity, Adhesion, Migration, Proliferation,		11	Calorimetry (DSC), Diferential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA). Characterization of mechanical and magnetic properties –Tensometry, Electron Spin Resonance	
13Cellular assays-Cytotoxicity, Adhesion, Migration, Proliferation,	IV		Tools for Testing the Biocompatibility of Nanomaterials	9
		12	In vitro and in vivo assessment of tissue compatibility	
Toxicity and Implantation tests		13	Differentiation, Sensitization assays, Irritation tests, Acute Systemic	
14 Tests for Genotoxicity and Hemocompatibility		14	Tests for Genotoxicity and Hemocompatibility	

	15	Microscopy–Fundamentals of Phase Contrast Microscope, Epifluorescence Microscope, Confocal Microscope and Total Internal Reflection Microscope	
V	Nanom	aterials for Biomedical Applications	9
	16	Nanomedicine, Biomimetic nanomaterials, Nanomaterials in tissue engineering and regenerative medicine	
	17	Functionalization of nanomaterials for biological targeting	
	18	<i>In vitro</i> and <i>in vivo</i> diagnostic approaches, Nano sensors, Nano machines, Theranostic approaches	
	19	Drug delivery–passive and active methods, Cancer therapy, Plasmonic photothermal therapy, Photodynamic therapy	
	20	Nanomaterials for treating cardiovascular diseases, Nanomaterials in dental and orthopaedic applications	
	21	Nanomaterials as contrast agents, Optical imaging, MR imaging, CT imaging, PET and SPECT imaging	
	22	Ethical implications of Nanotechnology	
	23	 Practical 1. Synthesis of Ag metal nanoparticles by chemical route 2. Green synthesis of chitosan nanoparticles 3. Synthesis of transition metal oxide nanoparticles by hydrothermal route 4. Analysis of nanoparticles by UV-Vis and FTIR spectroscopy 5. Analysis of the XRD spectrum of a standard sample 	30

References

- 1. Nano- The Essentials, T. Pradeep, McGraw Hill Education (2007)
- 2. Introduction to Nanotechnology, Charles P Poole, Frank J, Wtey India Education (2012)
- 3. Nanostructures and Nanomaterials-Synthesis properties and Applications, G. Cao, Imperial College Press (2004)
- 4. Lasers and nonlinear optics B B Laud, New age international publishers (1985)
- 5. Nanoparticles and Nanostructured Films, Preparation, Characterization and Applications, Janos.H. Fendler, Wiley-VCH (1998)
- 6. Optical properties of semiconducting Nanocrystals, S.V. Gaponenko, Cambridge press (1997)
- 7. Nanomaterials for medical diagnosis and therapy, By Challa S. S. R. Kumar, Wiley-VCH, (2007)
- 8. Cabor Harsanyi, Sensors in biomedical applications. Fundamentals, Technology and Applications, CRC Press, New York (2000)
- 9. Fluorescence sensors and Biosensors, R. B. Thompson (Ed), CRC Press, New York, (2006)
- 10. Nanotechnology in Tissue Engineering and Regenerative Medicine, Popat K. (editor),

CRS Press (2011)

- 11. Nanotechnology: Principles and Practices, Sulabha K. Kulkarni 3rd Edition, Springer
- 12. Reis, Rui L. Encyclopedia of tissue engineering and regenerative medicine. Academic Press (2019)
- 13. Andrew D. Leavitt (auth.), Harold S. Bernstein (eds.), Tissue Engineering in Regenerative Medicine (2011) Humana Press, Springer New York Dordrecht Heidelberg London

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand nanomaterials and their classification	U	1
CO-2	Create an awareness on the various modes of synthesis of substances at the nanolevel	С	1,2
CO-3	To learn the characterization techniques employed for nanomaterials	U	1,2
CO-4	Discuss the role of nanomaterials in the biomedical field	U	1,2
CO-5	Display the various methods of preparation of nanoparticles and to characterize them	Е	1,2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Nanomaterials for Biomedical Applications

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cogn itive Level	Knowle dge Categor y	Lecture (L)/Tuto rial (T)	Pract ical (P)
CO-1	Understand nanomaterials and their classification	1	U	F, C	L/T	
CO-2	Create an awareness on the various modes of synthesis of substances at the nanolevel	1,2	С	F, C	L/T	
CO-3	To learn the characterization techniques employed for nanomaterials	1,2	U	F, C	L/T	
CO-4	Discuss the role of nanomaterials in the biomedical field	1,2	U	F, C	L/T	
CO-5	Display the various methods of preparation of nanoparticles and to characterize them	1,2	E		L/T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-	-	-	2	-	-	-	-	-
CO 2	2	2	-	-	-	-	2	-	-	-	-	-
CO 3	2	3	-	-	-	-	2	-	-	-	-	-
CO 4	1	1	-	-	-	-	2	-	-	-	-	-
CO 5	1	2	-	-	-	-	2	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

Sl No	Name of Course	Online Link	Host of the
1	Biochemistry	https://onlinecourses.nptel.ac.in/noc22_c y06/preview	swayam
2	Biochemistry - IITM	https://onlinecourses.nptel.ac.in/noc24_bt 12/preview	Swayam
3	Biochemistry & Molecular Biology	https://onlinecourses.swayam2.ac.in/cec1 9_bt02/preview	Swayam
4	Biochemistry of Biomolecules	https://onlinecourses.swayam2.ac.in/cec2 0_bt12/preview	Swayam
5	Experimental Biochemistry	https://onlinecourses.nptel.ac.in/noc22_c y32/preview	Swayam
6	Chemistry and Biochemistry- BioChemistry	https://archive.nptel.ac.in/courses/104/10 5/102105034/	NPTEL
7	Biotechnology	https://archive.nptel.ac.in/courses/102/10 3/102103097/	NPTEL
8	Chemistry and Biochemistry- Biological Inorganic Chemistry	https://archive.nptel.ac.in/courses/104/10 5/104105130/	NPTEL
9	Essential Biomolecules: Nucleic Acids and Peptides	https://archive.nptel.ac.in/courses/104/10 3/104103121/#	NPTEL
10	MOLECULAR BIOLOGY	https://onlinecourses.swayam2.ac.in/cec2 0_ma13/preview	Swayam
11	MOLECULAR BIOLOGY	https://onlinecourses.nptel.ac.in/noc24_bt 07/preview	Swayam
12	Human Molecular Genetics	https://onlinecourses.nptel.ac.in/noc22_bt 07/preview	Swayam
13	Introduction to Cell Biology	https://onlinecourses.nptel.ac.in/noc22_bt 33/preview	Swayam
14	Basics of Biology	https://onlinecourses.nptel.ac.in/noc22_bt 17/preview	Swayam
15	Enzymology	https://onlinecourses.swayam2.ac.in/cec2 0_bt20/preview#:~:text=The%20course% 20is%20designed%20to,of%20inhibitors	Swayam

		%20on%20enzyme%20activity	
16	Enzyme Sciences and Technology	https://onlinecourses.nptel.ac.in/noc23_bt 05/preview	Swayam
17	Basic concepts in Enzymology	https://onlinecourses.swayam2.ac.in/cec2 2_bt16/preview	Swayam
18	Food and Nutrition	https://onlinecourses.swayam2.ac.in/cec1 9_ag02/preview	Swayam
19	Maternal Infant Young Child Nutrition	https://onlinecourses.nptel.ac.in/noc22_bt 01/preview	Swayam
20	Sports and Performance Nutrition	https://onlinecourses.nptel.ac.in/noc24_hs 82/preview	Swayam