UNIVERSITY OF KERALA Four Year Under Graduate Programme (UoK FYUGP)

Syllabus (Effective from Academic Year 2024-25) Major Discipline : Geology

May 2024

Contents

No.	Particulars						
	Preface			6			
1.		er Graduate Program nd Credit Requiremer		6			
2.		Geology: An Overview					
	 2.1 Geology Degree Programme 2.2 Program Objectives 2.3 Degree Requirements 2.4 Instructional Methods 2.5 Geology for career 						
3.	Graduate Attrib	outes		10			
	3.2 Programme Field work and	 3.1 Programme Outcomes (PO) 3.2 Programme Specific Outcomes (PSO) Field work and Study tour 3.3 Assesment and Evaluation 					
4.	Distribution of	Courses in each semes	ster for B.Sc.(Honours) in Geology	14			
5.	Semester-wise	available courses in G	eology	15			
5.1	Courses in Geology : Semester 1						
	DSC	UK1DSCGLY100	Understanding the Earth	19			
	DSC	UK1DSCGLY120	Solid Earth	21			
		UK1DSCGLY150	Essentials of Geology	24			
	DSC	UK1DSCGLY151	Earth Processes	26			
	2200	UK1DSCGLY170	General Perspectives of Geology	28			
		UK1DSCGLY171	Fundamentals of Planetary Science	30			
	MDC	UK1MDCGLY100	Natural Energy Resource Management	32			
		UK1MDCGLY120	Mother Earth	34			
5.2	Courses in Geol			36			
	DSC- Major	UK2DSCGLY100	Physical Geology and Geomorphology	36			
	2.2 111101	UK2DSCGLY120	Earth surface processes	38			
		UK2DSCGLY150	Evolution of life on earth	41			
	DSC Minor	UK2DSCGLY151	Mineralogy	43			
		UK2DSCGLY170	A brief history of Earth	48			
		UK2DSCGLY171	Minerals and Rocks	45			
	MDC	UK2MDCGLY100	Geoscience and Environmental Management	50			
	INILC	UK2MDCGLY120	The Dynamic Earth	52			
		UK2MDCGLY121	Earth Materials	54			
5.3	Courses in Geol			57			
	DSC	UK3DSCGLY200	Crystals and Minerals	57			
		UK3DSCGLY220	Mineral Science	60			
		UK3DSCGLY250	Petrology	62			
	DSC	UK3DSCGLY251	Earth Structures	65			
		UK3DSCGLY270	Dynamic Earth and Earth Resources	67			

		UK3DSCGLY271	Environmental Geology	70
		UK3DSEGLY200	Fundamentals of Hydrogeology	72
	DSE	UK3DSEGLY220	Hydrogeology	74
		UK3VACGLY200	Earth and its Resources	77
	VAC	UK3VACGLY220	Sustainable resource management	79
5.4	Courses in Geo	blogy: Semester 4	Sustainable resource management	81
		UK4DSCGLY200	Crystallography and Mineralogy	81
		UK4DSCGLY201	Stratigraphy and Palaeontology	83
	DSC	UK4DSCGLY220	Descriptive and Optical Mineralogy	86
		UK4DSCGLY221	Historical Geology and Paleontology	88
		UK4DSEGLY200	Field Geology	91
	DSE	UK4DSEGLY220	Field Techniques in Geology	93
		UK4SECGLY200	Gemology	95
	SEC	UK4SECGLY220	Coal and Petroleum Geology	97
		UK4VACGLY200	Ecosystem Services	99
		UK4VACGLY201	Disaster Management	101
	VAC		Natural Hazards and Disaster	101
	VAC	UK4VACGLY220	Management	103
		UK4VACGLY221	Earth and Environment	105
	Internship	UK2INTGLY200	30 hours Internship	107
5.5		ology: Semester 5		108
		UK5DSCGLY300	Igneous petrology	108
		UK5DSCGLY301	Sedimentary Petrology	110
	DSC	UK5DSCGLY302	Metamorphic Petrology	113
		UK5DSCGLY320	Magmatic process and Igneous Petrology	115
		UK5DSCGLY321	Sedimentology and Sedimentary Petrology	119
		UK5DSCGLY322	Principles of Metamorphic Petrology	121
		UK5DSEGLY300	Marine Geology	123
	DSE	UK5DSEGLY301	Advance Palaeontology	126
		UK5DSEGLY320	Climatology & Marine Science	128
		UK5SECGLY300	Geotechnical Investigation of Soils	130
	SEC	UK5SECGLY320	Geotechnics	132
5.6		ology : Semester 6		135
		UK6DSCGLY300	Foundation of Structural Geology	135
		UK6DSCGLY301	Indian Stratigraphy	137
		UK6DSCGLY302	Economic Geology	140
	DSC	UK6DSCGLY320	Structural Geology	142
		UK6DSCGLY321	Resource Geology	145
		UK6DSCGLY322	Stratigraphy of India	148
		UK6DSEGLY300	Exploration and Mining Geology	150
	DSE	UK6DSEGLY301	Engineering Geology	153
			Remote Sensing & Geographic	
	SEC	UK6SECGLY300	Information System	155
		UK6SECGLY320	Essentials of GeoInformatics	157
5.7	Courses in Geo	ology: Semester 7		160
		UK7DSCGLY400	Advanced Geoscience I	160
		UK7DSCGLY401	Advanced Geoscience II	164
	DSC	UK7DSCGLY420	Geochemistry and Isotope Geology	167
		UK7DSCGLY421	Applied Geophysics and Exploration Geology	170
	DSC	UK7DSCGLY450	Remote sensing and Geoinformatics	170

1		UK7DSCGLY451	Crystallography	175
		UK7DSCGLY452	Paleoecology	177
		UK7DSCGLY470	Planetary Science	179
		UK7DSCGLY471	Advance Remote Sensing and GIS	181
		UK7DSCGLY472	Indian Fuel Resources and Mining Policies	184
		UK7DSEGLY400	Research Methodology in Geosciences	186
	DSE	UK7DSEGLY420	Mineral wealth of India and Mining Strategies	189
5.8	Courses in Geolo	gy: Semester 8		192
		UK8DSCGLY420	Advanced Petrology	192
	DSC	UK8DSCGLY421	Advanced Mineralogy and Analytical Techniques.	195
		UK8DSCGLY422	Advanced stratigraphy and Structural Geology	198
	Project	UK8RPHGLY400	Internship Research Project (180 Hours)	200

SYLLABUS FRAMEWORK COMMITTEE IN GEOLOGY (UG)

Dr. Sabeen H.M	Dr. Shinu N.
(Chairperson :BoS in Geology(Pass)	Associate Professor
Associate Professor	Department of Geology
Department of Geology	University College, Thiruvananthapuram
Government College, Karyavattom.	
Dr. Sreela S. R	Dr. Anjana A.V. Panicker
Assistant Professor & Head	Associate Professor
Department of Geology	Department of Geology
S. N. College Varkala,	University College, Thiruvananthapuram
Arun J. John	Dr. A. Minikumari
Assistant Professor	Assistant Professor
Department of Geology	Department of Geology
University College, Thiruvananthapuram	Emmanual College, Vazhachal
Arunima M. Lal	Dr. Shynu R.
Assistant Professor	Assistant Professor
Department of Geology	Department of Geology
University College, Thiruvananthapuram	S. N. College Varkala
Dr. Indu G. K.	Dr. Anoop S.
Assistant Professor	Assistant Professor
Department of Geology	Department of Geology
University College, Thiruvananthapuram	University College, Thiruvananthapuram
Dr. Manu Raj R.	Aravind A. R
Assistant Professor	Assistant Professor
Department of Geology	Department of Geology
Fatima Matha College, Kollam	S.N. College for Women, Kollam

Preface

The Government of Kerala has initiated measures to improve higher education in the State. Kerala State Higher Education Council, an advisory body to the Government of Kerala, brings together scholars and stakeholders in State's Education to materialize its vision to revitalize Kerala Higher Education and to foster academic inquiry and research. The State Government has adopted the recommendations of Professor Syam B Menon Commission to introduce the Four-Year Undergraduate Programme (FYUGP) in the state higher education sector.

1. FOUR-YEAR UNDER GRADUATE PROGRAMME (FYUGP)

The UoK-FYUGP has a student centric approach in which the student can choose their own pathway for learning. On completion of 3 years (6 Semesters) the student has an option to exit the programme with 133 credits and shall be awarded with a bachelor degree. The maximum credit a student can acquire in three year period is limited to 150. On completion of 4 years of study (8 Semesters) by acquiring 177 credit the student shall be awarded with a Bachelors (Honours) Degree or Bachelors (Honours with Research) Degree. The students can aquire credits through the following categories of courses.

Details of courses under B.Sc. (Honours) Course

- DSC : Discipline Specific Core :Major/Minor
- DSE : Discipline Specific Elective
- MDC : Multidisciplinary Course
- SEC : Skill Enhancement Course
- VAC : Value Added Course
- AEC : Ability Enhancement Course : languages

The UoK FYUGP offers choice to the students in the first two semesters in different disciplines through Major, Minor and MDC. The student also has the choice of attending online courses in any discipline from repositories approved by the Board of Studies. At the end of second semester, the student has the choice of changing the Major and Minor disciplines, the academic pathway chosen at the time of admission.

Sl.No	Academic Pathway	Major (4 credit)	Minor/Other Disciplines (4 credits	MDC (3 credits)	Foundation Courses : AEC-4, SEC-3, VAC-3 (3 credits)	Intership (2 credits)	Total credits
1	Single Major (A)	68	24	9	30	2	133
2	Major (A) with Multiple Disciplines (B,C)	68	12+12	9	30	2	133
3	Major (A) with Minor	68	24	9	30	2	133
4	Major (A) with vocational Minor (B)	68	24	9	30	2	133
5	Double Major (A1,A2)	A1:48 A2:44	The 24 cre distributed be 2MDC, $2SECMajor A1. To48+20 = 68$ (2) 1MDC, $1SEC$ Total credit 53(40% of 13)	etween the t C, 2VAC ar otal credits 50% of 133 C and VAC in Major	wo Majors ad intership sh in NMajor A1) should be in	should be Major A2.	133

1.1 Pathways and Credit Requirements

2 FYUGP IN GEOLOGY : AN OVERVIEW

The goal of the FYUG Programme in Geology is to equip students with the fundamental knowledge of the diverse fields of Geology. Geology, a synonym of Earth Science, is the scientific study of the Earth. Geology includes the study of landforms, surface and subsurface processes on the earth, the minerals, rocks, groundwater resources, the interior of the earth, fossils etc. The study helps to understand the history of our planet, which help us to know and foresee how events and processes of the present day might influence the future. Geology is intertwined with our daily lives. It provides methods for predicting and mitigating the effects of geologic hazards such as earthquakes, volcanic eruptions, floods, landslides and finds its potential application in various fundamental spheres of life including exploration and management of mineral and energy resources.

Pursuing the course in Geology helps in understanding the earth more intensively and extensively. It also helps in identifying the potential applications in various fundamental areas including exploration and management of mineral and energy resources, ground water and surface water, land use and environment hazards. These diverse needs require a strong understanding of the basic concepts and principles of Earth science. It is a simple fact that as the complexity of these challenges increases, the need for well-educated geologists to provide scientific data and advice in extracting, conserving and managing earth's natural resources will assume more and more importance.

2.1 Geology Degree Programme

The Geology Four Year Degree Programme is designed to provide students with a comprehensive understanding of geological principles, theories, and methodologies. This program encompasses a wide range of topics including the basic principles of geology, mineralogy, petrology and stratigraphy. The study also includes plate tectonics, palaeontology, and geomorphology, investigating the geological processes, formation of geological structures, and the forces driving tectonic activity that have shaped the Earth over billions of years. Study helps for the understanding of natural hazards such as earthquakes, volcanoes, landslides, and their impact on society, as well as exploring environmental issues related to resource management and sustainability. The programme engage in field-based studies and research projects to apply geological principles and methodologies in real-world settings.

2.2 Program Objectives

By the completion of the Geology Degree Program, students will develop a solid foundation of geological concepts, theories, and methodologies. Acquire practical skills in field and laboratory techniques essential for geological research and exploration. Cultivate critical thinking and problem-solving abilities through the analysis of geological data and evidence. Gain an appreciation for the Earth as a dynamic system and its significance to society, the environment, and sustainable development.

2.3 Degree Requirements

The Geology FYUG Program consists of a combination of core courses, elective courses, field experiences, and project works. Students must fulfil the following requirements to earn their degree:

•Completion of required core courses covering foundational topics in geology.

•Successful completion of elective courses tailored to individual interests and career goals.

•Participation in field experiences, including field trips, field camps, and field-based research.

•Completion of a project work under the guidance of a faculty mentor.

2.4 Instructional Methods

This program employs a variety of instructional methods to enhance your learning experience, including:

Lectures: Presentation of key concepts, theories, and case studies.

Laboratory Exercises: Hands-on activities to reinforce understanding of geological processes and techniques.

Field Trips: Opportunities to observe geological features and phenomena in natural settings and apply field methods.

Research Projects: Engagement in independent or group research projects under the guidance of faculty mentors.

2.5 Geology for career

Due to its interdisciplinary character and importance in comprehending the resources and processes of the Earth, geology offers a wide range of professional benefits. A strong foundation in geology can be obtained through a variety of career paths that include managing natural resources, understanding Earth's processes, reducing risks, safeguarding the environment, and investigating the cosmos. It is an important subject of study for tackling urgent global concerns and forming a sustainable future because of its interdisciplinary nature and its applications.

Here are some key aspects that highlight the interdisciplinary nature of geology: Physics and Chemistry: Geology relies heavily on principles from physics and chemistry to understand the physical properties of Earth materials

Biology and Palaeontology: The study of fossils and the evolution of life forms is an integral part of geology.

Mathematics and Statistics: Geology employs mathematical and statistical methods for data analysis, modelling geological processes, and interpreting spatial and temporal patterns.

Engineering and Geotechnics: Geology intersects with engineering disciplines, particularly civil engineering and geotechnical engineering, to assess geological hazards, design infrastructure, and ensure the stability of construction projects.

Environmental Science and Sustainability: Geology plays a critical role in understanding Earth's systems and their interactions with the environment.

Geography and Earth Systems Science: Geology intersects with geography and Earth systems science to study the Earth as a complex, interconnected system.

Economics and Policy: Geology informs economic decision-making and policy development related to natural resource management, energy production, and environmental regulation.

The graduates in Geology are employable as Geological Assistant/Technical Assistant in various Geological organizations like Mining & Geology and Ground Water Department. Geology Graduates with B.Ed. degree can teach courses at school level or Higher Secondary levels in Earth and Environment related subjects. Geology is an interdisciplinary science which offers employment opportunities in scientific studies, exploration of natural resources, Mining and Civil Engineering fields.

A fascinating and fulfilling journey through the dynamic field of Earth sciences is provided by the Geology Degree Program. Regardless of your preferences for environmental, petroleum, geological engineering, or planetary science geology, this program will provide you the know-how, experiences, and resources you need to pursue a successful career in the geosciences.

3 GRADUATE ATTRIBUTES

Graduate attributes bridge the gap between academia and the real world, fostering lifelong learning and meaningful contributions. They denote the skills, competencies and high-level qualities that a student should acquire during their university education. Apart from gathering content knowledge, these attributes go beyond the assimilation of information to its application in various contexts throughout a graduate's life. It aims in inculcating the art of critical thinking, problem solving, professionalism, leadership readiness, teamwork, communication skills and intellectual breadth of knowledge. The University of Kerala envisages to pave the path in guiding the student's journey to shape these attributes uniquely, making them integral to personal growth and success in various spheres of life. The University strives to ensure that these graduate attributes are not just checkboxes, but they play a pivotal role in shaping the students into capable, compassionate and responsible individuals with a high degree of social responsibility.

No.	Programme Outcomes (POs)
PO-1	Critical thinking
	 analyze information objectively and make a reasoned judgment draw reasonable conclusions from a set of information, and discriminate between useful and less useful details to solve problems or make decisions identify logical flaws in the arguments of others evaluate data, facts, observable phenomena, and research findings to draw valid and relevant results that are domain-specific
PO-2	Complex problem-solving
	 solve different kinds of problems in familiar and no-familiar contexts and apply the learning to real-life situations analyze a problem, generate and implement a solution and to assess the success of the plan understand how the solution will affect both the people involved and the surrounding environment
PO-3	Creativity
	 produce or develop original work, theories and techniques. think in multiple ways for making connections between seemingly unrelated concepts or phenomena add a unique perspective or improve existing ideas or solutions generate, develop and express original ideas that are useful or have values

3.1 Programme Outcomes (PO)

PO-4	Communication skills				
	 convey or share ideas or feelings effectively use words in delivering the intended message with utmost clarity engage the audience effectively be a good listener who are able to understand, respond and empathize with the speaker confidently share views and express himself/herself 				
PO-5	Leadership qualities				
	 work effectively and lead respectfully with diverse teams build a team working towards a common goal motivate a group of people and make them achieve the best possible solution. help and support others in their difficult times to tide over the adverse situations with courage 				
	Learning 'how to learn' skills				
PO-6	Learning 'how to learn' skills				
PO-6	 Learning 'how to learn' skills acquire new knowledge and skills, including 'learning how to learn skills, that are necessary for pursuing learning activities throughout life, through self-paced and self-directed learning work independently, identify appropriate resources required for further learning acquire organizational skills and time management to set self-defined goals and targets with timelines inculcate a healthy attitude to be a lifelong learner 				
PO-6 PO-7	 acquire new knowledge and skills, including 'learning how to learn skills, that are necessary for pursuing learning activities throughout life, through self-paced and self-directed learning work independently, identify appropriate resources required for further learning acquire organizational skills and time management to set self- defined goals and targets with timelines 				

PO-8	Value inculcation
	 embrace and practice constitutional, humanistic, ethical, and moral values in life including universal human values of truth, righteous conduct, peace, love, nonviolence, scientific temper, citizenship values formulate a position/argument about an ethical issue from multiple perspectives identify ethical issues related to work, and follow ethical practices, including avoiding unethical behaviour such as fabrication, falsification or misrepresentation of data, or committing plagiarism, and adhering to intellectual property rights adopt an objective, unbiased, and truthful actions in all aspects of work

3.2 Programme Specific Outcomes (PSO)

No.	Upon completion of the programme the graduate will be able to						
PSO-1	To Understand the origin of earth system its various components and geological processes in past and present.						
PSO-2	To acquire theoretical knowledge on the formation of geological material including menerals, rocks and fissils.						
PSO-3	To examine the structural disturbances and stratigraphy to evaluate the geologic environment in the past and present through geological time.						
PSO-4	To apply the knowledge of the processes and materials in mineral exploration and utilization of other resources.						
PSO-5	To apply the theoretical knowledge in the field for greater understanding of earth and its processes.						

*Field work and Study tour

Geology being a field-oriented science, the study cannot be restricted to a classroom. Geological formations and structures are to be studied on a vast dimension through the exposures of rocks in the field. Better understanding of the subject can be obtained by hands on training at geological investigating and research oriented institutions. Field training programs of 5 to 15days towards end of all/any Semesters increases the field interpretations of the theory. Hence study tour and field work form an inevitable part of Geology course.

3.3 Assessment and Evaluation

There shall be Continuous Comprehensive Assessment (CCA) and End Semester Examination (ESE) in the ratio 30:70. Duration of ESE shall be minimum one hour and maximum two hours. CCA can be formative and summative assessments. The practical examinations also have CCA and ESE components in the ratio 40:60 and is conducted internally

4 COURSE DISTRIBUTION IN SEMESTERS FOR B.Sc.(Honours) in Geology

Semester	DSC	DSE	MDC	SEC	VAC	AEC	Credits
Sem I	A1 B1,B2		M1			L1, L2	21
Sem II	A2 B3, B4		M2			L3,L4	21
Sem III	A3 B5,B6	E1	M3		V1		22
Sem IV	A4,A5	E2		S1	V2,V3		21
Sem V	A6,A7,A8	E3,E4		S2			23
Sem VI	A9,A10,A11	E5,E6		S3			23
Sem VII	A12,A13 B7,B8,B9	E7					20
Sem VIII	A14,A15		Mandatory	y research inte	ernship project		24

A :Major and E : Elective courses for Geology students,

B:Minor and M: Multi disciplinary geology courses for other discipline students,

L : Language courses for Geology students

S : Skilled and V : Value added geology courses for all disciplines

Semester	mester Course type Course Code Course Name			
	DSC	UK1DSCGLY100	Understanding the Earth	4
		UK1DSCGLY120	Solid Earth	4
		UK1DSCGLY150	Essentials of Geology	4
	DSC	UK1DSCGLY151	Earth Processes	4
Semester 1		UK1DSCGLY170	General Perspectives of Geology	4
		UK1DSCGLY171	Fundamentals of Planetary Science	4
	MDC	UK1MDCGLY100	Natural Energy Resource Management	3
		UK1MDCGLY120	Mother Earth	3

5 SEMESTER-WISE AVAILABLE COURSES IN GEOLOGY DISCIPLINE

Semester Course type Course Code		Course Name	Credit	
		UK2DSCGLY100	Physical Geology and Geomorphology	4
	DSC	UK2DSCGLY120	Earth surface processes	4
		UK2DSCGLY150	Evolution of life on earth	4
	DSC	UK2DSCGLY151	Mineralogy	4
Semester 2		UK2DSCGLY170	A brief history of Earth	4
		UK2DSCGLY171	Minerals and Rocks	4
	MDC	UK2MDCGLY100	Geoscience and Environmental Management	3
		UK2MDCGLY120	The Dynamic Earth	3
		UK2MDCGLY121	Earth Materials	3

Semester	Course type	Course Code	Course Name	Credit	
	DSC	UK3DSCGLY200	Crystals and Minerals	4	
		UK3DSCGLY220	Mineral Science	4	
		UK3DSCGLY250	Petrology	4	
	DSC	UK3DSCGLY251 Earth Structures			
Semester 3		UK3DSCGLY270	Dynamic Earth and Earth Resources	4	
		UK3DSCGLY271	Environmental Geology	4	
	DSE	UK3DSEGLY200	Fundamentals of Hydrogeology	4	
		UK3DSEGLY220	Hydrogeology	4	
	VAC	UK3VACGLY200	Earth and its Resources	3	
		UK3VACGLY220	Sustainable resource management	3	

Semester	Course type	Course Code	Course Name	Credit
		UK4DSCGLY200	Crystallography and Mineralogy	4
	DSC	UK4DSCGLY201	Stratigraphy and Palaeontology	4
		UK4DSCGLY220	Descriptive and Optical Mineralogy	4
		UK4DSCGLY221	Historical Geology and Paleontology	4
	DSE	UK4DSEGLY200	Field Geology	4
Semester 4		UK4DSEGLY220	Field Techniques in Geology	4
	SEC	UK4SECGLY200	Gemology	3
		UK4SECGLY220	Coal and Petroleum Geology	3
	VAC	UK4VACGLY200	Ecosystem Services	3
		UK4VACGLY201	Disaster Management	3
		UK4VACGLY220	Natural Hazards and Disaster Management	3
		UK4VACGLY221	Earth and Environment	3
	Internship	UK2INTGLY200	30 hours Internship	2

Semester	Course type	Course Code	Course Name	Credit
		UK5DSCGLY300	Igneous petrology	4
	DSC	UK5DSCGLY301	Sedimentary Petrology	4
		UK5DSCGLY302	Metamorphic Petrology	4
		UK5DSCGLY320	Magmatic process and Igneous Petrology	4
		UK5DSCGLY321	Sedimentology and Sedimentary Petrology	4
Semester 5		UK5DSCGLY322	Principles of Metamorphic Petrology	4
		UK5DSEGLY300	Marine Geology	4
	DSE	UK5DSEGLY301	Advanced Palaeontology	4
		UK5DSEGLY320	Climatology and Marine Science	4
		UK5SECGLY300	Geotechnical Investigation of Soils	3
	SEC	UK5SECGLY320	Geotechnics	3

Semester	Course type	Course Code	Course Name	Credit	
		UK6DSCGLY300	Foundation of Structural Geology	4	
	DSC	UK6DSCGLY301	Indian Stratigraphy	4	
		UK6DSCGLY302	Economic Geology	4	
Semester 6		UK6DSCGLY320	Structural Geology	4	
		UK6DSCGLY321	Resource Geology	4	
		UK6DSCGLY322	Stratigraphy of India	4	
		UK6DSEGLY300	Exploration and Mining Geology	4	
	DSE	UK6DSEGLY301	Engineering Geology	4	
		UK6SECGLY300	Remote Sensing & Geographic	3	
	SEC		Information System		
		UK6SECGLY320	Essentials of Geo Informatics	3	

Semester	Course type	Course Code	Course Name	Credit
		UK7DSCGLY400	Advanced Geoscience I	4
	DSC	UK7DSCGLY401	Advanced Geoscience II	4
		UK7DSCGLY420	Geochemistry and Isotope	4
			Geology	
		UK7DSCGLY421	Applied Geophysics and	4
			Exploration Geology	
Semester 7		UK7DSCGLY450	Remote sensing and	4
	DSC		Geoinformatics	
		UK7DSCGLY451	Crystallography	4
		UK7DSCGLY452	Paleoecology	4
		UK7DSCGLY470	Planetary Science	4
		UK7DSCGLY471	Advance Remote Sensing and	4
			GIS	
		UK7DSCGLY472	Indian Fuel Resources and	4
			Mining Policies	
		UK7DSEGLY400	Research Methodology in	4
			Geosciences	
	DSE	UK7DSEGLY420	Mineral wealth of India and	4
			Mining Strategies	

Semester	Course type	Course Code	Course Name	Credit
	UK8DSC		Advanced Petrology	4
Semester 8	DSC	UK8DSCGLY421	Advanced Mineralogy and Analytical Techniques.	4
	UK8DSCGLY422		Advanced stratigraphy and Structural Geology	4
	Project	UK8RPHGLY400	Internship Research Project (180 Hours)	12

5.1 COURSES IN GEOLOGY: Semester 1

Discipline and Type of Course	Geology		Discipli	Discipline Specific Core - DSC			
Course Code and Title	UK1DSC	GLY100	Unders	Understanding the Earth			
Semester		Ι	Academ	Academic Level: 100 - 199			
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week		
	4	3 hours	-	2 hours	5		

Content	Hrs.
Module-1- Earth System Science	13
Earth System Science- the concept of different geospheres- lithosphere, atmosphere,	
hydrosphere, biosphere and cryosphere. The interactions of different spheres of the	
Earth and resultant processes.	
Geology-Significance and important branches. Solar system, Origin of Earth, Earth	
parameters, rotation and revolution. Earth's gravitational and magnetic field.	
Module II- Major Theories in Earth Science and Internal Processes	16
Different theories of the origin of the Earth and its internal structure- crust, mantle	
and core. Concept of the lithosphere and asthenosphere. Theories supporting the	
movement of lithospheric plates- hypotheses of continental drift and seafloor	
spreading. Theory of plate tectonics- plate margins and associated features.	
Internal processes- Earthquakes and volcanoes. Earthquakes: types, causes and	
effects, seismic waves, focus and epicentre, seismograph and seismogram, intensity	
and magnitude, Seismic belts of the world, Seismic hazard zonation of India.	
Volcanoes: classification, distribution and products. Concept of isostasy.	
Module III- Earth Materials	17
Introduction to minerals, classification of minerals- based on origin, abundance in	
rocks and chemical classification. Importance of rock cycle.	
General study of different rocks-Igneous (intrusive, extrusive, plutonic, hypabyssal	
and volcanic rocks), Sedimentary rocks (clastic, non-clastic and organic rocks) and	
Metamorphic rocks (foliated and non-foliated rocks)	
Time Concept in Geology- Age (Relative and absolute age) determination of the	
Earth. Geologic time scale and units. Introduction to fossils- Types of fossils (body,	
chemical, trace, living, mega, micro and nanofossils)	

Module IV Practical - Toposheets and Symb	ools			14
Determination of slope of the terrain, la toposheets, measurement of the distance epicentre of earthquakes by triangulation toposheets.	between two	points, detern	nination of	
Module V				10
Teacher Specific related to course Understan	nding the Ear	th		
Reference				
 Sons, 1944 and New York: Ronald Pres Strahler, Arthur Newell, The Earth Scie Carlson, Plummer and McGeary: Ph by McGraw-Hill, 2006. Press and Siever, Understanding Earth, Ernst W. G., Earth Systems: Processes a Frederick K. Lutgens, Essentials of Hall,Pearson Education, Inc. New Jerse 	when when when when when when when when	ogy– Earth rev an; 4 th edition, 2 ambridge Unive	ealed,Publi 003 rsity Press,2	.000.
CO Course Outcome	Cognitive Level*	Knowledge Category#	Evaluati Tools us	-
CO1 Understand the basics and significance of Earth Sciences, the origin of the Earth and its characteristics.	R,U	F,C	Assignmen Final Exan	ıt,
CO2 Understand the internal processes and their related theories	R,U	F,C	Assignmen Final Exan	
CO3 Understand the basic concepts of earth materials, fossils and geologic time.	R,U	F,C	Assignmen Final Exan	
CO4 Analyse the applications of toposheets and maps and apply the methods for determiningthe distance and slope of a terrain. Locating the epicentre of earthquakes.	Ap, An	Р	Quiz Final exam	
[*] - R-Remember, U-Understand, Ap-Apply, An-A	nalyse, E-Eval	uate, C-Create		
# - F-Factual, C- Conceptual, P-Procedural, M-M	etacognitive			

	Mapping of COs with PSOs and PO										
	I	PSO1	PSO	2	PSO3	3	PSO4	PSO5		РО	
CO 1		3								1	
CO 2		3								2	
CO 3			3							2	
CO 4								2		3	
Leve	el			1		2			3		
Correla	tion	Nil	Sl	ightly	//Low	Low Moderate / Medium		S	ubstantial/ High		
				Мар	ping of	CO	s to Assess	ment Rubri	ics		
	Assi	gnment	Sem	ninar	End S	Sem	nester Exan	ninations		Internal Examina	ations
CO 1		\checkmark				\checkmark				\checkmark	
CO 2		\checkmark		\checkmark		\checkmark				\checkmark	
CO 3						\checkmark				\checkmark	
CO 4				\checkmark		√ √					

Discipline and Type of Course	Geology			Discipline Specific Core - DS		
Course Code and Title	UK1DSCG	LY120		So	lid Earth	
Semester		Ι		Ac	cademic Level	: 100 - 199
Course Details	Credit	Lecture per week	Tutoria per wee		Practical per week	Total Hours/Week
	4	3 hours	-		2 hours	5

Content	Hrs.
Module I: Earth as a planet	12
Introduction to various branches of Earth Science; General characteristics and origin of the Universe, Solar System, and its planets; Origin of Earth-atmosphere. Age and dimensions of earth (relative and absolute), basic concepts of atmosphere and geosphere.	
Module II: Solid Earth	17
Definition of endogenic and exogenic processes -agents, Seismic waves, and internal constitution of the Earth. Plate Tectonics: Concept of plate tectonics, seafloor spreading and continental drift; Plate boundaries, Earthquake; Types, causes and effects, seismic waves, focus and epicentre, seismograph and seismogram, intensity and magnitude, Seismic Belt of world. Volcanoes- types, products and their distribution.	

	le III: Earth materials and Stratigraphic records	17
Rock	on of minerals and rock - Introduction to minerals, classification of minerals forming minerals, Ore forming minerals, Metallic Non metallic Minerals. Igneous, sedimentary and Metamorphic rocks, Rock cycle.	
NUCK5-	igneous, seumentary and wetamorphic focks, Rock cycle.	
Concep	nental laws of stratigraphy: laws of superposition and faunal succession; ts of Neptunism, Plutonism, Uniformitarianism, and Catastrophism; Absolute tive time in Geology. Concept of radiometric dating. Geological time scale.	
Modu	le IV: Practical	14
earth qu	er calculation, Problems related to half-life, plotting of volcanic sites and take prone areas related to plate boundaries. Study of toposheets- latitudes, les conversions and plotting.	
Modu	le V: Teacher specific content	10
	er specific content related to Earth Processes	
Refere	ence	
1	Emiliani, C. (1992): Planet Earth: Cosmology, Geology, and the Evolution of	Lifa
1.	and Environment. Cambridge University Press. Published in USA.	LIIC
2.	c ·	
	Introduction to Earth System Science. John Wiley & Sons, Inc. New York. P.5	552.
3.	Mathez, E.A. and Webster, J.D. (2004): The Earth machine – The Science of Dynamic Planet. Columbia University Press, New York. P.335.	
4.	Duff, P. M. D., & Duff, D. (Eds.). (1993). <i>Holmes' principles of physical geol</i> Taylor & Francis.	ogy.
5.	Gross, M. G. (1977). Oceanography: A view of the earth.	
6.	Published by McGraw-Hill.	
	Published by McGraw-Hill. Press and Siever, Understanding Earth, W. H. Freeman; 4 edition, 2003	
	Press and Siever, Understanding Earth, W. H. Freeman; 4 edition, 2003 Ernst W. G., Earth Systems: Processes and Issues, Cambridge University	
7. 8.	Press and Siever, Understanding Earth, W. H. Freeman; 4 edition, 2003	e

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Identify fascinating facts about solar system	R	F	Assignment, Final Exam
CO2	Understand basic concepts about age and dimensions of earth and its dynamics.	U	С	Assignment, Final Exam
CO3	The students able to define various laws of stratigraphy and differentiate major events in GTS and correlation	An	Р	Assignment , Final Exam
CO4	Demonstrate critical thinking and able to plot earthquake and Volcanoes on world map and location epicenter. Toposheets- latitudes longitudes conversions and plotting.	Ар	Р	Quiz Final exam
	i member, U-Understand, Ap-Apply, An-Ai ctual, C- Conceptual, P-Procedural, M-Me	-	ate, C-Create	<u> </u>

	Mapping of COs with PSOs and PO										
	I	PSO1	F	PSO2	PSOS	3	PSO4	PSO5		PO	
CO 1		3								2	
CO 2		3								2	
CO 3		3								2	
CO 4						3 3					
Leve	el]	l	2 3					
Correla	tion	Nil		Slightl	y/Low	1	Moderate /]	Medium	S	ubstantial/ High	
				Map	ping of	ng of COs to Assessment Rubrics					
	Assi	gnment	9	Seminar	End	Sen	nester Exam	ninations	Internal Examin		ations
CO 1						\checkmark				\checkmark	
CO 2		\checkmark				\checkmark				\checkmark	
CO 3				\checkmark		\checkmark			\checkmark		
CO 4							\checkmark			\checkmark	

Discipline and Type of Course	Geology	Discipline Specific Core - DSC						
Course Code and Title	UK1DSCGLY1	50	Essentials of Geology					
Semester	1		Academic Level: 100 - 199					
Course Details	Credit	ŗ	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week		
	4	3 h	ours	-	2 hours	5		

Content	Hrs.
Module-1- Introduction to Earth system science	15
Introduction to geology, branches and significance. Solar system, Earth	
parameters, rotation and revolution. Age interior of Earth. Introduction to	
different geospheres: lithosphere, atmosphere, hydrosphere, biosphere and	
cryosphere.	
Module II- Endogenic processes	15
Brief study on Continental drift hypothesis, seafloor spreading and plate tectonics.	
Endogenic processes- Earthquakes and volcanoes Earthquakes: types, causes and	
effects, seismic waves, focus and epicentre, seismograph and seismogram,	
intensity and magnitude Volcanoes: classification, distribution and products	
Module III- Earth materials	16
Introduction to minerals, classification of minerals- based on origin, abundancy	
in rocks. General study of different rocks-Igneous (Intrusive, extrusive, plutonic,	
hypabyssal and volcanic rocks), Sedimentary rocks (Clastic, Non-clastic and	
organic rocks) and Metamorphic rocks (Foliated and nonfoliated rocks) rock	
cycle. Introduction to fossils- Body fossil, trace fossils, chemical fossil, mega	
and microfossils.	
Module IV – Practical	14
	14
Determination of Epicentre of an Earthquake. Distinguishing igneous,	
sedimentary and metamorphic rocks	
Module V	10
Teacher Specific related to course Essentials of Geology	
Reference	
1. Carlson, Plummer and McGeary: Physical Geology– Earth rev	vealed,
Published by McGraw-Hill, 2006	
2. Frederick K.Lutgens, Essentials of Geology (11 th Edition) Pe	earson
Prentice Hall, Pearson Education, Inc. New Jersey, 2012.	
3. Ernst W. G., Earth Systems: Processes and Issues, Cambridge Univ	versity

Press,	2000.
--------	-------

- 4. Tarbuck, E; Earth science Prentice hall, 2014.
- 5. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology The Mechanics and Chemistry of Landscapes. Cambridge University Press.

CO	Course Outcome	Cognitive	Knowledge	Evaluation					
		Level*	Category#	Tools used					
CO1	Understand the different branches of geology, geospheres, minerals, rocks and fossils; describe the characteristics of interior earth and endogenic process.	U & E	F &C	Assignment & final exam					
CO2	Understand and explain the theories and hypothesis of plate tectonics associated with the geologic process as and characteristics of earthquake and volcanoes.	U & E	F &C	Quiz, Assignment& final exam					
CO3Identify the epicenter of an Earthquake and differentiate various rocksU, E, &AF, C &PAssignment & final exam									
	 * - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive 								

	Mapping of COs with PSOs and PO										
	I	PSO1		PSO2	PSO	PSO3 PSO4		PSO5		PO	
CO 1		3		3					2		
CO 2		3		2				2		2	
CO 3				1		3			3		
Leve	el			1		2 3		3			
Correla	tion	Nil		Slightl	y/Low	ľ	Moderate /	Medium	S	ubstantial/ High	
				Map	ping of	CO)s to Assess	ment Rubr	ics		
	Assi	gnment		Seminar	End	Sen	nester Exan	ninations		Internal Examin	ations
CO 1		\checkmark		\checkmark		\checkmark				\checkmark	
CO 2		\checkmark		\checkmark		\checkmark \checkmark			\checkmark		
CO 3		\checkmark		\checkmark		\checkmark \checkmark					

Discipline and Type of Course	Geology		Discipline Specific Core - DSC					
Course Code and Title	UK1DSCGLY1	151	Earth Processes					
Semester	1		Academic Level: 100 - 199					
Course Details	Credit	r	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week		
	4	3 h	ours	-	2 hours	5		

Module-1- Exogenic processes 12 Exogenic processes: Weathering- agents, types and products. Soil and soil profile. 17 Module II- River, Glacial and Wind 17 River as a geological agent. Types of streams, Drainage pattern, Drainage basin, Different stages of fluvial evolution- youth, mature and old age. Erosion, transportation and deposition. Fluvial landforms, Geological action of glaciers and associated landforms, Geological action of wind and associated landforms Module III- Oceans and groundwater 17 Dceans and seas: Coastal erosion, transportation, and deposition. Physiographic features of ocean floor. Coral reefs and its types. 17 Geological action of groundwater and associated features 14 Module IV Practical 14 Stream ordering, length of stream, area of drainage basin, bifurcation ratio 10 Teacher Specific related to course Earth Processes 10 Reference 1. 1. 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The Mechanics and Chemistry of Landscapes. Cambridge University Press.		Content	Hrs.
Module II- River, Glacial and Wind 17 River as a geological agent. Types of streams, Drainage pattern, Drainage basin, Different stages of fluvial evolution- youth, mature and old age. Erosion, rransportation and deposition. Fluvial landforms, Geological action of glaciers and associated landforms, Geological action of wind and associated landforms 17 Module III- Oceans and groundwater 17 Dceans and seas: Coastal erosion, transportation, and deposition. Physiographic features of ocean floor. Coral reefs and its types. 17 Geological action of groundwater and associated features 14 Module IV Practical 14 Stream ordering, length of stream, area of drainage basin, bifurcation ratio 10 Teacher Specific related to course Earth Processes 10 Reference 1. 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The	Modu	le-1- Exogenic processes	12
River as a geological agent. Types of streams, Drainage pattern, Drainage basin, Different stages of fluvial evolution- youth, mature and old age. Erosion, transportation and deposition. Fluvial landforms, Geological action of glaciers and associated landforms, Geological action of wind and associated landforms Module III- Oceans and groundwater 17 Oceans and seas: Coastal erosion, transportation, and deposition. Physiographic features of ocean floor. Coral reefs and its types. Geological action of groundwater and associated features Module IV Practical 14 Stream ordering, length of stream, area of drainage basin, bifurcation ratio Module V 10 Feacher Specific related to course Earth Processes 10 Reference 1. 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The	Exoge	nic processes: Weathering- agents, types and products. Soil and soil profile.	
River as a geological agent. Types of streams, Drainage pattern, Drainage basin, Different stages of fluvial evolution- youth, mature and old age. Erosion, transportation and deposition. Fluvial landforms, Geological action of glaciers and associated landforms, Geological action of wind and associated landforms Module III- Oceans and groundwater 17 Oceans and seas: Coastal erosion, transportation, and deposition. Physiographic features of ocean floor. Coral reefs and its types. Geological action of groundwater and associated features Module IV Practical 14 Stream ordering, length of stream, area of drainage basin, bifurcation ratio Module V 10 Feacher Specific related to course Earth Processes 10 Reference 1. 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The			
River as a geological agent. Types of streams, Drainage pattern, Drainage basin, Different stages of fluvial evolution- youth, mature and old age. Erosion, transportation and deposition. Fluvial landforms, Geological action of glaciers and associated landforms, Geological action of wind and associated landforms Module III- Oceans and groundwater 17 Oceans and seas: Coastal erosion, transportation, and deposition. Physiographic features of ocean floor. Coral reefs and its types. Geological action of groundwater and associated features Module IV Practical 14 Stream ordering, length of stream, area of drainage basin, bifurcation ratio Module V 10 Feacher Specific related to course Earth Processes 10 Reference 1. 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The	Modu	le II- River, Glacial and Wind	17
Different stages of fluvial evolution- youth, mature and old age. Erosion, rransportation and deposition. Fluvial landforms, Geological action of glaciers and associated landforms, Geological action of wind and associated landforms 17 Module III- Oceans and groundwater 17 Oceans and seas: Coastal erosion, transportation, and deposition. Physiographic features of ocean floor. Coral reefs and its types. Geological action of groundwater and associated features 14 Module IV Practical 14 Stream ordering, length of stream, area of drainage basin, bifurcation ratio 10 Teacher Specific related to course Earth Processes 10 Reference 1. 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The			
transportation and deposition. Fluvial landforms, Geological action of glaciers and associated landforms, Geological action of wind and associated landforms 17 Module III- Oceans and groundwater 17 Oceans and seas: Coastal erosion, transportation, and deposition. Physiographic features of ocean floor. Coral reefs and its types. 17 Geological action of groundwater and associated features 14 Module IV Practical 14 Stream ordering, length of stream, area of drainage basin, bifurcation ratio 10 Teacher Specific related to course Earth Processes 10 Reference 1 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The			
associated landforms, Geological action of wind and associated landforms 17 Module III- Oceans and groundwater 17 Deceans and seas: Coastal erosion, transportation, and deposition. Physiographic features of ocean floor. Coral reefs and its types. 14 Geological action of groundwater and associated features 14 Module IV Practical 14 Stream ordering, length of stream, area of drainage basin, bifurcation ratio 10 Teacher Specific related to course Earth Processes 10 Reference 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The			
Module III- Oceans and groundwater 17 Oceans and seas: Coastal erosion, transportation, and deposition. Physiographic features of ocean floor. Coral reefs and its types. Geological action of groundwater and associated features 14 Module IV Practical 14 Stream ordering, length of stream, area of drainage basin, bifurcation ratio 10 Feacher Specific related to course Earth Processes 10 Reference 1 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The	-		
Oceans and seas: Coastal erosion, transportation, and deposition. Physiographic features of ocean floor. Coral reefs and its types. Geological action of groundwater and associated features Module IV Practical Module V Teacher Specific related to course Earth Processes I. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The			
Oceans and seas: Coastal erosion, transportation, and deposition. Physiographic features of ocean floor. Coral reefs and its types. Geological action of groundwater and associated features Module IV Practical Module V Teacher Specific related to course Earth Processes I. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The	Modu	le III- Oceans and groundwater	17
Geological action of groundwater and associated features 14 Module IV Practical 14 Stream ordering, length of stream, area of drainage basin, bifurcation ratio 10 Module V 10 Teacher Specific related to course Earth Processes 1 Reference 1 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The	Ocean	s and seas: Coastal erosion, transportation, and deposition. Physiographic	
Module IV Practical 14 Stream ordering, length of stream, area of drainage basin, bifurcation ratio 10 Module V 10 Teacher Specific related to course Earth Processes 10 Reference 1 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2 Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3 Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The	feature	es of ocean floor. Coral reefs and its types.	
Stream ordering, length of stream, area of drainage basin, bifurcation ratio 10 Module V 10 Teacher Specific related to course Earth Processes 10 Reference 1 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The	Geolo	gical action of groundwater and associated features	
Stream ordering, length of stream, area of drainage basin, bifurcation ratio 10 Module V 10 Teacher Specific related to course Earth Processes 10 Reference 1 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The			
Module V 10 Teacher Specific related to course Earth Processes 10 Reference 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The	Modu	e IV Practical	14
Teacher Specific related to course Earth Processes Reference 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The	Stream	ordering, length of stream, area of drainage basin, bifurcation ratio	
Teacher Specific related to course Earth Processes Reference 1. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. 2. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The			
 Reference Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The 	Modu	e V	10
 Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The 	Teach	er Specific related to course Earth Processes	
 Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The 			
 Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill. Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The 			
 Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The 	Refer	ence	
 Bloom, A. (2004) Geomorphology – A Systematic analysis of Late Cenozoic Landforms (Third edition) Wavel and Press Inc. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The 	1.	Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill.	
 Cenozoic Landforms (Third edition) Wavel and Press Inc. 3. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The 			Late
 Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The 			
Orient Black Swan 4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The	3.		ogy,
4. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology - The			
	4.		The
		Mechanics and Chemistry of Landscapes. Cambridge University Press.	
5. M.A. Summerfield (1991) Global Geomorphology. Wiley & Sons.	5.		

СО	Course Outcome	Cognitive Level*	Knowled ge Category #	Evaluation Tools used
CO1	Understand the exogenic process with emphasis on weathering, various geologic agents, soil profile; describe the physiographic features of ocean floor, coral reefs and coastal erosion.	U & E	F &C	Assignment & final exam
CO2	Understand and illustrate the geological actions of the various geological agents and their associated landform features of river, glacial, wind, groundwater, oceans.	U & E	F &C	Quiz, Assignment & final exam
CO3	Determine the drainage pattern of stream in toposheets and morphometric analysis of drainage basins.	U, E, &A	F, C &P	Assignment & final exam
	member, U-Understand, Ap-Apply, An-An ctual, C- Conceptual, P-Procedural, M-Met	-	te, C-Create	

	Mapping of COs with PSOs and PO										
	I	PSO1	Р	PSO2	PSO3	PSO3 PSO		PSO5		PO	
CO 1		3		3				1		2	
CO 2		3		2				2		2	
CO 3		1		1		3 3					
Leve	el			1		2 3					
Correla	tion	Nil		Slightly	y/Low	ľ	Moderate /]	Medium	S	ubstantial/ High	
				арр	oing of (COs	s to Assessn	nent Rubric	S		
	Assi	gnment	S	Seminar	End S	Sen	nester Exam	ninations		Internal Examination	ations
CO 1		\checkmark		\checkmark		\checkmark			\checkmark		
CO 2		\checkmark		\checkmark		√ 、			\checkmark		
CO 3		\checkmark		\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology		Discipline	ipline Specific Core - DSC			
Course Code and Title	UK1DSCG	LY170	General I	General Perspectives of Geology			
Semester		Ι	Academic Level: 100 - 199				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week		
	4	3 hours	-	2 hours	5		

Content	Hrs.
Module I- Introduction to Earth sciences	15
Role of Geologist- Branches of Earth Science, Universe, Solar System,	
Classification of Planets, The Earth- Dimension, Rotation, Revolution, Latitude&	
Longitude, Seasons. Earth System- Geosphere (Earth layers), Hydrosphere,	
atmosphere (layers). Interior of Earth.	
Module II- Earth processes	15
Surface Landforms – Ocean Floor morphology, coastal morphology. Mountain –	
Types & examples, Plateau, valley, Plains,	
Endogenic& Exogenic Processes- Plate tectonics, earthquake, volcano,	
weathering, types, soil profile, Mass wasting- type Introduction to geological	
agents& their work.	
Module III- Pillers of Earth Science -	16
Definition of minerals -significance in mineral identification; scope and aim of	
mineralogy, rock forming minerals and ore forming minerals, examples.	
Rocks- Definition of rocks and petrology. Examples of rocks. Rock cycle.	
Definition of stratigraphy. Beds, strata, Definition of fossils, Significance of study	
of fossils. Relative and absolute age. Fundamental laws of stratigraphy. Geological	
timescale.	
Module IV – Practical	14
Understanding rock cycle, plotting of volcanoes and earthquake prone areas	
related to plate boundaries. Decoding the order of geological events using laws of	
stratigraphy from cross sections.	
Module V	10
Teacher Specific related to content General Perspectives of Geology	

1.	Grotzinger, J., Jordan, T.H., Press, F., Siever, R. (2007): Understanding Earth.
	W.H. Freeman & Co., New York, 5
2.	Emiliani, C. (1992): Planet Earth: Cosmology, Geology, and the Evolution of Lif and Environment. Cambridge UniversityPress. Published in USA.
3.	Skinner, B.J., Porter, S.C., Botkin, D.B. (1999): The Blue Planet – An
	Introduction to Earth System Science. John Wiley & Sons, Inc. New York. P.552
4.	Mathez, E.A. and Webster, J.D. (2004): The Earth machine – The Science of a
	Dynamic Planet. Columbia University Press, New York. P.335.
5.	Duff, P. M. D., & Duff, D. (Eds.). (1993). Holmes' principles of physical geology
	Taylor & Francis.
6.	Gross, M. G. (1977). Oceanography: A view of the earth.
7.	Strahler, Arthur Newell, The Earth Sciences, New York, Harper & Row
8.	Carlson, Plummer and McGeary: Physical Geology– Earth revealed, Published byMcGraw-Hill, 2006
9.	Carlson, Plummer and Mc Geary: Introductory Geology – Earth Revealed, Publishedby McGraw-Hill.
10	Press and Siever, Understanding Earth, W. H. Freeman; 4 edition, 2003
	Ernst W. G., Earth Systems: Processes and Issues, Cambridge University Press,2000.
12	Frederick K. Lutgens, Essentials of Geology (11 th Edition) Pearson Prentice
	Hall, Pearson Education, Inc. New Jersey, 2012

СО	Course Outcome	Cognitive Level*	Knowledge Category#	
CO1	Understand facts about Earth and Solar system, Earth Processes and Work of Geological agents	U	F	Assignment & final exam
CO2	Identify Minerals, Rocks, Laws of stratigraphy and basic ides of palaeontology.	U	С	Quiz, Assignment& final exam
CO3	Interpret Rockcycle, Earthquake and volcanic prone regions on plate Boundaries and GTS.	Ар	Р	Assignment & final Exam
* - R-Re	member, U-Understand, Ap-Apply, An-An	alyse, E-Evalua	te, C-Create	

- F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

		Mapping of COs with PSOs and PO							
	I	PSO1	PSO2	PSO.	3 PSO4	PSO5		РО	
CO 1		3						1	
CO 2			3					2	
CO 3					2		2		
Leve	el			1	2			3	
Correla	tion	Nil	Sligh	tly/Low	Low Moderate / Medium		Sı	ıbstantial/ High	
			M	apping of	f COs to Assess	sment Rubr	ics		
	Assi	gnment	Semin	ar End	Semester Exar	minations		Internal Examin	ations
CO 1					\checkmark			\checkmark	
CO 2			\checkmark						
CO 3		\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology		Discipline	ipline Specific Core - DSC			
Course Code and Title	UK1DSC	GLY171	Fundame	Fundamentals of Planetary Science			
Semester		Ι	Academic Level: 100 - 199				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week		
	4	3 hours	-	2 hours	5		

Content	Hrs.
Module I- The Universe	13
Universe, Big Bang theory, Milky Way, solar system, sun. Astronomical units.	
Dimensions and relative positions of Inner planets, Outer planets, planetoids, moons.	
Asteroid belts, Layers, and processes in Sun.	
Module II- Star Cycles	15
Abundance of elements in cosmos. Evolution and fate of stars. The characteristics of	
Mars and its interior; The characteristics of Moon and its interior.	
Module III- Meteorites	15
Meteorites: Composition and classification of meteorites. Cratering dynamics- and	
classification. Impact craters in India. Indian space missions	
Module IV- Practical	14
Calculations related to inter planetary distance and gravitational force. Identify and locate	
Major impact craters in India	

Module V- Teacher Specific	10
Teacher Specific content related to Fundamentals of Planetary So	ciences
Reference	
1. Cook, AH, 1973, Physics of Earth and planets. London: MacM	Millian
2. Kaula, WM, 1996, Theory of Satellite Geodesy. Blaisedell	
3. Beatty, J., Petersen C. and Chaikin, A., 1999, The New Solar	System, Cambridge
University Press, Cambridge, England.	
4. Lodders K. and Fegley, B., 1998, The Planetary Scientist's Co	ompanion, Oxford
UniversityPress, New York, 1998	1 /
5. Morrison, D., 1993, Exploring Planetary Worlds, Scientific Am	nerican Library, New York
6. Ahrens, T. (ed.), 1995, Global Earth Physics - A Handbook of	f Physical Constants,
American Geophysical Union, Washington, D.C.	
7. Pamela Clark, 2007, Dynamic Planet: Mercury in the Context	of its Environment,
Springer, New York.	
8. Cattermole, P., 1994, Venus, The Geological Story, Johns Ho	pkins University Press,
Baltimore.	
9. Wilhelms, D., 1993, To a Rocky Moon - A Geologist's Hi	istory of Lunar
Exploration, University of Arizona Press, Tucson.	
10. Cattermole, P., 1993, Mars - The Story of the Red Planet, Chapman	and Hall, London.
11. Mutch, T., Arvidson, R., Head, J., Jones, K., and Saunders,	, R., 1976, The Geology
ofMars, Princeton University Press, Princeton.	
12. Rogers, J., 1995, The Giant Planet Jupiter, Cambridge Uni	iversity Press,
Cambridge,England.	
13. Hunt G., and Moore, P., 1982, Saturn, Rand McNally, New Y	ork.
14. Miner, E., 1998, Uranus - The Planet, Rings, and Satellites, W	/iley, New York.
15. Miner, E. and Wessen, R., 2002, Neptune - The Planet, Ri	ings, and Satellites,
Praxis, Chichester, England.	
16. White, A., 1980, The Planet Pluto, Pergamon, New York.	
17. Davies, J., 2001, Beyond Pluto - Exploring the Outer Limits of	of the Solar System,
Cambridge University Press, Cambridge, England.	
18. Planetary Geomorphology by Ronald Greely	
19. Planetary Surface Processess by J. H. Melosh	
20. Planetary tectonics by T. R. Watters and R. A. Schultz	
21. Asteroids by T. H. Burbine	
22. Introduction to Planetary Science by G. Faure and T.M. Mens	ing

CO	Course Outcome	Cognitive Level*	Knowled ge Category #	Evaluation Tools used			
CO1	Understand Fascinating facts solar system and star cycle.	U	F	Assignment & final exam			
CO2	Recognize geology of Mars, Moon, and meteorites.	U	С	Quiz, Assignment& final exam			
CO3	Analyse the dynamics of impact cratering.	Ар	Р	Assignment & final exam			
* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive							

			Maj	opin	g of CC)s wit	th PSOs ai	nd PO			
	F	PSO1	PSO2		PSO3	3	PSO4	PSO5		PO	
CO 1		3								2	
CO 2		3								2	
CO 3						2		3			
Leve	el			1		2			3		
Correla	tion	Nil	Slig	ghtly/	/Low	Low Moderate / Medium		Sı	ubstantial/ High		
		•	Ν	Ларр	oing of	COs	to Assess	ment Rubri	ics		
	Assi	gnment	Semi	nar	End S	Seme	ster Exam	ninations		Internal Examination	ations
CO 1						\checkmark				\checkmark	
CO 2		\checkmark	\checkmark	,							
CO 3						\checkmark \checkmark			\checkmark		

Discipline and Type of Course	Geology	Mult	llti-Disciplinary Course - MDC			
Course Code and Title	UK1MDCGLY1	Natural energy resource and management				
Semester	1		Academic Level: 100 - 199			
Course Details	Credit		cture week	Tutorial per week	Practical per week	Total Hours/Week
	3	3 h	ours	-	-	3

Content	Hrs.
Module-1- Introduction to geosphere energy resources	10
Introduction to Geosphere Energy Source-Brief description and their economic uses of Atomic minerals, precious minerals, Petroleum, Coal, Natural gas, atomic minerals, Gas hydrates, Geothermal energy	
Module II- Geosphere energy resources	13
Nation development and geosphere energy resources. Economic importance and distribution of geosphere energy sources in India, Petroleum (Assam shelf, Bombay offshore, Cambay basin, Cauvery basin, Krishna-Godavari basin, Andaman-Nicobar and Lakshwadeep basins), Coal (Coal deposits of Raniganj and Jharia.Lignite deposits of Neyveli and Palana. Tertiary oil fields of Assam). Atomic minerals (Beach deposit of Kerala). Exosphere mineral resources.	
Module III- Sustainable geosphere energy sources	13

6

Sustainable usage, development and management of geosphere energy source. National Mineral policy. Natural resources management and associated problems. Current and future scenario of geosphere energy source and their influence on national economy.

Module IV

Teacher Specific related to course Geosphere energy resource and management

Reference

- 1. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distribution and processing, Tata-McGraw Hill, New Delhi.
- 2. Deb, S. (1980) Industrial minerals and rocks of India. Allied Publishers.
- 3. Sarkar, S.C. and Gupta, A. (2014) Crustal Evolution and Metallogeny in India. Cambridge Publications.
- 4. Bastia, R., & Radhakrishna, M. (2012). Basin evolution and petroleum prospectivity of the continental margins of India (Vol. 59). Newnes.
- 5. Bateman, A.M. and Jensen, M.L. (1990) Economic Mineral Deposits. John Wiley.
- 6. Evans, A.M. (1993) Ore Geology and Industrial minerals. Wiley

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the various geosphere energy sources and their economic uses.	U & E	F &C	Assignment & final exam
CO2	Understand the economic importance and distribution of geosphere energy sources in India	U & E	F &C	Quiz, Assignment & final exam
CO3	Understand the sustainable usage, development and management of geosphere energy sources	U & E,	F &C	Assignment & final exam

* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

- F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	Mapping of COs with PSOs and PO									
]	PSO1	PSO2	PSO3	3	PSO4	PSO5		PO	
CO 1		3		3		3			2	
CO 2		1		2		3			2	
CO 3						3			2	
Lev	Level 1		1	2			3			
Correla	ation	Nil	Slight	ly/Low	Low Moderate / Medium		Substantial/High			
			Ma	pping of	CO	s to Assess	ment Rubr	ics		
	Assi	gnment	Semina	r End S	End Semester Examinations				Internal Examin	ations
CO 1		\checkmark	\checkmark		\checkmark				\checkmark	
CO 2		\checkmark	\checkmark		\checkmark				\checkmark	
CO 3		\checkmark	\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology		Multi-Dise	Multi-Disciplinary Course - MDC			
Course Code and Title	UK1MDC	GLY120	Mother Earth				
Semester		1	Academic Level: 100 - 199				
Course Details			Tutorial per week	Practical per week	Total Hours/Week		
	3	3 hours	-	-	3		

	Content	Hrs.
	troduction to Earth Science	9
Introduction	Various branches of Earth Science; General characteristics and origin of	
the Universe	e, Solar System and its planets; Origin of Earth-atmosphere. Age and	
dimensions of	of earth.	
Module II: I	Dynamic Earth	9
Definition of	endogenic and exogenic processes -agents, Seismic waves, and internal	
constitution	of the Earth. Plate Tectonics: Concept of plate tectonics, seafloor	
spreading an	d Continental drift; Plate boundaries, Earthquake and earthquake belts;	
Volcanoes- t	ypes, products, and their distribution	
Module III:	Gravity and magnetism of Earth	9
	ots of Gravity and variation of gravity with latitudes, Basic concepts of	
Earth's mag	netism. Origin of earth's magnetism, Palaeo poles and magnetic time	
scale. Isostac	ey.	
	undamentals of Stratigraphy	9
Laws of Sup	perposition and Faunal succession; Concepts of Neptunism, Plutonism,	
Uniformitari	anism, and Catastrophism; Absolute and relative time in Geology.	
Concept of ra	adiometric dating. Geological time scale.	
Module V- T	eacher Specific content	6
	cific content related to Mother Earth	
Reference		
1. Frede	rick K. Lutgens, Essentials of Geology (11thEdition) Pearson Prentice Hall	Ι.
	on Education, Inc. New Jersey, 2012	,
	tinger, J., Jordan, T.H., Press, F., Siever, R. (2007): Understanding Earth.	
W.H.	Freeman & Co., New York, 5	
3. Emili	ani, C.(1992):Planet Earth: Cosmology, Geology, and the Evolution of Life	e and
	onment. Cambridge University Press. Published in USA.	
4 911	er,B.J.,Porter,S.C.,Botkin,D.B.(1999):The Blue Planet- An Introduction to	С
4. Skinr		
	System Science. John Wiley & Sons, Inc. New York. P.552.	

Dynamic Planet. Columbia University Press, New York. P.335.

- 6. Duff,P.M.D.,&Duff,D.(Eds.).(1993).Holmes' principles of physical geology. Taylor & Francis.
- 7. Gross, M.G. (1977). Oceanography: A view of the earth.
- 8. Ernst W.G., Earth Systems : Processes and Issues, Cambridge University Press, 2000

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the various branches of Earth Science and understanding of the dynamic processes shaping the Earth's surface and interior of the earth to analyze the processes driving Earth's geological evolution.	U, An	C, F	Assignment, Final Exam
CO2	Understanding the origin of the Universe providing foundational understanding of planetary formation and evolution. Analyze the age and dimensions of Earth and timeline of geological processes.	An	С	Assignment, Final Exam
CO3	Understand the fundamental laws of stratigraphy age calculations to interpret the age and history of Earth's formations and events.	U, E	F, P	Assignment, Final Exam

- F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

				Mappi	ng of CC)s v	vith PSOs a	nd PO			
	I	PSO1]	PSO2	PSO	3	PSO4	PSO5		РО	
CO 1		3								3	
CO 2		3								3	
CO 3					3					3	
Level			1	1		2			3		
Correla	Correlation Nil			Slightly/Low		I	Moderate /	Medium	S	ubstantial/ High	
				Мар	ping of	CO	s to Assess	ment Rubri	ics		
	Assi	gnment		Seminar	End	End Semester Examinations				Internal Examinatio	
CO 1		\checkmark				\checkmark				\checkmark	
CO 2		\checkmark				✓				\checkmark	
CO 3				\checkmark		\checkmark \checkmark					

5.2 COURSES IN GEOLOGY: Semester 2

Discipline and Type of Course	Geology		Discipline Specic Core - DSC			
Course Code and Title	UK2DSCG	LY100	Physical Geology and Geomorphology			
Semester		2	Academic Level: 100 - 199			
Course Details	Credit Lecture per week		Tutorial per week	Practical per week	Total Hours/Week	
	4	3 hours	-	2 hours	5	

Content	Hrs.
Module-1- External Processes	15
Weathering- agents, types, and products. Regolith and Soil. Soil profile and factors	
affecting soil formation. Process of downslope movements- Types of mass	
wasting: Landslides- causes, types and mitigation, Landslides prone areas in India-	
Foothills of Himalayas, Western Ghats and Kerala. Problems associated with land subsidence.	
	15
Module II- Agents of Landform Development	15
River as a geological agent. Types of streams, Drainage pattern, Drainage basin, Drainage order, Stream profile, Different stages of fluvial evolution- youth, mature and old age. Geological action of Streams (erosion, transportation and deposition) and associated fluvial landforms	
Geological action of glaciers and associated landforms. Groundwater as a geological agent and its erosional and depositional features. Karst topography. Lakes: Origin, classification and geological significance. Kayals of Kerala.	
Module III- Interactions of different Geospheres	16
Oceans and Seas- waves, currents and tides. Coastal erosion, transportation and	
deposition. Classification of coasts and coastal morphology. Estuaries and lagoons.	
Physiographic features of the ocean floor. Coral reefs and their types. Geological	
action of wind and associated landforms.	
Module IV – Practical	14
Determination of stream order, length of the stream, area of the drainage basin, and	
bifurcation ratio from a given drainage basin map	
Module V	10

Teacher Specific related to course Physical Geology and Geomorphology

Reference

1. Ahamed, E. (1972) Coastal Geomorphology of India. Orient Longman, New Delhi.

2. Thornbury, W. D. (1968). Principles of Geomorphology, Wiley.

3. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill.

4. Weisberg, J, and Parish, H. (1974). Introductory Oceanography. McGraw Hill.

5. Arthur Holmes (1977) Principles of Physical Geology (Edinburgh: Thomas Nelson

and Sons, 1944 and New York: Ronald Press, 1945.

6. Bloom, A. (2004) Geomorphology - A Systematic analysis of Late

CenozoicLandforms (Third edition) Wavel and Press Inc.

7. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology,

OrientBlack Swan.

8. Frederick K. Lutgens, Essentials of Geology (11th Edition) Pearson Prentice Hall, Pearson Education, Inc. New Jersey, 2012.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the external processes, weathering, soils and mass wasting	R,U	F	Assignment ESE
CO2	Understand and analyze the different geological agents, their geological actionand associated landforms	U, An	F	Assignment ESE
CO3	Analyse the interactions of different geospheres and associated landforms	An	F	Quiz ESE
CO4	Apply and analyze the method of determining the length of streams, order of streams, drainage basin and its pattern and bifurcation ratio in map and field.	Ap.An	Р	Quiz ESE
	emember, U-Understand, Ap-Apply, An-An actual, C- Conceptual, P-Procedural, M-Me	-	ate, C-Create	

	Mapping of COs with PSOs and PO										
	I	PSO1	F	PSO2	PSO	3	PSO4	PSO5		РО	
CO 1		3								2	
CO 2		2								2	
CO 3		3								3	
CO4								3		3	
Leve	el			1	L		2			3	
Correla	tion	Nil		Slightl	y/Low	ľ	Moderate /	Medium	S	ubstantial/ High	
				Map	ping of	CO	s to Assess	ment Rubri	ics		
	Assi	gnment		Seminar	EndS	Serr	nester Exan	ninations		Internal Examination	ations
CO 1		\checkmark					\checkmark			\checkmark	
CO 2		\checkmark					\checkmark		\checkmark		
CO 3				\checkmark		\checkmark \checkmark					
CO 4				\checkmark		\checkmark \checkmark					

Discipline and Type of Course	Geology		D	Discipline Specific Core - DSC			
Course Code and Title	UK2DSCG	LY120	E	Earth Surface Processes			
Semester	2		Acad	cademic Level: 100 - 199			
Course Details	Credit	Lecture per week	 orial week	Practical per week	Total Hours/Week		
	4	3 hours	-	2 hours	5		

Content	Hrs
Module I: Exogenic Processes	12
Weathering –Basic concepts, Factors, types and products of weathering, cycle of erosion. Physical and chemical processes. Soil, factors affecting soil formation and soil profile, important soil types in India. Slope stability and Mass wasting - types, causes and control	
Module II: Fluvial processes	18
Drainage basin and drainage pattern, geological work of Stream- evolution of land forms. Groundwater as a geological agent - erosional and depositional features. Karst topography. Eustatic sea level changes. Ocean floor morphology: continental shelf, continental slope, continental rise, submarine canyons, abyssal plains, MORs, deep sea trenches, guyots, seamounts. Basic concepts of coastal morphology.	

	e III: Glacier and wind	16
ranspor effects o	 Formation, movement, and morphology. Types of glaciers. Erosion, attion, and deposition by glaciers. Glacial landforms. Global warming and its n glaciers. Wind – Geological action of winds. Landforms of Aeolian origin. cation process. Lakes – Origin, Classification, geologic significance 	
N	Iodule IV: Practical	14
Basic co	ncepts of slope analysis, Basic morphometric analysis of drainage basin	
	e V: Teacher specific content	10
Teache	r specific content related to Earth Processes	
Refere	nce	
1	Misra, H.C. (1995) A Handbook on GIS. GIS India, Hyderabad.	

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Explain various Exogenic Processes	R	F	Assignment, Final Exam							
CO2	Identify gradational landforms created by various geological agents.	U	С	Assignment, Final Exam							
CO3	Interpret drainage basin using morphometric analysis	AP	Р	Assignment, Final Exam							
CO4	CO4Explain various Exogenic ProcessesFQuiz Final exam										
* - R-Re	member, U-Understand, Ap-Apply, An-A	nalyse, E-Evalu	iate, C-Create								
# - F-Fa	ctual, C- Conceptual, P-Procedural, M-M	etacognitive									

Mapping of COs with PSOs and PO											
	I	PSO1	Р	PSO2	PSO3	PSO3 PSO4 PSO5		РО			
CO 1		3								2	
CO 2		2								3	
CO 3								3		3	
CO4								3		2	
Leve	el			1	-	2 3					
Correla	tion	Nil		Slightly	y/Low	Ν	/loderate /]	Medium	S	ubstantial/ High	
				Мар	ping of	COS	s to Assess	ment Rubr	ics		
	Assi	gnment	S	Seminar	End S	Sem	ester Exan	ninations		Internal Examina	ations
CO 1		\checkmark					\checkmark			\checkmark	
CO 2				\checkmark		\checkmark			\checkmark		
CO 3						✓					
CO 4		\checkmark					\checkmark			\checkmark	

Discipline and Type of Course	Geology Discipline Specific Core - DSC						
Course Code and Title	UK2DSCGLY1	UK2DSCGLY150 Evolution of life on earth					
Semester	2		Acad	emic Level:	100 - 199		
Course Details	Credit	Lecture per week		Tutorial per week	Practical per week	Total Hours/Week	
	4	3 h	ours	-	2 hours	5	

Detailed Syllabus:

Content	Hrs
Module-1- Introduction to Historical Geology	12
Historical geology and its branches, Stratigraphic principles and and classification.	
Standard stratigraphic Column, Guiding principles in Stratigraphy. Geologic time	
scale. Stratigraphy of Kerala.	
Module II- Fossils and fossilization	17
Conditions and methods of fossilisation. Uses of fossils. Branches of	
palaeontology. Major event of earth history. Evolution of life though time.	
Module III- Invertebrate fossils	16
Morphology of important invertebrate fossils (Brachiopods, Mollusca, Pelecypods,	
Gastropods, Trilobita). Brief study of plant fossils of India.	
Module IV – Practical	14
Identification and morphological features of important brachiopods, pelecypods,	
gastropods and trilobites	
Module V	10
Teacher Specific related to course Evolution of life on Earth	
Reference	
1. Anis Kumar Ray, (2008) Fossils in Earth Sciences, Prentice-Hall of India	Pvt.
Ltd, New Delhi.	
2. Woods, H. (1961) Invertebrate Palaeontolgy. Cambridge University Press.	
3. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Foss	ils,
Mc-Graw Hill.	
4. Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution 4th Edition	on by
Blackwell Publishing.	2
5 Down D. M. Stonlay, S. M. Encomon, W. H. (1071) Dringinlag of Delegantele	~ • •

5. Raup, D. M., Stanley, S. M., Freeman, W. H. (1971) Principles of Paleontology

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the principles of stratigraphy, geologic time scale, evolution of life through time, branches of palaeontology and major event of earth history.	U & E	F &C	Quiz& final exam&
CO2	Understand and describe the stratigraphy of Kerala, characteristics of fossils, plant fossils of India and morphology of important invertebrate fossils	U & E	F &C	Assignment & final exam
CO3	Identify and illustrate the morphologic features of various invertebrate fossils and plant fossils.	U, E, &An	F, C &P	Assignment & final exam
	emember, U-Understand, Ap-Apply, An-Actual, C- Conceptual, P-Procedural, M-M		uate, C-Create	

			Map	oing of C	Os v	with PSOs a	nd PO			
	I	PSO1 PSO2 PSO3 PSO4 PSO5 PO								
CO 1			3	3			2		2	
CO 2			3	3			3		2	
CO 3			2	1			3		3	
Leve	el			1		2	3		3	
Correla	tion	Nil	Sligh	tly/Low]	Moderate /	Medium	S	ubstantial/ High	
			Μ	apping o	f CC)s to Assess	ment Rubr	ics		
	Assi	gnment	Semin	ar End	Sen	nester Exan	ninations		Internal Examina	ations
CO 1		\checkmark	\checkmark			\checkmark		\checkmark		
CO 2		\checkmark	\checkmark			\checkmark	√			
CO 3		\checkmark	\checkmark		\checkmark \checkmark					

Discipline and Type of Course	Geology		Discipline Specific Core - DSC			
Course Code and Title	UK2DSCGLY1	151	Mineralogy			
Semester	2		Academic Level: 100 - 199			
Course Details	Credit Lecture Per week		Tutorial per week	Practical per week	Total Hours/Week	
	4	3 hours	-	2 hours	5	

Content	Hrs
Module-1- Minerals	15
Mineral - definition of Mineral and Mineraloid, scope and aim of Mineralogy. Physical mineralogy: physical properties of minerals - form, habit, cleavage, fracture, color, diaphaneity, luminescence, fluorescence, phosphorescence, play of colours,luster, streak, hardness, specific gravity. Electrical, magnetic and radioactive properties of minerals.	
Module II- Chemical mineralogy	15
Chemical Mineralogy: Types of Bonds, ionic radii, ionic ratios, Polymorphism, isomorphism, pseudomorphism, solid solution and exsolution in minerals. Silicate structure	
Module III- Physical properties	16
Physical and chemical properties of the following: olivines, garnets, pyroxenes amphiboles, micas, feldspars, feldspathoids, quartz.	
Module IV Practical	14
Megascopic study of minerals like Quartz, orthoclase, microcline, plagioclase, hypersthene, diopside, augite, wollastonite, anthophyllite, tremolite, actinolite, hornblende, olivine, serpentine, muscovite, biotite, phlogopite, chlorite, epidote, garnet, natrolite, stilbite, apophyllite, talc, gypsum, apatite, andalusite, kyanite, sillimanite, staurolite, cordierite, apatite, beryl, topaz, calcite, dolomite, tourmaline, zircon, fluorite, magnetite, hematite, chromite, sphalerite, psilomelane, pyrolusite, graphite, corundum.	
Module V	10
Teacher Specific related to course Mineralogy	

Reference

- 1. Read, H. H. (1984) Rutley's elements of Mineralogy. CBS Publishers, Delhi
- Berry, L.G., Mason, B. and Dietrich, R.V. (2004) Mineralogy. CBS Publishers and & Distributors, New Delhi, India.
- 3. William D. Nesse (2008) Introduction to Mineralogy. Oxford University Press
- 4. Perkins Dexter (2006) Mineralogy. Pearson Education; Prentice Hall
- 5. Deer, W. A., Howie, R. A., & Zussman, J. (1992). An introduction to the rockforming minerals (Vol. 696). London: Longman

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Understand basic ideas of Mineralogy regarding its scope and aim; and describe silicate structures, physical, electrical, magnetic and radioactive properties	U & E	F &C	Assignment & final exam							
CO2	Understand chemical Mineralogy and explain bonds in minerals, morphological characters of minerals, solid solution and exsolution in minerals.	U & E	F &C	Quiz, Assignment & final exam							
CO3	Determine and describe the physical properties of minerals and identify different minerals.	U, E, &A	F, C &P	Assignment final exam							
	 # - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive 										

				Mappi	ng of CC)s v	vith PSOs a	nd PO				
	I	PSO1	PSO2 PSO3 PSO4 PSO5			PO						
CO 1				3			3	1		2		
CO 2				3			2	2		2		
CO 3				2			2	3		3		
Leve	el			1			2		3			
Correla	tion	Nil		Slightl	y/Low	1	Moderate / Medium Subs		ubstantial/ High			
				Map	ping of	CO	s to Assess	ment Rubr	ics			
	Assi	gnment	9	Seminar	End	Sen	nester Exan	ninations		Internal Examination	ations	
CO 1		\checkmark		\checkmark		\checkmark			\checkmark		\checkmark	
CO 2		\checkmark		\checkmark		\checkmark			\checkmark			
CO 3		\checkmark		\checkmark			\checkmark			\checkmark		

Discipline and Type of Course	Geology		Discipline Specific Core - DSC					
Course Code and Title	UK2DSCG	LY171	Minerals	Minerals and Rocks				
Semester		2	Academic Level: 100 - 199					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week			
	4	3 hours	-	2 hours	5			

Content	Hrs
Module I- Mineralogy	15
Minerals - definition, classification of physical properties of minerals -form,	
habit, cleavage, fracture, colour, diaphaneity, luminescence, fluorescence,	
phosphorescence, play of colours, luster, streak, hardness, specific gravity.	
Electrical, Magnetic, and radioactive properties of minerals. Brief description of	
major rock forming minerals like Quartz, Feldspar, Pyroxene, Mica, Olivine,	
Amphiboles, Garnet etc	
Module II- Igneous petrology	15
Magma: Types & properties, Igneous rock: texture: crystallinity ,shape of grains ,	
Porphyritic, Poikilitic, Perthite, Forms: Lacolith, Lopolith, Phacolith ,Dyke ,Sill,	
Batholith, Stock, Boss : major igneous rock Granite, Rhyolite , Syenite , Dolerite,	
Gabbro, Pegmatite.	
Module III- Sedimentary petrology and Metamorphic petrology	16
Sediments - Process of formation, Texture-grain size, morphology, sorting, packing	
, Fabric- textural maturity: Structures: Physical- bedding, graded bedding ,ripple	
marking-cross bedding, mud cracks, Major rocks: Sandstone, limestone	
, conglomerate, breccia, shale. Metamorphic petrology: Definition, factors, types,	
limits: textures, major rocks: Slate schist, Phyllite, Gneiss, Khodalite, Marble,	
Charnokite.	
Module IV- Practical	14
Megascopic properties of important igneous rocks, Sedimentary rocks and	
mosuscopic properties of important igneous rocks, bedimentary rocks and	
Metamorphic rocks.	

Referen 1. I 2. F 3. F	specific Content related to Minerals and Rocks ce Dana, E. S. (1955) A Textbook of Mineralogy. Asia Publishing House, Wiley	
1. I 2. F 3. F		
2. F 3. F	Dana, E. S. (1955) A Textbook of Mineralogy. Asia Publishing House, Wiley	
2. F 3. F	ana, E. S. (1955) A Textbook of Wineralogy. Asia Fublishing House, whey	7
3. F	hillips, F.C. (1956) An Introduction to Crystallography. Longmans Green.	•
	Lead, H.H. (1984) Rutley's Elements of Mineralogy. C.B.S. Publishers.	
A - N	Iason, B. and L.G. Berry (1968) Elements of Mineralogy. W. H. Freeman &	Co
	Lein, C. and C.S. Hurlbut (1993) Manual of Mineralogy. John Wiley, New Y	
	Deer, W.A., Howie, R.A. and J. Zussman (1983) An introduction to the Rock	
	prming minerals. Longman.	
	Kerr, P.F. (1977) Optical Mineralogy. McGraw Hill Book Company, New Yo	ork.
	erkins Dexter (2015) Mineralogy. Pearson Education.	
	yrrell, G.W. (1978) Principles of Petrology. Chapman and Hall Ltd., London	n.
	ettijohn, F.J. (1983) Sedimentary Rocks. Harper & Bros.	
11. H	larker, A. (1964) Petrology for Students. Cambridge.	
12. F	olk, R.L. (1981) Petrology of Sedimentary Rocks. Hemphils Pub. Co.	
13. 0	Freensmith, J. (1989) Petrology of the Sedimentary Rocks. 7th Edn., CBS	
	ublishers, Delhi.	
	Vinter, J.D. (2001) An introduction to Igneous and Metamorphic Petrology.	
	rentice Hall, New Jersey.	
	Vinkler, H.G.F. (1974) Petrogenesis of Metamorphic Rocks, 5 th , 6 th and 7 th e	ds.
	pringer Verlag.	
	Yardley, B.W.D. (1989) Textbook of Metamorphic Petrology. Longman.	
	² urner, F.J. and Verhoogen, J. (1960) Igneous and Metamorphic Petrology. AcGraw Hill.	
	Villiams, H., Turner, F.J. and Gilbert, C.M. (1982) – Petrography. W. H.	
	reeman and Company, San Francisco, CA.	
	sowen, N.L.M. (1956) The Evolution of the Igneous Rocks. Dover Publication	m
	nc, New York.	,,,
	arth, T.W. (1962) Theoretical Petrology. Wiley.	
	Valstrom, E.E. (1961) Theoretical Igneous Petrology, Wiley.	
22. 7	urner, F.J. and Verhoogen, J. (1960) Igneous and Metamorphic Petrology.	
Ν	IcGraw Hill.	
	latch, F.H. and A.K. Wells (1949) Petrology of Igneous Rocks. Thomas Mu	rby
	Wells, M.K.(Publ.)	. 7
	ohannesen, A (1962) Descriptive Petrography of Igneous Rocks. Vols. I to Γ	٧,
	Illied Pacific. Allied Pacific.	oolz
	Iackenzie, W.S., Donaldson, C.H. and C. Guilford (1988) Atlas of Igneous r nd their textures. ELBS Longman.	UCK
a	ine men watures. LEDS Longinali.	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Discuss mineral and its physical Properties.	U	F	Assignment & final exam
CO2	Identify Igneous, Sedimentary and Metamorphic rocks with Texture and Structure.	U	F	Quiz, Assignment& final exam
CO3	Interpret the association of various rock forming Minerals and major Igneous Sedimentary and Metamorphic rocks.	Ap	F, P	Assignment & final exam
	emember, U-Understand, Ap-Apply, An-An actual, C- Conceptual, P-Procedural, M-Met	-	ite, C-Create	

		Mapping of COs with PSOs and PO											
	I	PSO1	F	PSO2	PSO3 PSO4 PSO5		РО						
CO 1					3					3			
CO 2					3					3			
CO 3					3					3			
Leve	el			1	-		2			3			
Correla	tion	Nil		Slightl	y/Low	ľ	Moderate /	Medium Su		ubstantial/ High			
				Map	ping of	CO)s to Assess	ment Rubri	ics				
	Assi	gnment	0,	Seminar	End S	Sen	nester Exan	ninations		Internal Examina	ations		
CO 1		\checkmark					\checkmark			\checkmark			
CO 2				\checkmark		√ √							
CO 3						\checkmark \checkmark							

Discipline and Type of Course	Geology		Dis	Discipline Specific Core - DSC				
Course Code and Title	UK2DSCG	LY170	At	A brief history of Earth				
Semester		2		Academic Level: 100 - 199				
Course Details	Credit	Lecture per week		orial week	Practical per week	Total Hours/Week		
	4	3 hours	-		2hours	5		

	Hrs
Module I- Nothing to the Present	15
Origin of Universe and evolution of Solar system. Internal structure of earth;	
crust, mantle, core; density and chemical composition; major seismic	
discontinuities. Earth systems: Subsystems-Hydrosphere, Biosphere,	
lithosphere: Cryosphere, and atmosphere. Evolution of Earth through time: Age	
of Earth: Relative and absolute age concepts.	
Introduction to geological time scale.	
Module II- The Dynamic Earth	15
Endogenic and Exogenic activities. Basic ideas of weathering, erosion,	
transportation, and deposition. Examples of geological agents. Plate tectonics and	
isostasy. Distribution of earthquake and volcanos.	
Module III- Evolution of life through time	16
Fossils and methods of fossilization. Precambrian life, The Cambrian Explosion.	
Biomineralization and skeletonization. Origin of vertebrates and early land plants,	
Mesozoic Life in the Jurassic, origin of mammals, Rise and fall of dinosaurs,	
Origin of birds; and spread of flowering plants. significance of trilobites and	
ammonoids, The age of humans. Mass extinctions.	
Module IV- Practical	14
Epicentre calculation, plotting of volcanoes and earthquake prone areas related to	
plate boundaries.	
Module V	10

Reference 1. Stanley, S.M., 2008 Earth System History 2. Jonathan I. Lumine W.H. Freeman Earth-Evolution of a Habitable World,

- Cambridge University Press.
 Canfield, D.E. & Kon Hauser, K.O., 2012 Fundamentals of Geobiology
- 3. Canfield, D.E. & Kon Hauser, K.O., 2012 Fundamentals of Geobiology Blackwell
- 4. Cowen, R., 2000 History of Life, Blackwell
- 5. Strahler, Arthur Newell, The Earth Sciences, New York, Harper & Row
- 6. Carlson, Plummer and McGeary: Physical Geology– Earth revealed, Published by McGraw-Hill, 2006
- 7. Carlson, Plummer, and Mc Geary: Introductory Geology Earth Revealed, Published by McGraw-Hill.
- 8. Press and Siever, Understanding Earth, W. H. Freeman; 4 edition, 2003
- 9. Ernst W. G., Earth Systems: Processes and Issues, Cambridge University Press,2000.
- 10. Frederick K. Lutgens, Essentials of Geology (11th Edition) Pearson Prentice Hall, Pearson Education, Inc. New Jersey, 2012

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Introduction to Earth, Age of Earth, Interior of earth and Earths Dynamics.	U	F	Assignment & final exam
CO2	Understand Basic concepts of Stratigraphy, GTS, and methods of fossilization.	U	С	Quiz, Assignment& final exam
CO3	Analyze various events in GTS	An	Р	Assignment & final exam
	emember, U-Understand, Ap-Apply, An actual, C- Conceptual, P-Procedural, M-	-	aluate, C-Create	

		Ν	Mapping of COs with PSOs and PO										
	F	PSO1	I	PSO2 PSO3		PSO3 PSO4 H		PSO5	P	0			
CO 1		3											
CO 2					2								
CO 3								2					
Leve	el]	1		2			3			
Correla	tion	Nil		Slightl	Slightly/Low Moderate / Medium Substant						al/ High		
				Map	ping of	CO	s to Assess	ment Rubr	ics				
	Assi	gnment	0.	Seminar	EndS	Sen	nester Exan	ninations	li	ntern	al Examin	ations	
CO 1		\checkmark				\checkmark							
CO 2				\checkmark							\checkmark		
CO 3							\checkmark						

Discipline and Type of Course	Geology		Multi-	i-Disciplinary Course - MDC				
Course Code and Title	UK2MDCGLY	100	Geoscience and Environmental managemen					
Semester	2	2 Aca			cademic Level: 100 - 199			
Course Details	Credit			Tutorial Per week	Practical per week	Total Hours/Week		
	3	3 ł	nours	-	-	3		

Content	Hrs
Module-1- Earth and water	12
Introduction and branches of Geology. Earth-Size, shape, and interior structure.	
Hydrologic cycle. Hydrologic cycle, groundwater - Infiltration, zones of groundwater, ground and perched water tables, open wells and bore wells	
Module II- Surfaces process	12
Surface process: Weathering – agents, types, and products of weathering. Mass wasting-Types. Landslide. Subsurface process-Earthquakes (Epicenter and focus, intensity and magnitude scales, Seismographs, and seismogram). Volcanoes - types and distribution of major volcanoes. Tsunami. Brief idea of roles played by streams, oceans, wind, and glaciers on modifying the earth's surface.	
Module III- Climate change influence on Geosphere	12
Climate change: Greenhouse effect and global warming. Anthropogenic influence	
on Geosphere and their impact on climate change. Geosphere exploitation and	
Environmental pollution. Natural Hazards and vulnerability scenario in India.	
Module IV	10
Teacher Specific related to course Geosphere and Environment management	
Reference	
 Valdiya, K.S. (1987) Environmental Geology: Indian Context, Tata Mc-Graw Hi Strahler, A.N. and Strahler, A.H. (1973) Environmental Geosciences: Interact between natural systems and man. John Wiley & Sons Inc. Donald R Caotes (1981) Environmental Geology. John Wiley and Sons. Keller, E.A. (1978) Environmental Geology. Bell and Howell, Prentice Hall, US. Bryant, E. (1985) Natural Hazards. Cambridge University Press 	tion

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Understand and explain the subject meaning of Geology and its branches; describe the characters of earth; explain hydrologic cycle and role of groundwater.	U & E	F &C	Assignment & final exam					
CO2	Understand and describe the various exogenic and endogenic processes that form a part of earth system, including earthquakes and volcanoes.	U & E	F &C	Quiz, Assignment & final exam					
CO3	Understand and describe Global climate change, causes and effects; explain the significance of pollution. and waste disposal	U & E	F &C	Assignment & final exam					
	 * - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive 								

Mapping of COs with PSOs and PO										
	I	PSO1	PSO2	PSO	PSO3 PSO4 PSO5		PO			
CO 1		3	3				3		2	
CO 2		2	2				2		3	
CO 3		2	2				3		3	
Leve	el			1	2			3		
Correla	tion	Nil	Slight	ly/Low	l	Moderate /	Medium	S	ubstantial/ High	
			Ma	pping of	f CC	s to Assess	ment Rubr	ics		
	Assi	gnment	Semina	r End	End Semester Examinations				Internal Examina	ations
CO 1		\checkmark	\checkmark		\checkmark				\checkmark	
CO 2		\checkmark	\checkmark		\checkmark				\checkmark	
CO 3		\checkmark	\checkmark		\checkmark \checkmark					

Discipline and Type of Course	Geology			Multi-Disciplinary Course - MDC			
Course Code and Title	UK2MDCGLY120			The Dynamic Earth			
Semester	2			Acad	emic Level: 1	00 - 199	
Course Details	Credit	Lecture per week		orial week	Practical per week	Total Hours/Week	
	3	3 hours		-		3	

Content	Hrs.
Module I: Introduction to Geomorphology	9
The concept of Geomorphic Cycle and geological agents. Geological work of Streams,	
types of streams, drainage basin, patterns. Stream erosion- Concept of base level,	
degradational landforms transportation, types of loads, deposition. Long profile of	
stream - graded stream. Fluvial aggradation.	
Module II: Groundwater and its sources	9
Sources of Groundwater. Hydrologic cycle. Hydrological characteristics of earth	
materials -porosity & permeability - Aquifer, aquiclude, aquitard, aquifuge -	
Subsurface occurrence of groundwater, types of aquifers - confined and unconfined	
and artesian aquifers - springs, Recharge, and discharge of groundwater -	
different	
types of wells. Geological work of groundwater.	
Module III: Earth's thermal environment and Climates.	9
Glaciers and wind as Geological agent.: Glaciers - types, distribution, geological	
work- glacial landforms and moraines. Geological action of wind and aeolian	
landforms.	
Module IV: Introduction to Structural Geology	9
Concept of primary and secondary structures. Brief idea of deformation structures -	
fold fault, joint, foliation, lineation. Mass Movements with special emphasis on	
landslide and causes of hill slope instability; stability of slopes.	
Module V- Teacher Specific content	6
Teacher Specific content related to The Dynamic Earth	
Reference	
1 Misra, H.C. (1995) A Handbook on GIS. GIS India, Hyderabad.	
2 Ian Haywood, Sarah Cornelius, and Steve Carver (2000) An introduction	on to
Geographical Information Systems. Addison Wesley Longman Ltd. New York.	
3 Smith, T.R. and Piquet(1985)GIS. London Press, London.	
4 Heywood, D.I., Cornelius, S., and Carver, S. (1998). An introduction to Geogra	phical
Information Systems. Longman, New Delhi.	
5 LoC.P.and Young, A.K.W. (2003) Concepts and Techniques of Geogra	phical

Information System. Prentice Hall of India, New Delhi.

- 6 Pandey S. N.(1987) Principles and Applications of Photogeology, Wiley Eastern.
- 7 Ahamed,E.(1972)Coastal Geomorphology of India. Orient Longman, New Delhi.
- 8 Thornbury, W.D. (1968). Principles of Geomorphology, Wiley.
- 9 Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill.
- 10 Weisberg, J, and Parish, H. (1974). Introductory Oceanography. McGraw Hill.
- 11 Arthur Holmes (1977) Principles of Physical Geology (Edinburgh: Thomas Nelson and Sons,1944 and New York: Ronald Press,1945.
- 12 Bloom,A.(2004) Geomorphology A Systematic analysis of Late Cenozoic Landforms (Third edition) Waveland Press Inc.
- 13 Vishwas S. Kaleand Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan.
- 14 SparksB.W.(1969).Geomorphology, Longman.

Cognitive Level*	Knowledge Category#	Evaluation Tools used
U, An	C, F	Assignment, Final Exam
Ap, An, E	С	Assignment, Final Exam
U, E	F, P	Assignment Final Exam
	Level* U, An Ap, An, E	Level*Category#U, AnC, FAp, An, EC

- F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and PO									
	F	PSO1]	PSO2	PSO3	3	PSO4	PSO5	РО
CO 1		3							
CO 2		3							
CO 3				3					
Level]	-		2		3
Correlatio	on	Nil		Slightl	ly/Low		Moderate / Medium		Substantial/High

Mapping of COs to Assessment Rubrics								
	Assignment	Seminar	End Semester Examinations Internal Examinations					
CO 1	\checkmark		\checkmark	\checkmark				
CO 2	\checkmark		\checkmark	\checkmark				
CO 3		\checkmark	\checkmark	\checkmark				

Discipline and Type of Course	Geology		Multi-Disciplinary Course - MDC			
Course Code and Title	UK2MDC	GLY121	Earth Ma	Earth Materials		
Semester		2	Academic	Academic Level: 100 - 199		
Course Details	Credit Lecture per week		Tutorial per week	Practical per week	Total Hours/Week	
	3	3 hours	-		3	

Content	Hrs.
Module I: The Minerals	9
Definition and physical properties of minerals -form, habit, cleavage, fracture, colour,	
diaphaneity, luminescence, fluorescence, phosphorescence, play of colours, luster,	
streak, hardness, specific gravity. Electrical, magnetic and radioactive properties of	
minerals. Brief description of major rock forming minerals like quartz, feldspar,	
pyroxene, mica, olivine, amphiboles, garnet etc.	
Module II: Igneous Rocks	9
Magma: Types & properties. Igneous rock: texture, crystallinity, shape of grains,	
Porphyritic, poikilitic, Perthite. Forms: Lacolith, Lopolith, Phacolith, dyke, sill,	
batholith, stock .Major igneous rocks: - Granite, Rhyolite, Syenite, Dolerite, Gabbro	
and Pegmatite.	
Module III: Sedimentary Rocks:	9
Sediments -process of formation. Texture: -grain size, morphology, sorting, packing,	
Fabric and textural maturity. Structures: bedding, graded bedding, ripple marking,	
cross bedding and mud cracks. Major rocks: Sandstone, Limestone, Conglomerate,	
Breccia and shale.	

Module IV: Metamorphic Rocks 9 Definition of metamorphism and metamorphic rock. Factors affecting metamorphism, types and limits of metamorphism. Major textures and structures of metamorphic rocks. Major rocks: Slate, Schist, Phyllite, Gneiss, Khondalite, Marble and Charnockite. **Module V- Teacher Specific content** 6 Teacher Specific content related to Earth Materials Reference Dana, E.S.(1955) A Textbook of Mineralogy .Asia Publishing House Wiley. 1 Read, H.H.(1984)Rutley's Elements of Mineralogy. C.B.S. Publishers. 2 3 Mason, B. and L.G. Berry(1968) Elements of Mineralogy. W. H. Freeman & Co. Klein, C. and C.S. Hurlbut (1993) Manual of Mineralogy. John Wiley, New York. 4 5 Deer, W.A., Howie, R. A. and J.Zussman (1983) An introduction to the Rock forming minerals. Longman. Perkins Dexter (2015) Mineralogy. Pearson Education. 6 7 Tyrrell, G.W. (1978) Principles of Petrology. Chapman and Hall Ltd. London. 8 Pettijohn, F.J. (1983) Sedimentary Rocks .Harper & Bros. 9 Folk, R.L. (1981) Petrology of Sedimentary Rocks . Hemphils Pub. Co. 10 Greensmith, J. (1989) Petrology of the Sedimentary Rocks. 7thEdn., CBS Publishers, Delhi. 11 Winter, J.D. (2001) An introduction to Igneous and Metamorphic Petrology. Prentice Hall, New Jersey. 12 Winkler, H.G.F. (1974) Petrogenesis of Metamorphic Rocks, 5th, 6thand7theds.SpringerVerlag.

- 13 Turner, F.J. and Verhoogen, J. (1960) Igneous and Metamorphic Petrology. McGraw Hill.
- 14 Turner, F.J. and Verhoogen, J. (1960) Igneous and Metamorphic Petrology. McGraw Hill.
- 15 Hatch,F.H.andA.K.Wells(1949) Petrology of Igneous Rocks. Thomas Murby & Wells, M.K. (Publ.)
- 16 Mackenzie, W.S., Donaldson, C. H and C. Guilford (1988) Atlas of Igneous rocks and their textures. ELBS Longman.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand the Properties and Classification of Minerals and rocks.	U	C, F	Assignment, Final Exam				
CO2	Identify Minerals and rocks including their structures, compositions, and occurrence.	Ар	С	Assignment, Final Exam				
CO3	Analyze Igneous, Sedimentary and Metamorphic rocks include their texture, classification and formation.	An	F, P	Assignment, Final Exam				
* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create								
# - F-Fa	actual, C- Conceptual, P-Procedural, M-Metaco	gnitive						

			Mappi	ng of CC)s v	vith PSOs a	nd PO			
	I	PSO1	PSO2	PSO	PSO3 PSO4 PSO5		PO			
CO 1			3						3	
CO 2			3						3	
CO 3			2				1		3	
Leve	el		1	_		2			3	
Correla	tion	Nil	Slightl	y/Low	l	Moderate /	Medium	S	ubstantial/ High	
			Мар	ping of	CC)s to Assess	ment Rubr	ics		
	Assi	gnment	Seminar	End	Sen	nester Exan	ninations		Internal Examination	ations
CO 1					\checkmark				\checkmark	
CO 2		\checkmark			\checkmark			\checkmark		
CO 3		\checkmark	\checkmark			\checkmark			\checkmark	

5.3 COURSES IN GEOLOGY: Semester 3

Discipline and Type of Course	Geology		Discipline Specific Core - DSC				
Course Code and Title	UK3DSCGLY2	200	Cr	ystals and Mi	nerals		
Semester	3		Academic Level: 200 - 299				
Course Details	Credit	Lect Per weel		Tutorial Per week	Practical per week	Total Hours/Week	
	4 3 hou		urs	-	2 hours	5	

Content	Hrs.
Module-1- The Study of Crystals	15
Crystallography-Crystalline state and crystals, Elements of crystals (face, edge and vertex). Angles in crystals (plane, interfacial and solid angles) and their determination using Goniometer (contact and reflection). Concept of symmetry in crystals and operations- Axis, plane, centre and roto-inversion. General Mathematical relations in Crystals-Crystallographic axes, Axial ratio and axial plane.	
Nomenclature of crystal faces-Unit face, Intercepts of crystals-Parameters (Weiss notation) and Indices (Miller Index and Miller-Bravais index). Zones and Zone symbols. Overview of crystal systems and classes. Brief study of holohedral, hemihedral, hemimorphic and enantiomorphic classes. Important laws in Crystallography- Law of constancy of interfacial angle, law of rational indices and law of constancy of symmetry.	
Module II- Introduction to Minerals	15
Originof Minerals. Chemical bonding in minerals, Classification of minerals. Silicate structures and types, Isomorphism, Polymorphism, Pseudomorphism, exsolution and solid solution. Physical properties of minerals- Properties depending on external appearance (form and habit), on light (colour, streak, lustre, diaphaneity and luminescence), on mechanical cohesion (hardness, tenacity, cleavage, fracture and parting) on mass (density and specific gravity) and action of senses (odour, taste, feel and reaction with acids). Properties depending on electricity, magnetism and radioactivity.	

	16
Ordinary and polarized light, polarization of light, refractive index, critical angle and total internal reflection. Polarization by reflection, absorption, and refraction. Isotropic and anisotropic substances. Uniaxial and biaxial minerals. Double refraction, construction of Nicol prism. Petrological microscope - parts and functions. Optical accessories - mica plate, gypsum plate and quartz wedge. Optical properties- Colour, relief, pleochroism, interference colour and its order, extinction and its types, birefringence and optic sign, Basic description of optical indicatrix.	
Module IV – Practical	14
Systematic study and physical identification of important non-silicate minerals- Calcite, dolomite, aragonite, magnesite, diamond, graphite, sulphur, molybdenite, sphalerite, galena, chalcopyrite, pyrite, magnetite, hematite, marcasite, barite, gypsum, halite, fluorite, corundum, cuprite, chromite, rutile, ilmenite, monazite, psilomelane, pyrolusite, limonite, bauxite, malachite, azurite, realgar and orpiment.	
Module V	10
Teacher Specific related to course Crystals and Minerals	
Reference	
1. Dana, E. S. (1955) A Textbook of Mineralogy. Asia Publishing House, Wiley.	
2. Phillips, F.C. (1956) An Introduction to Crystallography. Longmans Green.	
3. Read, H.H. (1984) Rutley's Elements of Mineralogy. C.B.S. Publishers.	
4. Mason, B. and L.G. Berry (1968) Elements of Mineralogy. W. H. Freeman & Co.	
5. Klein, C. and C.S. Hurlbut (1993) Manual of Mineralogy. John Wiley, New York.	
6. Deer, W.A., Howie, R.A. and J. Zussman (1983) An introduction to the Rock forming minerals. Longman.	
7. Kerr, P.F. (1977) Optical Mineralogy. McGraw Hill Book Company, New York.	
8. Perkins Dexter (2015) Mineralogy. Pearson Education.	
	•
9. Perkins D. and Henke K. R. Minerals in thin section. Pearson Education Inc., 2004.	
 Perkins D. and Henke K. R. Minerals in thin section. Pearson Education Inc., 2004. Nesse W. D. Introduction to Optical Mineralogy. Oxford University Press, 2004. 	

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the basic elements of crystallography and measurement of interfacial angles		F	Quiz, ESE
CO2	Understand and analyze the structure, physical, and chemical. properties of minerals	U,An	F,P	Assignment ESE
CO3	Understand and analyse the principles, parts of Petrological microscopes and the elements of optical Mineralogy.	-	F,P	ESE
CO4	Physical identification of important non-silicate minerals	Ap, An	Р	Quiz ESE
	emember, U-Understand, Ap-Apply, An-Ana actual, C- Conceptual, P-Procedural, M-Meta	-	e, C-Create	

	Mapping of COs with PSOs and PO										
	I	PSO1	PSO2	PSO	3	PSO4	PSO5		РО		
CO 1			3						2		
CO 2			3						3		
CO 3			3						2		
CO4							2		3		
Leve	el			1		2			3		
Correla	tion	Nil	Slight	ly/Low	ľ	Moderate /	Medium	S	ubstantial/ High		
			Ma	pping of	CO	s to Assess	ment Rubr	ics			
	Assi	gnment	Semina	r End S	Sem	nester Exan	ninations		Internal Examin	ations	
CO 1			\checkmark			\checkmark			\checkmark		
CO 2		\checkmark			\checkmark			\checkmark			
CO 3					✓ ✓		\checkmark				
CO 4			\checkmark			\checkmark			\checkmark		

Discipline and Type of Course	Geology			D	Discipline Specific Core - DSC			
Course Code and Title	UK3DSCG	LY220		Μ	Mineral Science			
Semester		3		Acad	cademic Level: 200 - 299			
Course Details	Credit	Lecture per week			Practical per week	Total Hours/Week		
	4	3 hours		-	2 hours	5		

Content	Hrs.
Module I: Crystallography	16
Crystallography: Crystal-Concept of crystalline matter; Interfacial angle and	
external morphology in relation to internal structures; Repetition Theory and laws	
of crystallography. Translation periodicity of crystals. Space lattices. Weiss	
parameters and Miller indices; form and zone. Crystal symmetry- elements and	
operations. Classification of crystals into systems and point groups. Hermann	
Mauguin notation	
Module II: Crystallography and Projection	12
Detailed study of Symmetry elements, forms, type minerals, holohedral,	
hemihedral, hemimorphic and enantiomorphic forms HM symbols of normal	
classes of six crystal systems, Twinning, Twin Laws, twin plane, twin axes and	
mineral examples. Morphological imperfections in crystals. Basic concepts of	
spherical and stereographic projections in crystallography, Wulff net.	
Module III: Physical and chemical mineralogy	18
Physical and chemical mineralogy: Minerals – definition, classification. Physical	
properties of minerals -form, habit, cleavage, fracture, colour, diaphaneity,	
luminescence, fluorescence, phosphorescence, play of colours, luster, streak,	
hardness, specific gravity. Electrical, magnetic and radioactive properties of	
minerals.	
Atomic arrangements: Chemical bonding- Types, Close packing in crystals- CCP,	
FCC and HCP; Ionic radius, ratio and coordination; Pauling's rules. Solid Solution,	
Polymorphism, Pseudo morphism.	
Module IV: Practical	14
Calculation of crystal parameters, indices and zone symbols, Identification of	
crystal forms in normal classes, Stereographic projections of normal classes of	
isometric and tetragonal systems, Identification of physical properties of minerals.	
60 Geology	Cullar

Modu	le V: Teacher specific content	10
Teach	er specific content related to Mineral Science	
Refer	ence	
1.	Klein, C., Dutrow, B., Dwight, J., & Klein, C. (2007). The 23rd Edition of the	e
	Manual of Mineral Science (after James D.Dana). J. Wiley & Sons.	
2.	Deer, W. A., Howie, R. A., & Zussman, J. (1992). An introduction to the row	ck-
	forming minerals (Vol. 696). London: Longman.	
3.	Nesse, W. D. (2011). Introduction to Optical Mineralogy (Fourth Edition).	
	Oxford University Press.	
4.	Putnis, A. (1992): Introduction to Mineral Sciences. Cambridge University I	ress.
5.	Whalstrom, E.E. (1969): Optical Crystallography. John Wiley & Sons	
6.	Verma, P. K. (2010). Optical Mineralogy (Four Colour). Ane Books Pvt Ltd	•
7.	Nesse, W.D., 2000, Introduction to Mineralogy, Oxford University Press, N	ew
	York, 442 p.	
8.	Phillips, F.C. (1956) An Introduction to Crystallography. Longmans Green.	
	Read, H.H. (1984) Rutley's Elements of Mineralogy. C.B.S. Publishers.	
10	. Mason, B. and L.G. Berry (1968) Elements of Mineralogy. W. H. Freeman a	сk Co.
	. Kerr, P.F. (1977) Optical Mineralogy. McGraw Hill Book Company, New Y	ork.
12	. Perkins Dexter (2015) Mineralogy. Pearson Education.	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used						
CO1	Understand crystal structures and symmetry	R	F	Assignment, Final Exam						
CO2	Identify crystal forms through crystallographic orientation and derive indices and parameters	U	С	Assignment, Final Exam						
CO3	Interpret various minerals through physical properties.	AP	Р	Assignment, Final Exam						
CO4	CO4Understand crystal structures and symmetryFQuiz Final exampleRR									
* - R-Re	* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create									
# - F-Fa	actual, C- Conceptual, P-Procedural, M-Me	acognitive								

	Mapping of COs with PSOs and PO										
	I	PSO1	P	PSO2	PSO	3	PSO4	PSO5	PO		
CO 1				3						2	
CO 2				3						2	
CO 3								3		3	
CO4								3		3	
Leve	el			1			2			3	
Correla	tion	Nil		Slightly	y/Low	N	Ioderate /	Medium	S	ubstantial/ High	
				Мар	ping of	COS	s to Assess	ment Rubri	ics		
	Assi	gnment	5	Seminar	EndS	Sem	ester Exan	ninations		Internal Examination	ations
CO 1		\checkmark					\checkmark			\checkmark	
CO 2				\checkmark		\checkmark				\checkmark	
CO 3						\checkmark \checkmark			\checkmark		
CO 4							\checkmark			\checkmark	

Discipline and Type of Course	Geology		Disci	iscipline Specific Core - DSC				
Course Code and Title	UK3DSCGI	LY250	Petrology					
Semester	3		Academic Level: 200 - 299					
Course Details	Credit	Lectur per we	-	Tutorial per week	Practical per week	Total Hours/Week		
	4	3 hou	ırs	-	2 hours	5		

Content	Hrs.
Module-1- Rocks	15
Rock - definition, types, rock cycle, plutonic, hypabyssal and volcanic igneous	
rocks. Forms of Intrusive igneous rocks: Concordant and Discordant forms. Forms	
of extrusive igneous rocks: lava flows, pyroclastic deposits - agglomerate, lapilli,	
volcanic ash and pumice. Classification of igneous rocks based on texture and	
mineralogy (felsic and mafic minerals and colour index). Chemical classification –	
Based on silica saturation and based on alkali & silica.	
	<u> </u>
Module II- Sediments	15
Origin of sediments. Diagenesis - Compaction, cementation, authigenesis,	
recrystallization and replacement. Classification of sedimentary rocks - Clastic	
and non-clastic rocks. Clastic texture - concept of size, Udden-Wentworth and Phi	
scale scheme. Grain shape, morphology and fabric. Non- clastic texture – different	

types of crystalline texture. Brief study of the following: Primary, secondary and organic structures. Categorization of mechanical rocks: Argillaceous, arenaceous and rudaceous rocks. Introduction to the following: sandstone, shale, conglomerate and breccias.

Module III- Metamorphism

16

Definition of metamorphism. Factors of metamorphism - pressure, temperature, chemically active fluids, time and parent rock chemistry, Limits of metamorphism. Types of metamorphism –Contact metamorphism, Regional metamorphism – orogenic and ocean floor, Burial metamorphism, Cataclastic metamorphism, hydrothermal metamorphism Impact/shock metamorphism and plutonic metamorphism. Metamorphic textures – Crystalloblastic and Relict textures. Metamorphic structures – foliations, lineations, cataclastic and miscellaneous. Brief study of the following metamorphic rocks: Slate, Phyllite, Quartzite, Marble, Schists, Amphibolite, Gneisses, Eclogite, Blueschist.

Module IV Practical	
Megascopic study of important igneous,	sedimentary and metamorphic rocks

14

10

Module V

Madala WD

Teacher Specific related to course Petrology

Reference

- 1. Tyrrell, G.W. (1978) Principles of Petrology. Chapman and Hall Ltd., London
- 2. Turner, F.J. and Verhoogen, J. (1960) Igneous and Metamorphic Petrology. McGraw Hill.
- 3. John D. Winter (2012) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.
- 4. Ehlers, G.E. and Blatt, H. (1999) Petrology Igneous, Sedimentary and Metamorphic. CBS Publishers and Distributors, New Delhi
- 5. Pettijohn, F.J. (1983) Sedimentary Rocks. Harper & Bros.
- 6. Folk, R.L. (1981) Petrology of Sedimentary Rocks. Hemphils Pub. Co.
- 7. Raymond, L. A. (2002). Petrology: the study of igneous, sedimentary, and metamorphic rocks. McGraw-Hill Science Engineering.
- 8. Myron G. Best (2001). Igneous and Metamorphic Petrology
- 9. Nichols, G. (2009) Sedimentology and Stratigraphy Second Edition. Wiley Blackwell

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used						
CO1	Understand the igneous rocks, metamorphic rocks, sedimentary rocks, rock cycle and origin of sediments.	U & E	F &C	Assignment & final exam						
CO2	Understand and explain the origin, factors, types, forms, texture, classification of igneous, metamorphic and sedimentary rocks.	U & E	F &C	Quiz, Assignment & final exam						
CO3	Identify and describe the megascopic and microscopic properties of important igneous, sedimentary and metamorphic rocks.	U, E, &A	F, C &P	Assignment & final exam						
	 * - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive 									

	Mapping of COs with PSOs and PO											
	F	PSO1	PSO2	PSO:	3	PSO4	PSO5		РО			
CO 1			3			2	1		3			
CO 2			3			3	3		3			
CO 3			1			3	3		3			
Leve	el			1	2				3			
Correla	Correlation Nil		Slight	ly/Low	Low Moderate / Medium S			S	ubstantial/High			
			Ma	pping of	f COs	s to Assess	ment Rubri	ics				
	Assi	gnment	Semina	r End	Sem	ester Exan	ninations		Internal Examina	ations		
CO 1		\checkmark	\checkmark		\checkmark						\checkmark	
CO 2		\checkmark	\checkmark		\checkmark			\checkmark				
CO 3		\checkmark	\checkmark			\checkmark			\checkmark			

Discipline and Type of Course	Geology		Disci	Discipline Specific Core - DSC				
Course Code and Title	UK3DSCGLY2	251	Earth Structures					
Semester	3		Acad	emic Level:	nic Level: 200 - 299			
Course Details	Credit	r	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week		
	4	3 h	ours	-	2 hours	5		

Content	Hrs
Module-1- Introduction to Structures	14
Introduction to Structures- Geologic significance of structures in rocks Primary and Secondary structures: Igneous structures (extrusive and intrusive) - Sedimentary structures (Primary and secondary), Metamorphic structures (Foliation, lineation, schistose, gneissose, slaty cleavage, cataclastic structure)	
Module II- Fold and faults	16
Attitude of planar and linear features on earth- Strike, dip, pitch and plunge. Brief idea of measurements of structural features using Brunton compass.	
Folds –Parts of fold, Types (antiform, synform, anticline, syncline and recumbent fold), - Fault- Fault terminology and types (normal, reverse, strike-slip, dip-slip, horst and graben)	
Module III- Structural landforms	16
Major Structural landforms of Earth- Mountains (folded, faulted, relict and volcanic), Mid Oceanic Ridges, Continental shelf, slope, Abyssal plains, Subduction zones, Island arc and volcanic arcs, Seamounts and guyots	
Module IV Practical	14
Geological maps and structural problems involving true dip and apparent dip.	
Module V	10
Teacher Specific related to course Earth Structures	
Reference	
 Billings (1974) Structural Geology. 11th edition, Prentice Hall. Ken McClay (1991) The mapping of Geological Structures. Geological Structures. Geological Society of London. Wiley, New edition. R. J. Twiss and E M Moore (2007) Structural Geology 2nd edition. Freema Company 	-

- 4. Park R. G. (1997) Foundations of Structural Geology 3rd, Chapman & Hall.
- 5. Park, R. G. (2004) Foundations of Structural Geology. Chapman & Hall.
- 6. Pollard, D. D. (2005) Fundamental of Structural Geology. Cambridge University Press.
- 7. Ragan, D. M. (2009) Structural Geology: an introduction to geometrical techniques (4th Ed). Cambridge University Press (For Practical

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Understand the geologic significance of structures in rocks, and structural landforms of earth emphasis on mountains and features of ocean floor.	U & E	F &C	Assignment & final exam							
CO2	Understand and describe the attitude of planar and linear features on earth, folds and faults with reference to their origin, terminologies, classification and their significance.	U & E	F &C	Quiz, Assignment & final exam							
CO3	Illustrate and analysis of geologic maps with different structural features.	U, E, &A	F, C &P	Assignment & final exam							
	 * - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive 										

	Mapping of COs with PSOs and PO												
	I	PSO1	I	PSO2	PSO3	3	PSO4	PSO5		PO			
CO 1		3		3				2		3			
CO 2		3		3				3		3			
CO 3		1		2				3		3			
Leve	Level 1			2				3					
Correla	tion	Nil		Slightl	y/Low	I	Moderate /	Medium	S	ubstantial/ High			
				Мар	ping of	CC	s to Assess	ment Rubr	ics				
	Assi	gnment	•••	Seminar	EndS	Sen	nester Exan	ninations		Internal Examina	ations		
CO 1		\checkmark \checkmark		\checkmark		\checkmark		\checkmark				\checkmark	
CO 2		\checkmark		\checkmark		\checkmark			\checkmark \checkmark		\checkmark		
CO 3		\checkmark		\checkmark		\checkmark				\checkmark			

Discipline and Type of Course	Geology		Discipline Specific Core - DSC					
Course Code and Title	UK3DSCG	LY270	Dynamic Earth and Earth Resources					
Semester	3			emic Level: 200 - 299				
Course Details	Credit	Lecture per week		torial week	Practical per week	Total Hours/Week		
	4	3 hours		-	2 hours	5		

Content	Hrs.
Module I- Geomorphology	16
Streams: types of streams, drainage basin, patterns. Geological work of streams –	
erosion- Concept of base level, degradational landforms transportation, types of	
loads, depositionlong profile of stream - graded stream fluvial aggradation.	
Glaciers – types, distribution, geological work- glacial landforms, moraines.	
Groundwater and its sources. Sources of groundwater. Hydrologic cycle.	
Hydrological characteristics of earth materials -porosity & permeability - Aquifer,	
aquiclude, aquitard, aquifuge - Subsurface occurrence of groundwater types of	
aquifers - confined and unconfined and artesian aquifers - springs, Recharge and	
discharge of groundwater - different types of wells. Geological work of	
groundwater	
Module II- Structural geology	15
Concept of primary and secondary structures, Attitude of planar and linear	
structures. Parts and Geometrical classification of deformation structures - fold	
fault, joint, foliation, lineation. Engineering application of deformation structures	
in construction of dams and reservoirs, tunnels, roads, railways, bridges and	
buildings. Mass Movements with special emphasis on landslide and causes of hill	
slope instability.	
Module III- Economic Geology	15
Basic Concepts and significance of Economic Geology, Ore, gangue, industrial	
minerals, tenor ,grade. Assay value . Brief study of important process of ore	
mineral formation: Magmatism, hydrothermal processes, contact metasomatism,	
metamorphism, evaporates, residual and mechanical concentration, supergene and	
sulphide enrichment. Occurrence of Iron Kudremukh , Coal – Bokaro, Jharkhand,	
Petroleum-Naharkotiya, Assam & Bombay. Mica deposits-Nellore, Andrapradesh	

Module IV- Practical

Megascopic identification of ore minerals of Iron , Lead and Zinc , Manganese Copper and Aluminium. Basics of topographic maps and contours. Structural map reading and creation of cross sections.

Module V - Teacher Specific content

Teacher Specific content related to Dynamic Earth and Earth Resources

Reference

- 1. Thornbury, W. D. (1968). Principles of Geomorphology, Wiley.
- 2. Plummer, Carlson, McGeary (2003). Physical Geology. McGraw Hill.
- 3. Weisberg, J, and Parish, H. (1974). Introductory Oceanography. McGraw Hil
- 4. Arthur Holmes (1977) Principles of Physical Geology (Edinburgh: Thomas Nelson and Sons, 1944 and New York: Ronald Press, 1945.
- Bloom, A. (2004) Geomorphology A Systematic analysis of Late Cenoz Landforms (Third edition) Wavel and Press Inc.
- 6. Vishwas S. Kale and Avjit Gupta (2000). Introduction to Geomorphology, Orient Black Swan.
- 7. Sparks B. W. (1969). Geomorphology, Longman
- 8. Strahler, Arthur Newell, The Earth Sciences, New York, Harper & Row
- 9. Press and Siever, Understanding Earth, W. H. Freeman; 4 edition, 2003
- 10. Ernst W. G., Earth Systems: Processes and Issues, Cambridge University Press,2000.
- Frederick K. Lutgens, Essentials of Geology (11th Edition) Pearson Prentic Hall, Pearson Education, Inc. New Jersey, 2012.
- 12. Anthony M. Evans (1980). An introduction to Ore Geology, second edition, ELBS.
- 13. Umeshwer Prasad (1996). Economic Mineral Deposits, CBS Publishers.
- Mead L. Jensen and Alan M. Bateman (1981). Economic Mineral Deposits, John Wiley& Sons Third edition, revised printing Billings (1974) Structural Geology. edition, Prentice Hall.
- 15. Park R. G. (1997) Foundations of Structural Geology 3rd, Chapman & Hall.
- 16. Hills, E. S. (1961) Elements of Structural Geology, Asia Publishing House.
- 17. Hobbs, Means and Williams (1976). An Outline of Structural Geology. John Wiley.
- John Robberts (1982) Introduction to Geological Maps and Structures, Pergar Press.
- 19. Ken McClay (1991) The mapping of Geological Structures. Geological Socio of London. Wiley, New edition.
- 20. R. J. Twiss and E M Moore (2007) Structural Geology 2 edition. Freeman & Company

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Students able to Classify various Geological agents and their Work.	U	С	Assignment & final exam							
CO2	Discuss economic importance of Minerals, various processes of ore formation and Engineering application of various deformation structures.	U	C, F	Quiz, Assignment& final exam							
CO3	Use knowledge to locate various Ore deposits in India.	Ар	F, P	Assignment & final exam							
	 * - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive 										

	Mapping of COs with PSOs and PO											
	1	PSO1	PSO	2	PSO3	3	PSO4	PSO5		РО		
CO 1		3								2		
CO 2			3							2		
CO 3							3			3		
Leve	el			1	1		2			3		
Correla	tion	Nil	Sli	ghtly	/Low	N	Moderate /	Medium	S	ubstantial/ High		
				Марр	oing of	CO	s to Assess	ment Rubr	ics			
	Assi	gnment	Sem	Seminar		Sem	nester Exan	ninations		Internal Examination	ations	
CO 1			\checkmark							\checkmark		
CO 2		\checkmark				\checkmark				\checkmark		
CO 3						\checkmark						

Discipline and Type of Course	Geology		Discipline Specific Core - DSC				
Course Code and Title	UK3DSCG	LY271	Environmental Geology				
Semester	3		Academic Level: 200 - 299				
Course Details	Credit	Lecture per week		Practical per week	Total Hours/Week		
	4 3 hours		-	2 hours	5		

Content	Hrs.
Module I- Fundamentals of Environmental Geology	16
Introduction to the concept and dimensions of environmental geology;	
Relationships between geological processes and environmental/ecological	
changes; Role of an environmental geologist in social and economic development.	
Introduction to environmental hazards. Types and classifications of disasters.	
Comprehensive disaster management plan. The Disaster Management Cycle:	
Mitigation, preparedness, Response and Recovery phases. Relevance of disaster	
management plan in Kerala. Land use planning.	
Module II- Environmental Geology and Natural Resources	15
Definition and characteristics of natural resources; economic importance of	
different types of natural resources (mineral and fuel resources, construction	
resources, water resources, biological resources, aesthetic, and scientific geological	
resources); Geological dimension of conservation and sustainable development of	
natural resources	
Module III- Geology of Urban Environments	15
Introduction to urban environments and issues associated with them (waste	
generation and urban pollution in open dumps, landfills and drains); Role of	
geologists in urban planning and management issues (effluent treatment and waste	
disposal). Environmental Impact Assessment, Concept of environmental impact	
assessment (EIA).	
Module IV- Practical	14
Case studies based on EIA regarding land use planning and disaster management	
Module V- Teacher Specific content	10
Teacher Specific content related to Environmental Geology	

1.	Coates D. R. (Ed). Environmental Geomorphology and Environmental
	Geoscience. Wiley, 1973.Strahler A. N. Strahler A. H. Environmental Science. 1973.
2.	Simmons I. G. The Ecology of Natural Resources. Edward Arnold Ltd., 1981.
3.	Barlin L. G. Earthquakes and Urban Environment. Vol.2 and 3. CRC Press Inc. 1980. Lillesand T. M and Kiefer R. W. Remote Sensing and Image interpretatio John Wiley, 1979.Estors J. E. and Senger L. W. Remote Sensing. Hamilton Publishing Company, 1974.
4.	Seigal B. S. and Gillespie A. R. Remote Sensing in Geology. John Wiley & son 1980.
5.	Kerr J. M. and others. Natural Resource Economics. Oxford and IBH Publ. Co. Pvt. Ltd, 1997. Hanley N. and others. Environmental Economics. Mac Millan In Ltd., 1997.
6.	Frampton S. and others. Natural Hazards. Holder and Stoughton, 1996.
7.	Skinner C. H. & Berger R. A. Geology and Health. Oxford University Press, 2000.Selnius (Ed). Essentials of Medical Geology. Elsevier, 2005.
8.	8.Flawan P. T. Environmental Geology John Wiley & Sons, 1970.Coates D. R. Environmental Geology. John Wiley & Sons, 1981.
9.	9.Valdiya, K. S. Environmental geology, Indian context. Tata McGraw-Hill Pul Co., 1987.
10	. Bennett, Matthew R., and Peter Doyle. Environmental geology: geology and the human environmental. John Wiley, 1997.
11	. Botkin, Daniel B., and Edward A. Keller. Environmental science: earth as a living planet. No. Ed. 2. John Wiley &Sons Ltd, 1998.
12	. Mareddy, Anji Reddy, Shah, A. and Davergave, N. Environmental impact assessment: theory and practice. Butterworth-Heinemann, 2017.
13	. Reichard, J. Environmental Geology 3rd Edition. McGraw Hill, 2017

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Explain concepts of environmental geology and relation to geologic processes and Detailed study of earth resources.	U	C, F	Assignment & final exam				
CO2	Understand Urban environmental issues, EIA, Hazards and their mitigation.	U	F	Quiz, Assignment& final exam				
CO3	Organize various disasters faced in India.	An	F, P	Assignment & final exam				
	* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive							

				Mappi	ng of CC)s v	vith PSOs a	nd PO			
	I	PSO1]	PSO2	PSO3	3	PSO4	PSO5		РО	
CO 1					3					3	
CO 2					3					3	
CO 3					3					3	
Leve	el	1		l	2				3		
Correla	Correlation Nil			Slightl	Slightly/Low		Moderate /	Medium	S	ubstantial/ High	
				Map	ping of	CC)s to Assess	ment Rubr	ics		
	Assi	gnment		Seminar	EndS	End Semester Examinations				Internal Examinations	
CO 1		\checkmark				\checkmark				\checkmark	
CO 2				\checkmark							
CO 3						\checkmark				\checkmark	

Discipline and Type of Course	Geology		Discipline Specific Elective - DSE			
Course Code and Title	UK3DSEGLY2	Fundamentals of Hydrogeology				
Semester	3		Academic Level: 200 - 299			
Course Details	Credit	ľ	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week
	4	4 h	ours	-		4

Content	Hrs.
Module-1- Hydrologic Cycle Occurrence of Groundwater	15
Concept of Hydrosphere and distribution of water on earth, Hydrologic cycle, Importance and origin of Ground water, Vertical distribution of ground water, Water table, Storage and Ground water bearing formations- aquifer, aquiclude, aquitard, aquifuge. Aquifer properties Porosity, permeability, transmissivity, storativity, specific yield and specific retention. Types of aquifer- Confined, unconfined, perched, leaky and idealized aquifer.	
Module II- Groundwater movement and wells	15
Movement of Ground water- Types of Fluid flow, Darcy's law, hydrologic conductivity of geologic materials, Types of wells- dug well, bore well, artesian well. Springs and its Types.	

	4.6
Module III- Groundwater quality	16
Quality of Ground water- Physical, chemical and biological measures,	
Groundwater pollution, Brief idea on Groundwater provinces of India and	
Groundwater status in Kerala	
Module IV Groundwater recharge methods and saltwater intrusion	14
Concept of Ground water recharge and discharge, Groundwater management.	
Artificial recharge techniques, Saltwater intrusion: causes, effects and prevention	
Module V	10
Teacher Specific related to course Hydrogeology	
Reference	
1. Todd, D.K. (1980). Groundwater Hydrology. John Wiley & Sons.	
2. Todd, D.K. and L.W. Mays (2004). Groundwater Hydrology. 3 rd Edn. John Wiley Sons.	&
3. Davis, S.N. & Deweist, R.J.M. (1966). Hydrogeology, John Wiley & Sons, New Y	lork.
4. Ragunath, H.M (2007). Groundwater, New Age International Publishers, Delhi	
5. Karanath, K.R. (1987). Groundwater Assessment, Development & Managem	ent,
TataMc-Graw Hill.	

6. Ramakrishnan, S. (1998). Groundwater. K.G. Graph Arts, Chennai.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the concept of hydrologic cycle and movement and occurrence of groundwater.		F,C	Assignment, Final Exam
CO2	Understand the movement of groundwater, types of wells and springs	R,U	F,C	Assignment, Final Exam
CO3	Understand the groundwater quality and pollution with respect to Indian and Kerala Scenario.	R,U	F,C	Assignment, Final Exam
CO4	Understand the concept of groundwater recharge methods and saltwater intrusion.	R, Ap,	С	Quiz Final exam
* - R-R €	emember, U-Understand, Ap-Apply, An-Analys	se, E-Evaluate,	C-Create	
# - F-Fa	ictual, C- Conceptual, P-Procedural, M-Metaco	gnitive		

				Mappir	ng of CC)s w	ith PSOs a	nd PO			
	I	PSO1]	PSO2	PSO3		PSO4	PSO5		РО	
CO 1		1								2	
CO 2		2								2	
CO 3		2								3	
CO4				2				3		3	
Leve	el			1	-		2			3	
Correla	tion	Nil		Slightly	y/Low	N	Ioderate /	Medium	S	ubstantial/ High	
				Мар	ping of	COS	s to Assess	ment Rubr	ics		
	Assi	gnment		Seminar	End S	Sem	ester Exan	ninations		Internal Examina	ations
CO 1		\checkmark					\checkmark			\checkmark	
CO 2		\checkmark				\checkmark			\checkmark		
CO3		\checkmark				√			\checkmark		
CO4				\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology		Dis	Discipline Specific Elective - DSE				
Course Code and Title	UK3DSEGLY220 Hydrogeology							
Semester		3		Academic Level: 200 - 299				
Course Details	Credit	Lecture per week		orial week	Practical per week	Total Hours/Week		
	4	4 hours		-		4		

Content	Hrs.
Module I- Ground water a Resource	12
Ground water as a Resource- Chemistry and properties of water, Global distribution	
of fresh water, Resource of groundwater, Hydrological cycle: Hydrological	
measurements - evapo- transpiration, Latent heat, Humidity-Clouds, Precipitation-	
types, Soil moisture: gravitational water, field capacity, soil infiltration &	
Percolation, Run off, Through flow, Base flow, Interflow and river flow. Water	
budgeting, water balance studies. Impact of hydrological cycle (hydrometeorology)	

surfaces, Artesian aquifers; Perched aquifers, Leaky or Semi-confined aquifers; Darcy's law & application, hydraulic conductivity, hydraulic gradient, transmittivity, Springs: Definition, origin, types of springs. Causes for water table fluctuations.	
Zones of aeration and saturation, Capillary fringe water table and potentiometric surfaces, Artesian aquifers; Perched aquifers, Leaky or Semi-confined aquifers; Darcy's law & application, hydraulic conductivity, hydraulic gradient, transmittivity, Springs: Definition, origin, types of springs. Causes for water table fluctuations.	
Zones of aeration and saturation, Capillary fringe water table and potentiometric surfaces, Artesian aquifers; Perched aquifers, Leaky or Semi-confined aquifers; Darcy's law & application, hydraulic conductivity, hydraulic gradient, transmittivity, Springs: Definition, origin, types of springs. Causes for water table fluctuations. Module III- Water Quality	
surfaces, Artesian aquifers; Perched aquifers, Leaky or Semi-confined aquifers; Darcy's law & application, hydraulic conductivity, hydraulic gradient, transmittivity, Springs: Definition, origin, types of springs. Causes for water table fluctuations.	
Darcy's law & application, hydraulic conductivity, hydraulic gradient, transmittivity, Springs: Definition, origin, types of springs. Causes for water table fluctuations.	
transmittivity, Springs: Definition, origin, types of springs. Causes for water table fluctuations.	
origin, types of springs. Causes for water table fluctuations.	
Module III- Water Quality	
	12
Physical and chemical characters, Major, Secondary, minor and trace constituents,	
Criteria for different uses, Graphical representations of chemical data,	
Determination of agricultural suitability, Role of rocks and minerals in water	
quality. Groundwater investigation techniques - geophysical exploration methods	
with special emphasis on electrical resistivity method, well logging, tracer	
techniques. water conservation methods - check dams, ponds, sub surface dykes,	
concept of artificial recharging of groundwater. Hydrogeological provinces of India.	
Groundwater status in India. Major aquifers and groundwater exploitation in	
Kerala. Saline intrusion, Land	
subsidence, Contamination.	
	6
Teacher Specific related to Hydrogeology	0
Reference	
 Bouwer,H.GroundwaterHydrology,1978. Davis,S.N.andDewiest,R.J.N.Hydrogeology,JohnWileyandSonsInc.NewYork,19 	66
3. HiscockK(2005)Hydrogeology,Principle&Practice,Blackwellpublishing.	00.
4. Krisch R(2006)Groundwater geophysics, Springer - Verlag	
5. Linsley, R.K., Kohler, M.A. and Taulhus, J.L.H. Applied Hydrology, TataMcGrawHil	1,
1975.	
6. Todd,D.K. Groundwater Hydrology, John Wileyand Sons, 1980.	
7. Walton, W.C. Groundwater Resource Evaluation, McGraw HillInc.,1970.	
8. Reghunath, H.M.Groundwater.2 nd Edn.WileyEasternLimited.1992.	
 Sharma H.S.Well Hydraulics and Tube Wells. 10. KaranthK.R., 1987, Groundwater: Assessment, Development and management, Tatal 	Λ.Γ
	VIC

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand Groundwater as a Resource,	An	C, F	Assignment, Final Exam
CO2	Differentiate rock properties affecting Ground water flow and Flow parameters	An	С	Assignment, Final Exam
CO3	Critically Evaluate Physical and chemical properties of water and water quality. And Groundwater investigation techniques	Е	F, P	Assignment, Final Exam
* - R-Re	emember, U-Understand, Ap-Apply, An-Analys	se, E-Evaluate,	C-Create	
# - F-Fa	actual, C- Conceptual, P-Procedural, M-Metaco	gnitive		

			Mappi	ng of CO	Ds v	vith PSOs a	nd PO			
	1	PSO1	PSO2	PSO3		PSO4	PSO5		PO	
CO 1						3			2	
CO 2						3			3	
CO 3							2		3	
Leve	el		1			2			3	
Correla	tion	Nil	Slightly/Low			Moderate /	ubstantial/ High			
			Map	ping of	^E CC	s to Assess	ment Rubr	ics		
	Assi	gnment	Seminar	End	Sen	nester Exan	ninations		Internal Examination	ations
CO 1		\checkmark			\checkmark				\checkmark	
CO 2			\checkmark		\checkmark			\checkmark		
CO3						\checkmark			\checkmark	

Discipline and Type of Course	Geology		Value added Course - VAC						
Course Code and Title	UK3VACGLY200 Earth and its Resources								
Semester	3		Acad	Academic Level: 200 - 299					
Course Details	Credit	I	cture per reek	Tutorial per week	Practical per week	Total Hours/Week			
	3	3 h	ours	-	-	3			

Content	Hrs
Module-1- Earth as a System	12
Components of Earth system- Geosphere, Hydrosphere, Atmosphere and	
Biosphere. Processes of origin of Resources- A brief study of magmatic,	
sedimentary, metamorphic, hydrothermal and metasomatic processes. Earth	
Materials- A brief study of the significance, uses and management of minerals,	
rocks, fossils, soil, water and fuels.	4.0
Module II- Resources of Lithosphere	12
Minerals- Origin, Classification and distribution in the earth's crust. Uses of major	
minerals- Quartz, feldspar, clay, iron oxides, bauxite, gemstones. Rocks- Types,	
classification and economic and industrial applications. Rocks as construction	
materials- Granite, gabbro, sandstone, limestone, gneiss and marble. Earth's Fuels-	
Origin, occurrence and distribution of coal, petroleum and natural gas in the Indian	
subcontinent.	
Module III- Issues of Resource Management -	12
Problems associated with Resource-mining, utilization and waste disposal. Types	
of mining- Open cast and underground and their environmental issues (pollution of	
land, water and air). Utilization- Generous use (Reduce, reuse and recycling) and	
protection of resources. Waste disposal- Methods of disposal of waste- landfills,	
sanitary landfills, safe disposal.	
Module IV	6
Teacher Specific related to course Earth and its Resources	
Reference	
1. Frederick K. Lutgens and Edward J. Tarbuck(2018), Essentials of Geology, 1	3 th
Edition. Pearson Education, Inc. New York. P. 607.	
2. Carla W Montgomery (2006), Environmental Geology	
3. Edward A. Keller (1992) Introduction to Environmental Geology, 6 th Edit	ion.
Maxwell Macmillan International, New York, P. 520.	,
4. W. Murch, B. J. Skinner and S. C. Porter (1996), Environmental geology Jo	ohn
Wiley & Sons, Chichester, P.533.	
5. Merritts, D., De Wet, A., & Menking, K. (1998). Environmental geology	n an
earth system science approach. Macmillan.	. all
carti system serence approach. Machillan.	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the different components of the Earth's system and processes	U, An	F, C	ESE Quiz
CO2	Understand more about the resources of the lithosphere and their wise use	An, Ap	F, C, P	Assignment ESE
CO3	Understand the major issues of resource management and its solutions .	U, An	F, C, P	Assignment ESE
	emember, U-Understand, Ap-Apply, An-Anal nctual, C- Conceptual, P-Procedural, M-Meta	-	e, C-Create	

			Map	pin	g of CC)s w	ith PSOs a	nd PO					
	I	PSO1	PSO2	PSO2		PSO2		3	PSO4	PSO5		РО	
CO 1			3							2			
CO 2			3							3			
CO 3					3					3			
Leve	el			1			2			3			
Correla	tion	Nil	Slig	htly	/Low	N	Moderate /	Medium	S	ubstantial/ High			
			N	1app	oing of	CO	s to Assess	ment Rubr	ics				
	Assi	gnment	Semir	Seminar		Sem	nester Exan	ninations		Internal Examina	ations		
CO 1			\checkmark			\checkmark				\checkmark			
CO 2		\checkmark			\checkmark				\checkmark				
CO3		\checkmark					\checkmark			\checkmark			

Discipline and Type of Course	Geology		Val	Value Added Course - VAC				
Course Code and Title	UK3VACC	GLY220	Sus	Sustainable resource management				
Semester		3		Academic Level: 200 - 299				
Course Details	Credit	Lecture per week		orial week	Practical per week	Total Hours/Week		
	3	3 hours		-	-	3		

Content	Hrs.
Module I: Earth Resources:	9
Introduction to Natural Resources and Mineral Resources. Fuel minerals.	
Strategic and critical minerals of India. Basic concepts of conventional and non-	
conventional energy. Origin of coal and petroleum.	
Module II: Sustainability.	9
Sustainability concept, evolution of the concept; Social, Environmental and	
Economic sustainability concepts; Sustainable development, Nexus between	
Technology and Sustainable development; Millennium Development Goals	
(MDGs) and Sustainable Development Goals (SDGs), Clean Development	
Mechanism (CDM).	
Module III: Environmental Pollution.	9
Air pollution and its effects, Water pollution and its sources, zero waste concept	
and 3 R concepts in solid waste management. Greenhouse effect, Global warming	
and Climate change. Ozone layer depletion, Carbon credits, carbon trading and	
carbon footprint, legal provisions for environmental protection.	
Module IV: Resources and its utilization.	9
General idea about solar energy, Fuel cells, Wind energy, Small hydro plants, Bio-	
fuels, Energy derived from oceans and Geothermal energy.	
Module V- Teacher Specific content	6
Teacher Specific content related to Sustainable resource management	
Reference	<u> </u>
1. Arthur N. Strahler and Alan H Strahler, Environmental Science, Wiley, 1973	•
2. Bent Sorensen, (2007) Renewable Energy Conversion, Transmission and	
Storage., Springer	
3. Fowler, J.M (1984) Energy and the Environment. McGraw-Hill	

- 4. Hermann-Josef Wagner and Jyotirmay Mathur. (2009) Introduction to Wind Energy Systems:, Springer
- 5. Keller, E.A. (1978) Environmental Geology. Bell and Howell, Prentice Hall, USA.
- 6. Krishnaswamy, S. (1988) Indian Mineral Resources. South Asia Books.
- 7. Nebojsa Nakicenovic. (1998) Global Energy Perspectives, Cambridge University Press.
- 8. Simmons, I. G., The Ecology of Natural Resources, Edward Arnold Ltd. 1981.
- 9. Tushar K. Ghosh and M. A. Prelas. (2009) Energy Resources and Systems: Fundamentals and Non-Renewable Resources. Springer.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand natural resources and discuss on important mineral, fuel and energy resources.	U	C, F	Assignment, Final Exam				
CO2	Identify environmental pollutions and its effects and analyze the impacts of pollution on environment	Ap/ An	С	Assignment, Final Exam				
CO3	Examine the concept of sustainable development in energy resources and illustrate sustainable development goals.	U/ An	F, P	Assignment, Final Exam				
	* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive							

Mapping of COs with PSOs and PO											
	I	PSO1	PS	02	PSO3	3	PSO4	PSO5		РО	
CO 1					3					3	
CO 2					3					3	
CO 3					3					3	
Leve	el			1	_		2		3		
Correla	tion	Nil	S	Slightl	y/Low	1	Moderate /	Medium	S	ubstantial/ High	
				Мар	ping of	CO	s to Assess	ment Rubr	ics		
	Assi	gnment	Se	eminar	End S	Sen	nester Exan	ninations		Internal Examination	ations
CO 1						\checkmark		\checkmark \checkmark		\checkmark	
CO 2		\checkmark				\checkmark		\checkmark			
CO3				\checkmark			\checkmark			\checkmark	

5.4 COURSES IN GEOLOGY: Semester 4

Discipline and Type of Course	Geology		Disci	ipline Specific Core - DSC			
Course Code and Title	UK4DSCGLY2	200	Crystallography and Mineralogy				
Semester	4		Acad	cademic Level: 200 - 299			
Course Details	Credit	Lecture per week		Tutorial per week	Practical per week	Total Hours/Week	
	4	3 h	ours	-	2 hours	5	

Content	Hrs.
Module-1- Systematic crystallography	15
The concept of symmetry in Crystallography and its application in the	
identification of different crystal systems. Study of symmetry elements, simple	
forms and combinations of the following crystal systems:	
Isometric system- Normal, tetrahedral, pyritohedral and plagiohedral classes.	
Tetragonal system- Normal, tripyramidal and sphenoidal classes.	
Module II- Crystal systems	16
Hexagonal system- Hexagonal Division: Normal, tripyramidal, trapezohedral	
classes. Rhombohedral Division: Rhombohedral, trirhombohedral and	
trapezohedral classes. Orthorhombic system- Normal, hemimorphic and	
sphenoidal classes.	
Monoclinic system- Normal class. Triclinic system- Normal class.	
Twinning in crystals- Twin laws, elements of twinning, twin axis, twin plane,	
composition plane and important examples of twinning. Brief study of	
morphological imperfections in crystals.	
Basic concepts of spherical and stereographic projections in crystallography,	
Wulff net, projection of symmetry elements of Isometric system Normal Class.	
Module III- Descriptive Mineralogy	15
Detailed study of the structure, and properties (physical, chemical and optical),	
origin and occurrence of common rock-forming mineral groups-Olivine, pyroxene,	
amphibole, mica, quartz, feldspar, feldspathoids, zeolites, clay minerals, garnet,	
aluminosilicates, Epidotes, beryl, tourmaline and cordierite.	
Module IV - Practical	14

10

Identification of crystal models of normal classes of all crystal systems. Megascopic and microscopic identification of minerals. Stereographic projections of normal classes of Isometric and tetragonal systems.

Module V

Teacher Specific related to course Crystallography and Mineralogy

Reference

1. Dana, E. S. (1955) A Textbook of Mineralogy. Asia Publishing House, Wiley.

2. Phillips, F.C. (1956) An Introduction to Crystallography. Longmans Green.

3. Read, H.H. (1984) Rutley's Elements of Mineralogy. C.B.S. Publishers.

4. Mason, B. and L.G. Berry (1968) Elements of Mineralogy. W. H. Freeman & Co.

5. Klein, C. and C.S. Hurlbut (1993) Manual of Mineralogy. John Wiley, New York.

6. Deer, W.A., Howie, R.A. and J. Zussman (1983) An introduction to the Rock forming minerals. Longman.

7. Kerr, P.F. (1977) Optical Mineralogy. McGraw Hill Book Company, New York.

8. Perkins Dexter (2015) Mineralogy. Pearson Education.

9. Perkins D. and Henke K. R. Minerals in thin section. Pearson Education Inc., 2004.

10. Nesse W. D. Introduction to Optical Mineralogy. Oxford University Press, 2004.

11. Nesse W. D. Introduction to Mineralogy. Oxford University Press, 2008.

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand and analyse the symmetry and forms of different classes of all crystal systems, the concept of twinning, twin laws, imperfections in crystals and Stereographic projection of Isometric normal class		F, C	ESE Quiz				
CO2	Understand and analyze the structure and properties of important rock-forming mineral groups	U, An	F, C	Assignment ESE				
CO3	Identify crystal models and plotting of stereographic projections of Isometric and Tetragonal system normal class	-	F, C, P	Quiz ESE				
CO4	Identify minerals based on their properties	Ар	F,P	ESE Quiz				
	* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive							

Mapping of COs with PSOs and PO											
	I	PSO1	PS	SO2	PSO3	3	PSO4	PSO5		РО	
CO 1				3						3	
CO 2				3						3	
CO 3				2						3	
CO4								3		3	
Leve	el			1			2 3		3		
Correla	tion	Nil		Slightly	y/Low	N	Ioderate /	Medium	Substantial/High		
				Мар	ping of	COs	s to Assess	ment Rubr	ics		
	Assi	gnment	Se	eminar	End S	Sem	ester Exan	ninations		Internal Examination	ations
CO 1				\checkmark		\checkmark				\checkmark	
CO 2		\checkmark				\checkmark		√			
CO3				\checkmark		\checkmark		\checkmark			
CO4				\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology		Disci	cipline Specific Core - DSC				
Course Code and Title	UK4DSCGLY2	201	Stratigraphy and Paleontology					
Semester	4		Acad	emic Level:	rel: 200 - 299			
Course Details	Credit	Lecture per week		Tutorial per week	Practical per week	Total Hours/Week		
	4	3 h	ours	-	2 hours	5		

Content				
Module-1- Introduction to Historical Geology	13			
Significance of Historical Geology and its branches. Brief idea on Concept of Plutonism, Neptunism, Catastrophism and Uniformitarianism. Stratigraphic principles. Elements of lithostratigraphic, chronostratigraphic and biostratigraphic classification. Type area, type section. Stratigraphic correlation- criteria and methods. Breaks in stratigraphic succession-hiatus, diastem, non- sequences and their significance. Offlap and overlap.				

Module II- The Process of Fossilization and Phyla	16
Conditions and methods of fossilisation, Classification and nomenclature of fossils. Type specimens and kinds-holotype, genotype and paratype. Uses of fossils.	
Phylum Protozoa-morphology, classification, geologic history and stratigraphic importance. Phylum Coelenterata-Class Anthozoa. Phylum Brachiopoda	
Module III- Fossils at a glance	17
Phylum Mollusca- Class Pelecypoda, Gastropoda, Cephalopoda (Order Nautiloidea and Ammonoidea). Phylum Arthropoda- Class Trilobita, Phylum Echinodermata- Class Echinoidea. Phylum Hemichordata-Class Graptolithina Morphology and stratigraphic significance of the important plant fossils-	
Glossopteris, Gangamopteris, Ptilophyllum, Calamites, Lepidodendron, Sigillaria.	
Module IV Practical	14
Identification of fossils based on their morphologic features and a brief idea of	
geologic significance.	
Module V	10
Teacher Specific related to course Stratigraphy and Palaeontology	
Reference	
 Woods, H. (1961) Invertebrate Palaeontolgy. Cambridge University Press. Haq, B.U. and Boersma, A. (1978) Introduction to marine Micropalaeontology. Elsevier, Netherlands. 	
3. Raup, D.M. and Stanely, M.S. (1978) Principles of Palaeontology. CBS Publishers.	
 Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossils, GrawHill. 	Mc-
 Shrock, R.R. and Twenhofel, W.H. (1953) Principles of Invertebrate Palaeontology. 2ndEdn.Mc-Graw Hill. 	
6. Brasier, M.D. (1980) Microfossils. George Allen & Unwin.	
 Bignot, G. (1985) Elements of Micropaleontology. IHRDC-Boston. Nield, E.W.; Tucker, V.C.T. (1985) Palaeontology – An Introduction. Pergan Press, Oxford, England. 	mon
 9. Anis Kumar Ray, (2008) Fossils in Earth Sciences, Prentice-Hall of India Pv Ltd, NewDelhi. 	t.
 Sreepat Jain (2019) Fundamentals of invertebrate paleontology (microfossil Springer Geology 	s)
 Ravindra Kumar (2020) Fundamentals of Historical Geology and Stratigrap India.2nd edition, New Age International Private Limited. 	ohy of

12. Brookfield M. E. Principles of Stratigraphy. Blackwell Publishing, 2004.

13. Dunbar C. O. & Rogers J. Principles of Stratigraphy. Wiley, 1960

14. Eicher L. D. Geologic Time. Prentice Hall, 1968.

15. Kay & Golbert. Stratigraphy & Life history. Wiley, 1965.

16. Weller J. M. Stratigraphic principles & Practice. Harper & Row, 1959.

17. Krumbein N. C. & Sloss L. D. Stratigraphy and sedimentation. Freeman, 1963.

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand the concept, principles, stratigraphic classification, correlation and breaks in record	U	C,F	ESE				
CO2	Understand and analyse the fossils, types, significance, conditions and methods of fossilisation.		F	Assignment ESE				
CO3	Understand and analyse the important invertebrate fossils and their geologic significance.		F	Quiz ESE				
CO4	Identify the invertebrate fossils based on morphology and analyse their geologic history.	-	F,P	ESE				
	 * - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive 							

		Ν	Лар	oping of	COs wit	h P	SOs and PC)				
	I	PSO1]	PSO2	PSO3	3	PSO4	PSO5		РО		
CO 1		3								2		
CO 2		2		3						3		
CO 3				3						3		
CO4								3		3		
Leve	el			1	l		2			3	3	
Correla	tion	Nil		Slightl	y/Low	w Moderate / Medium			S	ubstanti	ial/ High	
				Мар	ping of	CO)s to Assess	ment Rubri	ics			
	Assi	gnment		Seminar	EndS	Sen	nester Exam	ninations		Intern	al Examin	ations
CO 1							\checkmark				\checkmark	
CO 2		\checkmark				\checkmark				\checkmark		
CO3				\checkmark			\checkmark				\checkmark	
CO4							\checkmark				\checkmark	

Discipline and Type of Course	Geology		Di	Discipline Specific Core - DSC			
Course Code and Title	UK4DSCG	LY220		Descriptive and Optical Mineralogy			
Semester		4	Acad	cademic Level: 200 - 299			
Course Details	Credit Lecture per week		 orial week	Practical per week	Total Hours/Week		
	4	3 hours	-	2 hours	5		

Content	Hrs.
Module I: Optical Mineralogy	14
Significance of Optical mineralogy in Mineral Identification, light- Ordinary and	
polarized light, polarization of light, refractive index, critical angle and total	
internal reflection. Polarization by reflection, absorption, refraction. Double	
refraction, construction of Nicol prism. Isotropic and anisotropic substances.	
Petrological microscope - parts and functions. Optical accessories - mica plate,	
gypsum plate and quartz wedge. Birefringence, uniaxial and biaxial minerals,	
optic sign, relief, pleochroism, interference colour and its order, extinction. Basic	
description of indicatrix, interference, interference figures, Michel Levy	
interference chart.	
Module II: Descriptive mineralogy	20
Classification of minerals. Rock forming and ore forming minerals. Silicates -	
Structure and classification of silicate minerals. Physical, chemical, optical	
properties and structure of the following: Olivine, Garnets, Alumino silicates,	
Epidote, Pyroxenes, Pyroxenoid, Amphiboles, Micas, Chlorite, Clay, Feldspars,	
Feldspathoids, Quartz, Zeolite. Systematic study of Beryl, Cordierite and	
Tourmaline	
Module III: Non Silicates	12
Classification of non-silicates with examples. Systematic study of the important	12
non-silicate minerals - calcite, dolomite. diamond, graphite, sulphur, gold, silver,	
copper, realgar, orpiment, stibnite, molybdenite, cinnabar, sphalerite, galena,	
chalcopyrite, pyrite, magnetite, hematite, marcasite, barite, gypsum, halite,	
fluorite, corundum, cuprite, chromite, rutile, cassiterite, ilmenite, monazite,	
psilomelane, pyrolusite, goethite, limonite, bauxite, aragonite, magnesite,	
malachite and azurite.	

	e IV: Practical			14
Famili	arization of optical microscope. Mic	croscopic stud	y of following r	ninerals:
Olivine	es, Garnets, Alumino silicates, Pyro	oxenes, Amphi	boles, Micas, F	eldspars,
Feldsp	athoids, Quartz, Cordierite, Tourmal	line, Calcite, A	patite and Zirco	on.
Megas	copic study and identification of f	ollowing mine	erals: Olivines,	Garnets,
Alumi	no Silicates, Pyroxenes, Amphibo	les, Micas, F	eldspars, Feldsj	pathoids,
Quartz	, Chlorite, Epidote, Talc, Cordierite	, Tourmaline,	Calcite, Apatite	, Zircon,
Beryl,	Topaz, Dolomite, Gypsum and Fluo	rite.		
Modu	le V: Teacher specific content			10
	er specific content related to Descrip	tive an optical	mineralogy	
Refere	nco			
Neiere	ince			
3. 4. 5. 6. 7. 8. 9. 10. 11. CO	Read, H. H. (1984) Rutley's element Mason, B. and L.G. Berry (1968) E Deer, W.A., Howie, R.A. and J. Zus minerals. Longman. Berry, L.G., Mason, B. and Dietrich Publishers and &Distributors, New Cornelius Klein and Cornelius S. H Wiley& Sons. Winchel, N.H and A.H. Winchel (1 William D. Nesse (2008) Introducti Kerr, P.F. (1977) Optical Mineralogy Perkins Dexter (2006) Mineralogy. Perkins Dexter and Henke Kevin, R Education. Course Outcome	lements of Mir ssman - An intr h, R.V. (2004) I Delhi, India. urlbut (1985) I 929) Elements on to Mineralc gy. McGraw H Pearson Educa Level*	heralogy. W. H. roduction to rocl Mineralogy. CB Manual of Miner of Optical Mine ogy. Oxford Uni ill Book Compa ntion; Prentice H rals in Thin Sect Knowledge Category#	Freeman & Co k forming S ralogy. John eralogy. versity Press. ny, New York Iall.
CO1	Understand the basics of optical mineralogy	R	F	Assignment, Final Exam
CO2	Systematic study of major silicate and non silicate minerals	E	Р	Assignment, Final Exam
	Identification of minerals in hand	AP	Р	Assignment,

			Ma	appin	g of CC)s w	vith PSOs a	nd PO			
	I	PSO1	PSO	2	PSO3	3	PSO4	PSO5		РО	
CO 1										2	
CO 2			3					3		2	
CO 3								3		3	
Leve	el			1			2			3	
Correla	tion	Nil	Sli	ghtly	/Low	Low Moderate / Medium		Medium	S	ubstantial/ High	
				Map	oing of	CO	s to Assess	ment Rubri	ics		
	Assi	gnment	Sem	inar	End S	Sem	nester Exam	ninations		Internal Examina	ations
CO 1		\checkmark				\checkmark			\checkmark		
CO 2			\ \	/		\checkmark			\checkmark		
CO3							\checkmark			\checkmark	

Discipline and Type of Course	Geology			Di	Discipline Specific Core - DSC				
Course Code and Title	UK4DSCG	GLY221		Historical Geology and Palaeontology					
Semester		4	I	Acad	cademic Level: 200 - 299				
Course Details			Tutor per we		Practical per week	Total Hours/Week			
	4	3 hours	-		2 hours	5			

Content	Hrs.
Module I: Stratigraphy	14
Stratigraphy: Types- Chrono, Geochronostratigraphy, Lithostratigraphy,	
Biostratigraphy, Magneto-stratigraphy, Sequence stratigraphy, Cyclo stratigraphy.	
Unconformities and types of unconformities. Significance of unconformity in	
stratigraphic studies. Introduction to fossilization and fossil record, Nature and	
importance of fossil record; Fossilization processes and modes of preservation,	
Taxonomy and Species concept- with special reference to palaeontology,	
Taxonomic hierarchy, Conditions and methods of fossilization, body fossils, trace	
fossils and micro fossils, Classification and nomenclature of fossils. Binomial	
nomenclature, type specimens and kinds - holotype, genotype, paratype: Uses of	
fossils.	

Module II: Fossils:	20
Fossils: Morphology, Classification, geological history and stratigraphic	
importance of Phylum Protozoa, Phylum Coelenterata - Class Anthozoa, Phylum	
Brachiopoda, Phylum Mollusca - Class Pelecypoda, Class Gastropoda, Class	
Cephalopoda, Phylum Arthropoda, Class – Trilobita. Phylum Echinodermata,	
Phylum Hemichordata – Class Graptolithina,	
Module III: Microfossils and plant fossils	12
. Microfossils and plant fossils: Introduction, general classification, uses and	
distribution of Microfossils. Significance of microfossils in petroleum exploration.	
Brief introduction to Palynology. Brief account of the following plant fossils -	
Glossopteris, Gangamopteris, Ptilophyllum, Calamites, Lepidodendron and	
Sigillaria. Indian distribution of major plant fossils. Evolution of human.	
Module IV: Practical	14
Megascopic: Identification and morphological description of fossils representing	
major phylum.	
Module V: Teacher specific content	10
*	
Teacher specific content related to Stratigraphy and Plaeontology	
Teacher specific content related to Stratigraphy and Plaeontology Reference	
Reference 1. Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3 rd Edition by V	W. H
Reference 1. Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3 rd Edition by V Freeman and company	
 Reference 1. Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company 2. Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition 	
Reference 1. Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3 rd Edition by V Freeman and company	
 Reference Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition Blackwell Publishing. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossil 	on by
 Reference Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition Blackwell Publishing. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossil Mc-Graw Hill. 	on by
 Reference Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition Blackwell Publishing. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossil Mc-Graw Hill. Shrock, R.R. and Twenhofel, W.H. (1953) Principles of Invertebrate 	on by
 Reference Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition Blackwell Publishing. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossil Mc-Graw Hill. Shrock, R.R. and Twenhofel, W.H. (1953) Principles of Invertebrate Palaeontology. 2ndEdn. Mc-Graw Hill. 	on by s,
 Reference Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition Blackwell Publishing. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossil Mc-Graw Hill. Shrock, R.R. and Twenhofel, W.H. (1953) Principles of Invertebrate Palaeontology. 2ndEdn. Mc-Graw Hill. Benton, M. (2009). Vertebrate paleontology. John Wiley & Sons. 4th Edition 	on by Is, 1.
 Reference Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition Blackwell Publishing. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossil Mc-Graw Hill. Shrock, R.R. and Twenhofel, W.H. (1953) Principles of Invertebrate Palaeontology. 2ndEdn. Mc-Graw Hill. Benton, M. (2009). Vertebrate paleontology. John Wiley & Sons. 4th Editior Shukla, A. C., & Misra, S. P. (1975). Essentials of paleobotany. Vikas Publis 	on by s, ı.
 Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition Blackwell Publishing. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossil Mc-Graw Hill. Shrock, R.R. and Twenhofel, W.H. (1953) Principles of Invertebrate Palaeontology. 2ndEdn. Mc-Graw Hill. Benton, M. (2009). Vertebrate paleontology. John Wiley & Sons. 4th Edition 6. Shukla, A. C., & Misra, S. P. (1975). Essentials of paleobotany. Vikas Publis 7. Armstrong, H. A., & Brasier, M.D. (2005) Microfossils. Blackwell Publishin 	on by s, ı. .her g.
 Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition Blackwell Publishing. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossil Mc-Graw Hill. Shrock, R.R. and Twenhofel, W.H. (1953) Principles of Invertebrate Palaeontology. 2ndEdn. Mc-Graw Hill. Benton, M. (2009). Vertebrate paleontology. John Wiley & Sons. 4th Editior Shukla, A. C., & Misra, S. P. (1975). Essentials of paleobotany. Vikas Publiss Armstrong, H. A., & Brasier, M.D. (2005) Microfossils. Blackwell Publishin Raup, D. M., Stanley, S. M., Freeman, W. H. (1971) Principles of Paleontol 	on by s, ı. .her g.
 Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition Blackwell Publishing. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossil Mc-Graw Hill. Shrock, R.R. and Twenhofel, W.H. (1953) Principles of Invertebrate Palaeontology. 2ndEdn. Mc-Graw Hill. Benton, M. (2009). Vertebrate paleontology. John Wiley & Sons. 4th Edition 6. Shukla, A. C., & Misra, S. P. (1975). Essentials of paleobotany. Vikas Publiss 7. Armstrong, H. A., & Brasier, M.D. (2005) Microfossils. Blackwell Publishin 8. Raup, D. M., Stanley, S. M., Freeman, W. H. (1971) Principles of Paleonto 9. Woods, H. (1961) Invertebrate Palaeontolgy. Cambridge University Press. 	on by s, her g. ology
 Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition Blackwell Publishing. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossil Mc-Graw Hill. Shrock, R.R. and Twenhofel, W.H. (1953) Principles of Invertebrate Palaeontology. 2ndEdn. Mc-Graw Hill. Benton, M. (2009). Vertebrate paleontology. John Wiley & Sons. 4th Edition 6. Shukla, A. C., & Misra, S. P. (1975). Essentials of paleobotany. Vikas Publis 7. Armstrong, H. A., & Brasier, M.D. (2005) Microfossils. Blackwell Publishin 8. Raup, D. M., Stanley, S. M., Freeman, W. H. (1971) Principles of Paleonto 9. Woods, H. (1961) Invertebrate Palaeontology. 3rd Edn., Chicago Univ. Press. 10. Romer, A.S. (1966) Vertebrate Palaeontology. 3rd Edn., Chicago Univ. Press 	on by s, her g. ology
 Reference Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition Blackwell Publishing. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossil Mc-Graw Hill. Shrock, R.R. and Twenhofel, W.H. (1953) Principles of Invertebrate Palaeontology. 2ndEdn. Mc-Graw Hill. Benton, M. (2009). Vertebrate paleontology. John Wiley & Sons. 4th Edition 6. Shukla, A. C., & Misra, S. P. (1975). Essentials of paleobotany. Vikas Publis 7. Armstrong, H. A., & Brasier, M.D. (2005) Microfossils. Blackwell Publishin 8. Raup, D. M., Stanley, S. M., Freeman, W. H. (1971) Principles of Paleonto 9. Woods, H. (1961) Invertebrate Palaeontology. 3rd Edn., Chicago Univ. Press 10. Romer, A.S. (1966) Vertebrate Palaeontology. 3rd Edn., Chicago Univ. Press 11. Arnold C,A. (1947) An Introduction to Palaeobotany. McGraw Hill. 	on by s, her g. ology
 Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by V Freeman and company Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition Blackwell Publishing. Moore, R.C., Lalicker, C.G. and Fishcher, A.G. (1952) Invertebrate Fossil Mc-Graw Hill. Shrock, R.R. and Twenhofel, W.H. (1953) Principles of Invertebrate Palaeontology. 2ndEdn. Mc-Graw Hill. Benton, M. (2009). Vertebrate paleontology. John Wiley & Sons. 4th Edition 6. Shukla, A. C., & Misra, S. P. (1975). Essentials of paleobotany. Vikas Publis 7. Armstrong, H. A., & Brasier, M.D. (2005) Microfossils. Blackwell Publishin 8. Raup, D. M., Stanley, S. M., Freeman, W. H. (1971) Principles of Paleonto 9. Woods, H. (1961) Invertebrate Palaeontology. 3rd Edn., Chicago Univ. Press. 10. Romer, A.S. (1966) Vertebrate Palaeontology. 3rd Edn., Chicago Univ. Press 	on by s, her g. ology

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understanding types of stratigraphy and fossilization	R	F	Assignment, Final Exam
CO2	Systematic study of fossils	An	Р	Assignment, Final Exam
CO3	Examine fossils and analyze its applications in stratigraphy	AP	Р	Assignment, Final Exam
* - R-R e	emember, U-Understand, Ap-Apply, An-A	Analyse, E-Evalua	ite, C-Create	

- F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

			Марр	ing of CC	Ds wi	ith PSOs a	nd PO			
]	PSO1	PSO2	PSO	3	PSO4	PSO5		PO	
CO 1			3						2	
CO 2			3						2	
CO 3						2	3		3	
Leve	el			1		2			3	
Correla	tion	Nil	Slight	ly/Low	N	Ioderate /	Medium	S	ubstantial/ High	
			Ma	pping of	f COs	s to Assess	ment Rubr	ics		
	Assi	gnment	Semina	r End	Sem	ester Exan	ninations		Internal Examin	ations
CO 1		\checkmark			\checkmark			\checkmark		
CO 2			\checkmark		\checkmark			\checkmark		
CO3						\checkmark			\checkmark	

Discipline and Type of Course	Geology		Disci	Discipline Specific Elective - DSE				
Course Code and Title	UK4DSEGLY200		Field Geology					
Semester	4	4			Academic Level: 200 - 299			
Course Details	Credit	r	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week		
	4	3 h	ours	-	2 hours	5		

Content	Hrs.
Module-1- Significance of Geology as a Field Science	15
Topographical expressions and relief features-Identification of landforms and their	
geologic importance- Fluvial, Aeolian, Coastal, groundwater. Comparison of	
geomorphic features in the topographic maps and in the field. Field Equipment-	
Brunton compass and clinometers compass, Geological hammer, pocket and hand	
lens, magnet, haversack, GPS	15
Module II- Topographical maps	15
interpretation of contour lines, map scale and symbols, grid systems. Measurement	
of the attitude of geological surfaces- bearing and reading direction techniques.	
Attitude of planar and linear features- strike, dip, plunge and pitch. Location and	
positioning techniques- Concept of pacing, traversing methods, landmarks,	
determination of gradient	
Module III- Identification of minerals and rocks in the field.	16
Sample collection methods. Concept of the base map, Preparation of Geological	
maps- Techniques in preparation of maps, Digital mapping tools, georeferencing,	
Incorporating the concept of lithology and structures in the maps. selection of	
symbols and legends.	
Field documentation- notebooks, observation recording techniques, field sketches	
and their significance, field photographs and digital documentation equipment.	
Module IV Field Visit	14
Problems related to fore bearing and back bearing, plotting of location in toposheet In	
Field.	
Module V	10
Teacher Specific related to course Field geology	
Reference	
1.Rex a Crouch, 2008. Basics of Field Geology.	
2. Lahee FH, Field Geology. McGraw-Hill Book Co., New York, 1961.	
3. Gokhale, NW. A guide to Field Geology, 2023, CBS Publishers & Distributors	
Pvt.Ltd	
4. Mathur SM, Guide to Field Geology, Phi Learning Pvt.Ltd.	
5. Compton R. R. Manual of Field Geology. Wiley.	
6. Angela L.Coe, Geological Field Techniques, 2011.Wiley.	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand geological fieldwork, field equipments and familiarising maps and identifying landforms.		F,P	Assignment , ESE
CO2	Analyse topographic maps, measuring attitude and understand sampling methods	· •	F,P	Assignment, ESE
CO3	Understand the basic concepts of geologic mapping, identification of structures, rocks and minerals in the field documentation of field data and modern mapping tools		F,C,P	Quiz ESE
CO4	Apply the theoretical knowledge in field	Ар	Р	Quiz ESE
	member, U-Understand, Ap-Apply, An-Analys ctual, C- Conceptual, P-Procedural, M-Metaco		C-Create	

				Mappi	ng of CC)s v	vith PSOs a	nd PO			
	I	PSO1	Р	SO2	PSO3	3	PSO4	PSO5		РО	
CO 1								3		2	
CO 2				2				3		2	
CO 3					3			3		2	
CO4		3		3	3		1	3		3	
Leve	el			1	l		2			3	
Correla	tion	Nil		Slightl	y/Low	Low Moderate / Medium S			ubstantial/ High		
				Map	ping of	CO	s to Assess	ment Rubr	ics		
	Assi	gnment	S	Seminar	End S	Sen	nester Exan	ninations		Internal Examina	ations
CO 1		\checkmark					\checkmark			\checkmark	
CO 2		\checkmark				\checkmark			\checkmark		
CO3				\checkmark		\checkmark			\checkmark		
CO4				\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology			Discipline Specific Elective - DSE				
Course Code and Title	UK4DSEGLY220			Field Techniques in Geology				
Semester	4			Acad	emic Level: 2	00 - 299		
Course Details	Credit	Lecture per week		orial week	Practical per week	Total Hours/Week		
	4	3 hours		-	2hours	5		

Content	Hrs.
Module I- Introduction to Field Geology	11
Overview of field geology and its significance in geological studies: Introduction	
to field equipment and safety protocols: Basic techniques in geological mapping	
and measurements.	
Module II- Geological Mapping and Observation	12
Principles of geological mapping: Topographic map - interpretation and	
navigation: Orientation of Topographic sheet in field, marking location in	
toposheet, Bearing (Front and back), morphometric elements and parameters.	
Concepts of map reading, Distance, height, and pace approximation	
Module III- Field Identification	12
Geomorphological features mountains & residual hills, streams: -valley, waterfall,	
meandering, braided, estuaries, flood plains, Lakes: backwaters, Coastal	
geomorphological features: -Cliff, Dunes, islands, Springs: reservoirs and	
dams	
Groundwater: springs, Cave. Different Sample collection conventions and methods	
Module IV- Practical	12
Problems related to fore bearing and back bearing, plotting of location in toposheet In Field.	
Module V	9
Teacher Specific related to Field Techniques in Geology	
Reference	
1. Rex a Crouch, 2008. Basics of Field Geology.	
 Lahee FH, Field Geology. McGraw-Hill Book Co., New York, 1961. 	
3. Gokhale, NW. A guide to Field Geology, 2023, CBS Publishers &	
Distributors Pvt.Ltd	
4. Mathur SM, Guide to Field Geology, Phi Learning Pvt.Ltd.	
5. Compton R. R. Manual of Field Geology. Wiley.	
6. Angela L.Coe, Geological Field Techniques, 2011.Wiley.	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Understand geological fieldwork and basic equipment needed	U	F	Assignment, Final Exam					
CO2	Analyse various geomorphic features on field and in toposheets and reading contours and topography	F	Ρ	Assignment, Final Exam					
CO3	Demonstrate the orientation of toposheet in field and marking location using forebearing and back bearing, Map reading	Ap	С,Ғ, Р	Assignment, Final Exam					
* - R-R	* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create								
# - F-Fa	actual, C- Conceptual, P-Procedural, M-Metaco	gnitive							

				Mappi	ng of CC)s v	vith PSOs a	nd PO			
]	PSO1]	PSO2	PSO3	3	PSO4	PSO5		PO	
CO 1					3					2	
CO 2					3					3	
CO 3					3					3	
Leve	el			1		2			3		
Correla	tion	Nil		Slightl	y/Low	I	Moderate /	Medium	S	ubstantial/ High	
				Мар	ping of	CC)s to Assess	ment Rubri	ics		
	Assi	gnment		Seminar	End	Sen	nester Exan	ninations		Internal Examin	ations
CO 1		\checkmark				\checkmark				\checkmark	
CO 2				\checkmark		\checkmark					
CO3							\checkmark			\checkmark	

Discipline and Type of Course	Geology		Skill	Skill Enhancement Course - SEC				
Course Code and Title	UK4SECGLY200		Gem	ology				
Semester	4		Academic Level: 200 - 299					
Course Details	Credit	Lectu Per week	-	Tutorial Per week	Practical per week	Total Hours/Week		
	3	3 h	ours	-	-	3		

Content	Hrs.
Module-1- Introduction to Gemstones	10
Crystalline and amorphous solids- minerals, mineraloids and metamict minerals. Significance of Gemology, Origin, nature and quality of gem materials- beauty, rarity and durability. Classification and uses of gemstones. Navaratnas and other semi-precious gemstones.	
Module II- Properties of Gemstones	13
Physical properties of gemstones and their importance in lapidary work - Form, hardness, toughness, cleavage, fracture, parting, specific gravity and its determination (hydrostatic weighing, pycnometer, heavy liquids and floatation) and common inclusions in gemstones.	
Optical properties of gemstones- Reflection, colour, lustre, diaphaneity, sheen, luminescence (tribo-, thermo- and photoluminescence (fluorescence and phosphorescence), colour from mechanical causes (chatoyancy, asterism and play of colours).	
Module III- Industrial Applications and Identification	13
Gem enhancement and treatment-Dyeing, bleaching, surface coating, waxing, oiling and fracture, filling. Gem treatment- heat treatment, High Pressure, High Temperature (HPHT) treatment, impregnation, irradiation, laser drilling and lattice diffusion.	
Identification of common gemstones – Diamond, Ruby, Sapphire, Emerald, Pearl, Corundum, Quartz, Garnet and Tourmaline. Industrial application, Occurrence, mining methods and distribution of gemstones in India.	
Module IV	6
Teacher Specific related to course Gemology	

Reference

- 1. Shipley, R. M. (2011). Dictionary of Gems and Gemology. Read Books Ltd.
- 2. Altman, J. (2012). Gem and stone: Jewels of earth, sea, and sky. Chronicle Books.
- 3. Anderson, B. (2011). Gem testing. Read Books Ltd.
- 4. Karanth R. V. (2000) Gem and gem industry in India, Memoir. 45, Geological Society of India, Bangalore.

Babu T M., (1998). Diamonds in India. Economic Geology Series 1, Geological Society of India, Bangalore.

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand more about gemstones- their significance, origin, classification and uses	U, An	F,C	ESE Quiz
CO2	Understand the characteristic physical and optical properties of different Gemstones	U, Ap	F,C, P	Assignment ESE
CO3	Understand and evaluate the importance of different enhancements and treatment techniques for gemstones	,	F,C, P	Assignment ESE
* - R-R e	member, U-Understand, Ap-Apply, An-A	nalyse, E-Eval	uate, C-Create	

- F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	Mapping of COs with PSOs and PO									
	I	PSO1	PSO2	PSO	3	PSO4	PSO5		PO	
CO 1			3						2	
CO 2			3						2	
CO 3				3					3	
Leve	el			1		2			3	
Correla	tion	Nil	Slight	tly/Low	Ν	/loderate / l	Medium	S	ubstantial/ High	
			Ma	pping of	f COs	s to Assess	ment Rubr	ics		
	Assi	gnment	Semina	ar End	Sem	ester Exan	ninations		Internal Examination	ations
CO 1			\checkmark		\checkmark				\checkmark	
CO 2		\checkmark	\checkmark		\checkmark					
CO3		\checkmark	\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology		Skill Enha	Skill Enhancement Course - SEC			
Course Code and Title	UK4SECG	LY220	Coal and	Coal and Petroleum Geology			
Semester		4	Academic	Academic Level: 200 - 299			
Course Details			Tutorial per week	Practical per week	Total Hours/Week		
	3	3 hours	-	-	3		

Content	Hrs
Module I- Coal Geology	9
Origin of Coal, Coalification process, Insitu and transported theory of coal formation.	l
Microscopic and Megascopic constituents of Coal. Macerals and its types. Micro	
lithotype and Lithotype. Impurities in Coal.	
Module II- Different varieties of Coal	9
Humic and sapropelic coal. Concept of coal maturity and ranks of coal. Thermal	
maturity indicator - Vitrinite reflectance. Classification of coal - Peat, lignite,	
bituminous and anthracite coal. Analysis for the assessment of coal quality - Proximate	
and ultimate analysis. Spatial and temporal distribution of coal in India - Gondwana	
and Tertiary coal.	
Module III- Petroleum geology	9
Introduction - Chemical and physical properties of petroleum. Origin of petroleum-	
Organic and Inorganic concepts. Kerogen and its types. Migration, accumulation, and	
entrapment of petroleum	
Module IV- Source and Reservoir rocks	9
Characteristics of reservoirs. Types of reservoir traps - Classification of traps-	
Structural, Diapiric, Stratigraphic, Hydromorphic traps and Combination traps.	
Geological age of reservoir rocks. Reservoir mechanics - Methods of petroleum	
exploration - surface, sub surface and geophysical methods. Petroliferous basins with	
special reference to India.	
Module V- Teacher Specific content	6
Teacher Specific content related to Coal and Petroleum Geology	
	1

Reference

- 1. John M Hunt Petroleum Geochemistry and Geology, W H Freeman and Company, 1996.
- 2. Leverson, A.I, Geology of Petroleum, 2nd Edn, CBSPublishers and distributor s, New Delhi.
- 3. North, F.K., Petroleum geology, UnwinHymanInc, USA, 1990.
- 4. ChapmanR.E, Petroleum Geology ,Elseiver Science Publishing company Inc. Newyork,1983
- 5. Jon Gluyas& Richard Swarbrick, Petroleum Geoscience, Blackwell Science publishing LtdUK2004.
- 6. Knut Bjorlykke, Petroleum Geoscience- From Sedimentary to Rock Physics, Springer Heidelberg Dordrecht, London, New York 2010.
- 7. Stach, E., (eds.), 1975, Stach's Textbook of Coal Petrology, Gebruder Borntraeger, Berlin
- 8. Thomas, L.,2012, Coal Geology, Wiley India Pvt Ltd, Delhi.
- 9. ShellyR. C.(2014). Elements of Petroleum geology : Third Edition, Academic Press
- 10. Bjorlykke,K.(1989).Sedimentologyandpetroleumgeology.Springer-Verlag.
- 11. Bastia,R.,and Radhakrishna,M.(2012).Basin evolution and petroleum prospectively of the continental margins of India(Vol. 59). Newness.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the Origin and Formation of Coal and petroleum. Identify Source and Reservoir Rocks and analyze reservoir mechanics and methods of petroleum exploration.	U, Ap	C, F	Assignment, Final Exam
CO2	Analyze Different Varieties and Ranks of Coal and properties of petroleum.	An	С	Assignment, Final Exam
CO3	Analyze Spatial and Temporal Distribution of Coal and Petroleum in India.	An	F, P	Assignment Final Exam
	member, U-Understand, Ap-Apply, An-Anal		, C-Create	

Mapping of COs with PSOs and PO											
	I	PSO1]	PSO2	PSOS	3	PSO4	PSO5		РО	
CO 1							3			2	
CO 2							3			3	
CO 3							2			3	
Leve	el			1	-	2 3		3			
Correla	tion	Nil		Slightl	y/Low	ľ	Moderate /	Medium	S	ubstantial/ High	
				Мар	ping of	CO	s to Assess	ment Rubr	ics		
	Assi	gnment		Seminar	End S	Sen	nester Exan	ninations		Internal Examination	ations
CO 1		\checkmark					\checkmark			\checkmark	
CO 2				\checkmark		\checkmark					
CO3						\checkmark \checkmark			\checkmark		

Discipline and Type of Course	Geology Value added Course - VAC					
Course Code and Title	UK4VACGLY2	UK4VACGLY200 Ecosystem Services				
Semester	4		Acad	emic Level:	200 - 299	
Course Details	Credit	Lecture per week		Tutorial per week	Practical per week	Total Hours/Week
	3	3 h	ours	-	-	3

Content	Hrs.
Module-1- Ecosystem	12
Ecosystem as an interface of different spheres of the earth, its Importance,	
resources, management and conservation. Major ecosystems of the earth-	
ocean, river, lake and forests.	
Module II- Surface Water System Services	12
Ocean environment and its resources. Role of the ocean in the regulation of global	
climate. Major oceanic exploration programmes	
Riverine system services- Role of the river as an ecosystem, major resources and its	
conservation. Deltaic environments.	
Importance of wetlands and forests- Significance, resource and	
conservation. Ramsar sites and major Ramsar sites of Kerala Western Ghats as a	
fragile ecosystem	

Modu	le III- Mar	nagement o	f the Ecosyste	m						12
			lesource-minin		lization an	nd wa	aste d	ispos	al. Types	
			derground an	-				-		
			tion- Generou					-		
		,	aste disposal-					j	6/ 11 1	
-			sanitary landfi							
Modul		iununns,		, su	e ansposar	•				6
		e related to	course Ecosys	stem S	ervices					•
	or speenie									
Refer	ence									
1.	-		send, C. R. (20)21). E	Cology: Fi	rom i	ndivi	duals	to ecosyst	ems.
•		ey & Sons.								
2.			Living with Ea	rth: A	n introduct	tion t	o env	ironn	nental geol	logy.
_	Routledge				_					
3.			er, B., Ridgw		-		-		•	
			ogy and ecosy							
4.	Knödel, I	K., Lange,	G., & Voigt, H	H. J. (2	007). Env	ironr	nenta	l geol	logy: hand	book
	of field m	nethods and	case studies.	Spring	er Science	e & B	usine	ess Mo	edia.	
CO		Course	Outcome		ognitive Level*		nowle ntego	0	Evalua Tools ι	
CO1	Understar	nd the sign	ificance of th	e U.	An		F, C ESE			
CUI	Understal	e , , ,								
CUI		•		,			1,0		Quiz	
	ecosystem Understa	n and its con and and ide	mponents ntify the		An, Ap	ŀ	F, C, 1			ent
	ecosystem Understa surface v	n and its con and and iden water syster	mponents ntify the ns of the			I			Quiz	ent
CO2	ecosystem Understa surface v globe an	n and its co and and ider vater syster d their imp	mponents ntify the ns of the ortance	ŀ	An, Ap		F, C, 1	P	Quiz Assignme ESE	
CO2	ecosystem Understa surface v globe an Understa	n and its con and and iden vater syster d their imp nd the m	mponents ntify the ns of the ortance ajor issues	of U,				P	Quiz Assignme ESE Assignme	
CO2	ecosystem Understa surface v globe an Understa ecosystem	n and its con and and iden vater syster d their imp nd the m n services	mponents ntify the ns of the ortance	of U,	An, Ap		F, C, 1	P	Quiz Assignme ESE	
CO2 CO3	ecosystem Understa surface v globe an Understa ecosystem conservati	n and its con and and iden vater system d their imp nd the m n services a ion.	mponents ntify the ns of the prtance ajor issues and methods	of U,	An, Ap , An	Η	F, C, 1	p p	Quiz Assignme ESE Assignme	
CO2 CO3	ecosystem Understa surface v globe an Understa ecosystem conservati	n and its con and and iden vater system d their imp nd the m n services a ion.	mponents ntify the ns of the ortance ajor issues	of U,	An, Ap , An	Η	F, C, 1	p p	Quiz Assignme ESE Assignme	
CO2 CO3	ecosystem Understa surface v globe an Understa ecosystem conservati	n and its con and and iden vater syster d their imp nd the m n services a ion. J-Understan	mponents ntify the ns of the ortance ajor issues and methods d, Ap-Apply, A	of U, of 1-Analy	An, Ap An An 7se, E-Eval u	Η	F, C, 1	p p	Quiz Assignme ESE Assignme	
CO2 CO3	ecosystem Understa surface v globe an Understa ecosystem conservati	n and its con and and iden vater syster d their imp nd the m n services a ion. J-Understan	mponents ntify the ns of the ortance ajor issues and methods d, Ap-Apply, A -Procedural, M	of U, of J-Analy -Metac	An, Ap An Se, E-Evalu	Η	F, C, 1	p p	Quiz Assignme ESE Assignme	
CO2 CO3	ecosystem Understa surface v globe an Understa ecosystem conservati emember, U	n and its con and and iden vater syster d their imp nd the m n services a ion. J-Understan onceptual, P Mapping o	mponents ntify the ns of the ortance ajor issues and methods d, Ap-Apply, An -Procedural, M f COs with PSOs	of U, of - Analy	An, Ap An Se, E-Evalu Ognitive	I late, t	F, C, 1 F, C, 1 C-Crea	p p	Quiz Assignme ESE Assignme	
CO2 CO3 - R-Re # - F-Fa	ecosystem Understa surface v globe an Understa ecosystem conservati	n and its con and and iden vater system d their imp nd the m n services a ion. J-Understan onceptual, P Mapping o PSO2	mponents ntify the ns of the ortance ajor issues and methods d, Ap-Apply, An -Procedural, M f COs with PSOs	of U, of J-Analy -Metac	An, Ap An Se, E-Evalu	I late, t	F, C, 1	p p	Quiz Assignme ESE Assignme	
# - F-F a	ecosystem Understa surface v globe an Understa ecosystem conservati emember, U	n and its con and and iden vater system d their imp nd the m n services a ion. J-Understan onceptual, P Mapping o PSO2 3	mponents ntify the ns of the ortance ajor issues and methods d, Ap-Apply, An -Procedural, M f COs with PSOs	of U, of - Analy	An, Ap An Se, E-Evalu Ognitive	I late, t	F, C, 1 F, C, 1 C-Crea	p p	Quiz Assignme ESE Assignme	
CO2 CO3 - R-Re # - F-Fa CO 1 CO 2	ecosystem Understa surface v globe an Understa ecosystem conservati emember, U	n and its con and and iden vater system d their imp nd the m n services a ion. J-Understan onceptual, P Mapping o PSO2	mponents htify the hs of the prtance ajor issues and methods d, Ap-Apply, An -Procedural, M f COs with PSOs PSO3 H	of U, of - Analy	An, Ap An Se, E-Evalu Ognitive	I late, t	F, C, 1 F, C, 1 C-Crea	p p	Quiz Assignme ESE Assignme	
CO2 CO3 - R-Re # - F-Fa CO 1 CO 2 CO 3	ecosystem Understa surface v globe an Understa ecosystem conservati emember, U actual, C- Co	n and its con and and iden vater system d their imp nd the m n services a ion. J-Understan onceptual, P Mapping o PSO2 3	mponents ntify the ns of the ortance ajor issues and methods d, Ap-Apply, An -Procedural, M f COs with PSOs	of U, of U, n-Analy -Metac s and P(PSO4	An, Ap An Se, E-Evalu Ognitive	I late, t	F, C, 1 F, C, 1 C-Crea	P P ate	Quiz Assignme ESE Assignme	
CO2 CO3 - R-Re # - F-Fa CO 1 CO 2 CO 3 Leve	ecosystem Understa surface v globe an Understa ecosystem conservati emember, U actual, C- Co	n and its con and and iden vater system d their imp nd the m n services a ion. J-Understan Drceptual, P Mapping o PSO2 3 3	mponents ntify the ns of the prtance ajor issues and methods d, Ap-Apply, An -Procedural, M f COs with PSOs PSO3 F 3 1	of U, of U, of U , n-Analy -Metac 2	An, Ap An, Ap An vse, E-Evalu ognitive D PSO5	Iate, F	F, C, 1 F, C, 1 C-Crea	P P ate	Quiz Assignme ESE Assignme	
CO2 CO3 - R-Re # - F-Fa CO 1 CO 2 CO 3 Leve	ecosystem Understa surface v globe an Understa ecosystem conservati emember, U actual, C- Co	n and its con and and iden vater system d their imp nd the m n services a ion. J-Understan onceptual, P Mapping o PSO2 3 3 1 3	mponents ntify the ns of the ortance ajor issues and methods d, Ap-Apply, An -Procedural, M f COs with PSOs PSO3 I J V/Low Mod	of U, of I-Analy -Metac -SO4 -2 erate /	An, Ap An, Ap An 7se, E-Evalu ognitive D PSO5 PSO5 Medium	F Sub	F, C, 1 F, C, 1 C-Crea	P P ate	Quiz Assignme ESE Assignme	
CO2 CO3 - R-Re # - F-Fa CO 1 CO 2 CO 3 Leve	ecosystem Understa surface v globe an Understa ecosystem conservati emember, U actual, C- Co PSO1	n and its con and and iden vater system d their imp nd the m n services a ion. J-Understan Disceptual, P Mapping o PSO2 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mponents tify the ns of the ortance ajor issues and methods d, Ap-Apply, An Procedural, M COS with PSOS PSO3 I y/Low Mod pping of COs to	of U, of U, of U , n-Analy -Metac 2 and P(2SO4 2 erate / 2 Assess	An, Ap An, Ap An Zee, E-Evalu ognitive D PSO5 PSO5 Medium Medium	F Sub	F, C, 1 F, C, 1 C-Crea PO	P ate 3 al/Hi	Quiz Assignme ESE Assignme ESE	
CO2 CO3 - R-Re # - F-Fa CO 1 CO 2 CO 3 Leve Correla	ecosystem Understa surface v globe an Understa ecosystem conservati emember, U actual, C- Co	n and its com and and iden vater system d their imp nd the m n services a ion. J-Understan Drceptual, P Mapping of PSO2 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mponents tify the ns of the ortance ajor issues and methods d, Ap-Apply, An Procedural, M COS with PSOS PSO3 I y/Low Mod pping of COs to	of U, of U, of U , n-Analy -Metac 2 and PC 2SO4 2 erate / 0 Assess er Exan	An, Ap An, Ap An Zee, E-Evalu ognitive D PSO5 PSO5 Medium Medium	F Sub	F, C, 1 F, C, 1 C-Crea PO	P P ate 3 al/Hia	Quiz Assignme ESE Assignme ESE gh	
CO2 CO3 - R-Re # - F-Fa CO 1 CO 2 CO 3	ecosystem Understa surface v globe an Understa ecosystem conservati emember, U actual, C- Co PSO1	n and its con and and iden vater system d their imp nd the m n services a ion. J-Understan Disceptual, P Mapping o PSO2 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mponents tify the ns of the ortance ajor issues and methods d, Ap-Apply, An Procedural, M COS with PSOS PSO3 I y/Low Mod pping of COs to	of U, of U, of U , n-Analy -Metac 2 and P(2SO4 2 erate / 2 Assess	An, Ap An, Ap An Zee, E-Evalu ognitive D PSO5 PSO5 Medium Medium	F Sub	F, C, 1 F, C, 1 C-Crea PO	P P ate 3 al/Hia	Quiz Assignme ESE Assignme ESE	

 \checkmark

 \checkmark

CO3

 \checkmark

Discipline and Type of Course	Geology		Value added Course - VAC					
Course Code and Title	UK4VACGLY2	Disaster Management						
Semester	4		Acad	emic Level:	200 - 299			
Course Details	Credit	Lecture per week		Tutorial per week	Practical per week	Total Hours/Week		
	3	3 h	ours	-	-	3		

Content	Hrs.
Module-1- Fundamentals of Disaster Management	12
Elements of Disaster Management- Prevention, mitigation, preparedness, response	
and recovery with major case studies. Legislations of the central and state	
governments in disaster management practices.	
Module II- Geological Disasters	12
Disasters- Classification, effects and management practices. Geological Disasters-	
The basic idea of causes and effects of Earthquakes, Volcanism, and Mass	
movements with special reference to landslides and avalanches. Seismic belt of the	
word, Seismic hazard zones of India. Coastal hazards- Tsunamis- Prediction and	
monitoring.	
Module III- Other natural and anthropogenic disasters	12
Hydrometeorological Disasters- Causes, effects and types of Floods, drought,	
cyclones and storms. Biological Disasters- Major Pathogenic micro-organisms,	
toxins and bioactive substances. Pandemic, epidemic, stampede and insect	
infestation. Anthropogenic Disasters- technological, chemical and biological	
Module IV	6
Teacher Specific related to course Disaster Management	
Reference	
1. Pandey, R. K. (2023). Disaster Management in India: Policies, Institutions,	
Practices. Taylor & Francis.	
2. Subramanian, R. (2018). Disaster Management. Vikas Publishing House.	
3. López-Carresi, A., Fordham, M., Wisner, B., Kelman, I., & Gaillard, J. C. (20	14).
Disaster management. International Lessons in Risk Reduction, Response and	1
Recovery. London: Earthscan.	
4. Murthy, D. B. N. (2007). Disaster Management: Text and case studies. Deep a	ind
Deep Publications.	
5. Goel, S. L. (2007). Disaster Administration and Management: Text and case	
studies. Deep and Deep Publications.	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the major elements of disaster management practices and legislation in India	U, An	F, C	ESE Quiz
CO2	Understand the significance of geological disasters and their mitigation procedures	U, An	F, C, P	Assignment ESE
CO3	Understand the major issues of other natural and anthropogenic disasters and their management	U, An	F, C, P	Assignment ESE
	nember, U-Understand, Ap-Apply, An-Anal ctual, C- Conceptual, P-Procedural, M-Meta	-	e, C-Create	

Mapping of COs with PSOs and PO											
	I	PSO1		PSO2	PSO3	3	PSO4	PSO5		РО	
CO 1				2						2	
CO 2				3						2	
CO 3					3					2	
Leve	el			1	l		2			3	
Correla	tion	Nil		Slightl	y/Low	I	Moderate /	Medium	S	ubstantial/ High	
				Мар	ping of	CC	s to Assess	ment Rubr	ics		
	Assi	gnment		Seminar	End S	Sen	nester Exan	ninations		Internal Examin	ations
CO 1				\checkmark		\checkmark			\checkmark		
CO 2		\checkmark				\checkmark					
CO3		\checkmark				\checkmark		\checkmark			

Discipline and Type of Course	Geology		Val	Value Added Course - VAC				
Course Code and Title	UK4VACO	CGLY220 Natural Hazards and Disaster Management						
Semester		4		Academic Level: 200 - 299				
Course Details	Credit	Lecture per week		orial week	Practical per week	Total Hours/Week		
	3	3 hours		-		3		

Content	Hrs.
Module I: Hazard and Disaster	9
Definition and Terminologies. Concept of Disaster management. Disaster	
management - zoning and risk assessment. Hazard zonation maps. Climate	
change: Global warming, Sea level rise, Ozone depletion, Carbon sink and	
sources.	
Module II: Natural Disasters.	9
Earthquake, Landslide, Avalanches, Volcanic eruptions. Heat and Cold Waves.	
Coastal disasters, Cyclone, Flood, Drought and Tsunami. Environmental Disasters	
- Dam collapse and Mitigation measures. Nuclear disasters, Chemical Disasters,	
Biological Disasters, Forest fire and Oil fire. Coastal Regulation Zone.	
Module III: Disaster Risk Management.	9
Institutional arrangement: - Prevention, Preparedness, and Mitigation; Disaster	
Preparedness Plan. Application of GIS in Disaster Preparedness and Management.	
Hazards and Vulnerability scenario in India.	
Module IV: Kerala and disasters.	9
Kerala: - Flood, Drought, Coastal erosion, Landslides, Pesticide contaminations	
and Accident-related disasters, Prevention and Mitigation. Emergency procedures	
and warning.	
Module V	6
Teacher Specific content related to Disaster Management	
Reference	
 Abbott P L., 2009. Natural Disasters 8thEdn McGraw-Hill New York. Bell, F.G., 1999. Geological Hazards, Routledge, London. 	

8.

- 3. Bryant, E., 1985. Natural Hazards, Cambridge University Press.
- 4. Donald Hyndman, David Hyndman, 2011. Natural Hazards and Disasters 3rdEdn Brooks Cole.
- 5. Smith, K., 1992. Environmental Hazards. Routledge, London.
- 6. Subramaniam, V., 2001. Textbook in Environmental Science, Narosa International
- 7. www.sdma.ker.in

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Gain a comprehensive understanding of the concepts of hazard and disaster and familiarize with environmental disasters and understand the causes and effects of climate change.	U	C, F	Assignment, Final Exam				
CO2	Understanding of disaster management principles, and the institutional arrangements for disaster risk management.	U	С	Assignment, Final Exam				
CO3	Examine the application of information technology in disaster preparedness and analyze the hazards and vulnerability scenarios specific to India.	Ap, An	F, P	Assignment, Final Exam				
	 ⁴ - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive 							

	Mapping of COs with PSOs and PO											
	I	PSO1	F	PSO2	PSO3	3	PSO4	PSO5		РО		
CO 1					3	3				3		
CO 2					3					3		
CO 3					3					3		
Leve	Level			1	_	2 3				3		
Correla	Correlation Nil			Slightl	y/Low	Moderate / Medium S			S	ubstantial/ High		
				Мар	ping of	CO)s to Assess	ment Rubri	ics			
	Assi	gnment	0,	Seminar	End S	Sem	nester Exan	Internal Examina	ations			
CO 1		\checkmark				\checkmark \checkmark						
CO 2		\checkmark				\checkmark \checkmark						
CO3				\checkmark		\checkmark \checkmark						

Discipline and Type of Course	Geology		Value Add	Value Added Course - VAC				
Course Code and Title	UK4VACC	LY221	Earth and	Earth and Environment				
Semester		4	Academic	Academic Level: 200 - 299				
Course Details	Credit Lecture per week		Tutorial per week	Practical per week	Total Hours/Week			
	3	3 hours	-		3			

Content	Hrs.
Module I: Fundamentals of Environmental Geology	9
Introduction to the concept and dimensions of environmental geology;	
Relationships between Geological processes and Environmental/Ecological	
changes; Role of an Environmental Geologist in social and economic	
development.	
Module II: Natural Resources:	9
Definition and characteristics of natural resources; Economic importance and	
types of natural resources (Mineral and Fuel Resources, Construction Resources,	
Water Resources, Biological Resources, aesthetic, and scientific Geological	
Resources); Geological dimension of conservation and sustainable development of	
Natural Resources.	

Module III: Earth's thermal environment and Climates.	9
Global warming and Climate change, Greenhouse effect, Ozone depletion, sea	
levels fluctuation, Milankovitch cycles.	
Module IV: Environmental Geology and Disasters	9
Introduction to the concepts of hazards and disasters; Their types and associated	
environmental issues; Role of Geologists in hazard mitigation and disaster	
management. Environmental Impact Assessment (EIA).	
Module V	6
Teacher Specific content related to Earth & Environment	
Reference	1
1. Abbott P L Natural Disasters 8thEdn McGraw-Hill New York 2009	
2. Arthur N. Strahler and Alan H Strahler Environmental Science, Wiley, 1973.	
3. Donald Hyndman, David Hyndman Natural Hazards and Disasters 3rdEdn Bro	ooks
Cole 2011	
4. Donald R Caotes (1981) Environmental Geology. John Wiley and Sons.	
1. Donald R Cables (1901) Environmental Geology. John Whey and Bons.	

- Krishnaswamy, S. (1988) Indian Mineral Resources. South Asia Books.
- 7. Mead L. Jensen and Alan M. Bateman (1981). Economic Mineral Deposits, John Wiley & Sons Third edition, revised printing.
- 8. Peter, T. Flawn. Environmental Geology, John Wiley and Sons, 1970.
- 9. Simmons, I. G., The Ecology of Natural Resources, Edward Arnold Ltd. 1981.
- 10. Strahler, A.N. and Strahler, A.H. (1973) Environmental Geosciences: Interaction between natural systems and man. John Wiley & Sons Inc.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the fundamentals of environmental geology and correlate the interplay between geological processes and environment	U, An	C, F	Assignment, Final Exam
CO2	Define natural resources and conservation and sustainable development of natural resources. Analyze Earth's thermal environment and climates.	Ap, An	С	Assignment, Final Exam
CO3	Understand the concepts of hazards and disasters, role of geologists in hazard mitigation and disaster management and apply theoretical knowledge to practical scenarios in addressing environmental challenges and promoting sustainable practices.	U, Ap	F, P	Assignment, Final Exam

* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

- F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	Mapping of COs with PSOs and PO										
	I	PSO1		PSO2	PSO	3	PSO4	PSO5		РО	
CO 1							3			3	
CO 2							3			3	
CO 3								3		3	
Leve	Level			1		2 3				3	
Correla	Correlation Nil			Slight	y/Low	/Low Moderate / Medium Substantial/ High					
				Мар	ping of	CC	s to Assess	ment Rubri	ics		
	Assi	gnment		Seminar	End	Sen	nester Exan	ninations		Internal Examination	ations
CO 1		\checkmark					\checkmark			\checkmark	
CO 2		\checkmark					\checkmark	\checkmark			
CO3				\checkmark		√√					

Discipline and Type of Course	Geology		Internship				
Course Code and Title	UK4INTG	LY200	00 Internship in Geology				
Semester		4	Academic	Academic Level: 200 - 299			
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	2		-		30		

5.5 COURSES IN GEOLOGY: Semester 5

Discipline and Type of Course	Geology		Disci	pline Specif	ic Core - DSC			
Course Code and Title	Course Code and Title UK5DSCGLY300			Igne	ous Petrology			
Semester	5	Acad	emic Level:	300 - 399				
Course Details	Credit	þ	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week		
	4	2 h	ours	-	2 hours	4		

Content	Hrs.
Module-1- Magmas and Magmatic Processes	11
Types and physical properties of Magma. Nucleation and growth of crystals. Bowen's reaction series. Phase rule, Study of following binary systems: Diopside- Anorthite (Eutectic), Albite-anorthite (solid solution), Forsterite silica (Incongruent). Diversity of igneous rocks - magmatic differentiation process, fractional crystallization, liquid immiscibility and assimilation/contamination.	
Module II- Deciphering Igneous Perentage	12
Forms, texture and structures. Classification: texture, mineralogy and chemistry. Classification based on mineralogy – felsic and mafic minerals, mode, colour index and IUGS classification - QAP classification of plutonic and volcanic rocks and ultramafic rock classification. Chemical classification – Based on silica saturation and based on alkali & silica (brief introduction of alkalic, subalkalic, calc-alkali and tholeiitic groups only) – Total alkali vs silica classification for volcanic rocks. A short account of CIPW norm and normative minerals.	
Module III- Igneous Rocks of the Crust	11
Tectonic association of igneous bodies. Large layered igneous complexes, continental alkaline rocks, ultra-alkaline and silica-poor alkaline rocks. Texture, mineralogy, classification, occurrence and origin of granites and basalts. Brief study of Kimberlites, Komatiite, Peridotite, Lamprophyres, carbonatites.	
Module IV Practical	12
A brief study of the petrography of common igneous rocks –granite, syenite, diorite, gabbro, dolerite, basalt, andesite, rhyolite, pegmatites, dunite, peridotite, granodiorite	
Module V	10
Teacher Specific related to course Igneous Petrology	
Reference	
109 Coolegy	

- 1. John D. Winter (2012) An Introduction to Igneous and Metamorphic Petrology.Prentice Hall. New Jersey.
- 2. Tyrrell, G.W. (1978) Principles of Petrology. Chapman and Hall Ltd., London.
- 3. Bowen, N.L.M. (1956) The Evolution of the Igneous Rocks. Dover publication, Inc, New York.
- 4. Barth, T.W. (1962) Theoretical Petrology. Wiley.
- 5. Walstrom, E.E. (1961) Theoretical Igneous Petrology, Wiley.
- 6. Turner, F.J. and Verhoogen, J. (1960) Igneous and Metamorphic Petrology. McGraw Hill.
- 7. Hatch, F.H. and A.K. Wells (1949) Petrology of Igneous Rocks. Thomas Murby&Wells, M.K.(Publ.)
- 8. Johannesen, A (1962) Descriptive Petrography of Igneous Rocks. Vols. I to IV, Allied Pacific. Allied Pacific.
- 9. Mackenzie, W.S., Donaldson, C.H. and C. Guilford (1988) Atlas of Igneous rocks and their textures. ELBS Longman.
- 10. Winter, J.D. (2001) An introduction to Igneous and Metamorphic Petrology. Prentice Hall, New Jersey.
- 11. Ehlers, G.E. and Blatt, H. (1999) Petrology Igneous, Sedimentary and Metamorphic. CBS Publishers and Distributors, New Delhi.
- 12. Hyndman, D.W. (1972) Petrology of Igneous and Metamorphic Rocks. MC-Graw Hill.
- 13. Wilson, M. (1989) Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London Inc., USA.

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and analyse the processes of origin and diversity of igneous rocks and the concept of binary systems	U, An	F,C,M	ESE Quiz
CO2	Understand and analyse the forms, structures and textures of igneous rocks	U, An	F,M	Assignment ESE
CO3	Understand and analyse the different modes of classification and the tectonic associations of different igneous rocks.		F,C	Quiz ESE
CO4	Identify the igneous rocks in lab and field	Ap,An	Р	ESE
	emember, U-Understand, Ap-Apply, An-Ana actual, C- Conceptual, P-Procedural, M-Meta		te, C-Create	

	Mapping of COs with PSOs and PO										
	I	PSO1	I	PSO2	PSO3	3	PSO4	PSO5		PO	
CO 1		1		3						3	
CO 2				3						2	
CO 3				3						3	
CO4								3		2	
Leve	Level					2				3	
Correla	tion	Nil		Slightl	y/Low	Low Moderate / Medium Su				ubstantial/ High	
				Map	ping of	CC)s to Assess	ment Rubr	ics		
	Assi	gnment		Seminar	EndS	Sen	nester Exam	ninations		Internal Examina	ations
CO 1				\checkmark			\checkmark			\checkmark	
CO 2		\checkmark				\checkmark				\checkmark	
CO3				\checkmark		\checkmark				\checkmark	
CO4							\checkmark			\checkmark	

Discipline and Type of Course	Geology Discipline Specific Core - DSC							
Course Code and Title	UK5DSCGLY3	301	Sedimentary Petrology					
Semester	5		Academic Level: 300 - 399					
Course Details	Credit	ŗ	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week		
	4	2h	ours	-	2 hours	4		

Content	Hrs.
Module-1- Sediments and Sedimentary Rocks	11
Sediment – Provenance, Lithification and Diagenesis. Texture - Clastic texture -	
concept of grain size (Udden-Wentworth and Phi scale of size determination),	
grain shape, fabric and packing. Non-clastic texture – different types of crystalline	
texture. A brief study of the following: Primary, secondary and organic structures.	
Module II- Classification of Sedimentary Rocks	11
Formation, Characteristics, and Classification of sedimentary rocks. General study	
of Shale, Dolomite and evaporates Conglomerate and Breccia. Classification of	
Sandstone and Limestone (Folk & Dunham).	

Brief study of depositional environments of sedimentary rocks a associations. An introduction to Sedimentary Basins and their formatic study of sedimentary basins in India. Platetectonics and sedimentation.	
Module IV Practical	12
Megascopic and microscopic identification of major sedimentary rocks: limestone (oolitic, fossiliferous), shale, conglomerate, breccia, arkose, g grit.	
Module V	10
Teacher Specific related to course Sedimentary Petrology	
Reference	
1. Tucker, M.E, Jones SJ(2023) Sedimentary Petrology, Wiley	
 Pettijohn, F.J. (1983) Sedimentary Rocks. Harper & Bros. Harker, A. (1964) Petrology for Students. Cambridge. Folk, R.L. (1981) Petrology of Sedimentary Rocks. Hemphils Pull Greensmith, J. (1989) Petrology of the Sedimentary Rocks. 7 Publishers,Delhi. Williams, H., Turner, F.J. and Gilbert, C.M. (1982) – Petro Freeman andCompany, San Francisco, CA. Blatt H., Middleton G. and Murray R. Origin of Sedimentary Hall, 1972. Carver R. E. (Ed). Procedures in Sedimentary Petrology, Interscie 10. Krumbein W. C. and Pettijohn E. J. Manual of Sedimentary Petro 	7th Edn., CBS ography. W. H rocks. Prentice ence, 1971.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and analyse the origin, texture and structure of sedimentary rocks and its applications.	U, An	F,C	ESE Quiz
CO2	Understand and analyse the classification of sedimentary rocks and a brief study of important sedimentaryrocks.	,	F,M	Assignment ESE
CO3	Understand the depositional environments, facies and sedimentary basins and analyse the relationship between plate tectonics and sedimentation.		F,C,P	ESE
CO4	Identify the sedimentary rocks both in the field and lab based on their megascopic and microscopic characters.	-	Р	ESE Quiz
	emember, U-Understand, Ap-Apply, An-Ana actual, C- Conceptual, P-Procedural, M-Met		te, C-Create	

	Mapping of COs with PSOs and PO										
	F	PSO1	PSO2	PSO.	3 PSO4	PSO5		РО			
CO 1		1	3					2			
CO 2			3					2			
CO 3				3				3			
CO4						3		3			
Leve	Level 1			1	2			3			
Correla	tion	Nil	Sligh	tly/Low	Moderate /	ubstantial/High					
			Ma	apping of	COs to Assess	ment Rubr	ics				
	Assi	gnment	Semina	ar End	Semester Exar	ninations		Internal Examina	ations		
CO 1			\checkmark		\checkmark			\checkmark			
CO 2		\checkmark			\checkmark			\checkmark			
CO3					\checkmark			\checkmark			
CO4			\checkmark		\checkmark						

Discipline and Type of Course	Geology		Discipline Specific Core - DSC					
Course Code and Title	UK5DSCGLY3	02	Metamorphic Petrology					
Semester	5		Academic Level: 300 - 399					
Course Details	Credit	ŗ	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week		
	4	3 h	ours	-	2 hours	5		

Content	Hrs.
Module-1- The Concept of Metamorphism	15
Definition of metamorphism. Factors and limits of metamorphism. Anatexis,	
palingenesis and migmatites. Types of metamorphism – Contact metamorphism,	
regional metamorphism – orogenic, ocean floor and burial metamorphism,	
Cataclastic metamorphism, hydrothermal metamorphism and metasomatism,	
Impact/shock metamorphism. Prograde and retrograde metamorphism	
Module II- Metamorphic textures	16
Crystalloblastic and relict textures and their types. Different metamorphic	
Structures and their types. Concept of metamorphic grade and zone, Index	
minerals and Isograd, Metamorphic facies and Facies Series.	
Module III- Protolith and Metamorphism	15
Metamorphic mineral paragenesis. Metamorphic rocks and tectonic association.	
Regional metamorphism of carbonate, pelitic and mafic rocks. Thermal	
metamorphism of carbonate rocks. Metamorphic rocks of Kerala.	
Module IV - Practical	14
Brief study and Petrography of the following metamorphic rocks: Slate, Phyllite,	
Quartzite, Marble, Schists, Amphibolite, Gneiss, Eclogite, Mylonite, Hornfels and	
Granulites – Charnockite, Khondalite and Leptynite.	
Module V	10
Teacher Specific related to course Metamorphic Petrology	
Reference	
1. Winter, J.D. (2001) An introduction to Igneous and Metamorphic Petrolo	gy.
PrenticeHall, New Jersey.	
2. Winkler, H.G.F. (1974) Petrogenesis of Metamorphic Rocks, 5th, 6th and	7th
eds.Springer Verlag.	
3. Yardley, B.W.D. (1989) Textbook of Metamorphic Petrology. Longman.	

4. Turner, F.J. and Verhoogen, J. (1960) Igneous and Metamorphic Petrology. McGrawHill.

5. Williams, H., Turner, F.J. and Gilbert, C.M. (1982) – Petrography. W. H. Freeman andCompany, San Francisco, CA.

6. Tyrrell, G.W. (1978) Principles of Petrology. Chapman and Hall Ltd., London.

7. Harker, A. (1964) Petrology for Students. Cambridge.

8. Blatt, J., Tracy J. R. and Owens B.E. 2006 Petrology: Igneous, Sedimentary, and metamorphic.W. H. Freeman.

9. Shelley D. Igneous and metamorphic rocks under the microscope: classification, textures, microstructures, and mineral preferred - orientations Springer, 1993.

10. Fry N. The field description of metamorphic rocks. Geological Society of London handbook series. Open University Press, 1984

11. Vernon R. H. and Clarke G. L. 2008 Principles of metamorphic petrology Cambridge University Press.

12. Winter J. Principles of Igneous and Metamorphic Petrology 2nd Edition 2009

13. Vernon R. H. A practical guide to rock microstructure Cambridge University Press, 2004

14. Bucher K and Frey M. 1994 Petrogenesis of metamorphic rocks Edition6 Springer-Verlag.

15. Barker A. J. 1998 Introduction to metamorphic textures and microstructures Edition 2, Routledge.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the process of metamorphism, factors, limits and types of metamorphism.	U,R	F,C	ESE Assignment
CO2	Understand and analyze metamorphic textures and structures, metamorphic facies, zone, and grade concepts.	U,An	F,C	ESE
CO3	Understand mineral paragenesis, tectonic association and analyse the effects of metamorphism in different rocks	U,An	F,C	ESE Quiz
CO4	Identification of metamorphic rocks in lab and field based on megascopic and microscopic study.	Ар	Р	ESE
	member, U-Understand, Ap-Apply, An-Ana ctual, C- Conceptual, P-Procedural, M-Meta	-	e, C-Create	

	Mapping of COs with PSOs and PO											
	PSO1 PSO2		PSO3		PSO4	PSO5		РО				
CO 1		2								2		
CO 2			3							3		
CO 3		1	3							3		
CO4								3		3		
Leve	Level		1	2				3				
Correla	tion	Nil	Slig	htly	/Low	Low Moderate / Medium S			S	ubstantial/ High		
			Ν	/lapp	oing of	COs	s to Assess	ment Rubr	ics			
	Assi	gnment	Semi	nar	End Semester Examinations				Internal Examina	ations		
CO 1		\checkmark				\checkmark					\checkmark	
CO 2					\checkmark		\checkmark		\checkmark			
CO3			\checkmark		\checkmark				\checkmark			
CO4						\checkmark						

Discipline and Type of Course	Geology		Di	Discipline Specific Core - DSC				
Course Code and Title	UK5DSCG	LY320		Magmatic Processes and Igneous Petrology				
Semester		5	Acad	cademic Level: 300 - 399				
Course Details	Credit	Lecture per week	orial week	Practical per week	Total Hours/Week			
	4	2 hours	-	2 hours	4			

Content	Hrs.
Module I: Magma to Rocks:	14
Magma generation in the crust and upper mantle. Primary and parental magmas.	
Definition of felsic, mafic and alkaline magma. Physical properties of magma -	
temperature, viscosity, density and volatile content.; Diversity of igneous rocks -	
magmatic differentiation process, fractional crystallization, liquid immiscibility and	
assimilation/ contamination. Igneous rocks- plutonic, hypabyssal and volcanic	
igneous rocks. Cooling history of igneous rocks. Bowen's reaction series. Brief	
idea of major, minor and trace element trends in magmatic evolution. Harker	
diagram. Phase rule and Lever rule and its application to eutectic, peritectic and	
solid solution system. Phase equilibria in the following binary systems, and their	
petrogenetic significance: diopside – anorthite, forsterite – silica, albite – anorthite	
systems. Distribution of igneous rocks along different tectonic settings.	

Module II: Igneous forms, Structures, and Textures	14
Intrusive igneous forms- Concordant forms - sill, laccolith, lopolith and phaccolith.	
Discordant forms - dykes, cone sheets, volcanic neck, ring dyke, batholiths, stocks,	
bosses and bysmaliths. Igneous structures: Vesicular and amygdaloidal structures,	
flow structure, sheet joints, mural jointing, and columnar jointing. Textures:	
definition and description -Types with examples; Crystallinity - crystallites,	
microlites, devitrification; Granularity- absolute and relative grain size; Shapes of	
crystals; Mutual relations – Equigranular textures: allotriomorphic,	
hypidiomorphic, Panidiomorphic, Inequigranular textures: porphyritic and poikilitic	
textures, Intergrowth texture - perthite, antiperthite, graphic, vermicular textures,	
Overgrowth textures - orbicular structure, Reaction textures - coronas, Directive	
textures – trachytic texture, spherulitic structure and perlitic fracture.	
Module III: Classification of Igneous rocks	14
Classification based on texture, mineralogy and chemistry. Classification based on	
Classification based on texture, mineralogy and chemistry. Classification based on	
mineralogy – felsic and mafic minerals, mode, colour index and IUGS	
classification - QAP classification of plutonic and volcanic rocks and ultramafic	
rock classification. Chemical classification – Based on silica saturation and based	
on alkali & silica (brief introduction of alkalic, subalkalic, calc-alkalic and tholeiitic	
groups only) - Total alkali vs silica classification for volcanic rocks. A short	
account of CIPW norm and normative minerals. Tabular classification. Texture,	
mineralogy, classification, occurrence and origin of granites, basalts and	
ultramafics. Intrusive rocks of Kerala.	
Module IV: Practical	8
Problems related to Phase rule and lever rule, Classification of rock according to	
QAPF: Brief petrographic character of common igneous rocks - granodiorite,	
syenite, diorite, gabbro, dolerite, andesite, rhyolite, pegmatites, lamprophyres,	
komatiite carbonatite, dunite, peridotite, anorthosite and kimberlite. Megascopic	
and Microscopic identification of major igneous rocks.	
Module V: Teacher specific content	6
Teacher specific content related to Magmatic processes and igneous rocks	

 petro Wint Rayn meta Myrc Cox, Sprin Bose Cox, Sprin Bose Wint Prent Ehlen Meta Hync Hill. Frost Petro Rolli prese Rayn meta Holli Frost Petro Rolli prese McB Co Bown GW Bown McB Co Barth Wals Turn McG Hatch Well Johan Allie Mach and t 	ilpotts, A. and Ague, J. (2009). Principles of igneous and metamorphic
 Wint Rayn meta Rayn meta Myrco Cox, Sprin Bose Wint Prent Ehler Meta Hync Hill. Frost Petro Rolli prese Rayn meta McB & Co Rolli prese Rayn meta McB & Co Bowo Inc, I Mach Allie Johan Allie Mach and t 	trology. Cambridge University Press.
 Rayn meta Myrc Cox, Sprir Bose Wint Prent Ehler Meta Hync Hync Hill. Frost Petro Rolli prese Rayn meta McB & Co Rolli prese Rayn meta McB Co Bow Inc, I Bow Inc, I Barth Turn McG Hatcl Well Johan Allie Mach and t 	inter, J. D. (2014). Principles of igneous and metamorphic petrology. Pearson.
 Myrc Cox, Sprir Bose Wint Prent Ehler Meta Ehler Meta Hync Hync Hill. Frost Petro Rolli prese Rayn meta McB & Co Bowd Inc, I Barth Bowd Inc, I Barth Turn McG Hatcl Well Johar Allie Mach and t 	ymond, L. A. (2002). Petrology: the study of igneous, sedimentary, and
 Myrc Cox, Sprir Bose Wint Prent Ehler Meta Ehler Meta Hync Hync Hill. Frost Petro Rolli prese Rayn meta McB & Co Bowd Inc, I Barth Bowd Inc, I Barth Turn McG Hatcl Well Johar Allie Mach and t 	etamorphic rocks. McGraw-Hill Science Engineering.
 Cox, Sprir Bose Wint Prent Ehler Meta Hync Hill. Frost Petro Rolli prese Rayn meta McB & Co G W Bowo Inc, I Barth Bowo Inc, I Barth Turn McG Hatcl Well Johan Allie Mach and t 	yron G. Best (2001). Igneous and Metamorphic Petrology.
Sprin Sprin Sprin Sprin Sprin Prent Sprin Meta Sprin Hync Hill. O. Frost Petro 1. Rolli prese 2. Rayn meta 3. McB & Co 4. G W 5. Bowd Inc, I 6. Barth 7. Wals 8. Turn McG 9. Hatcl Well Co. Johan Allie 21. Mach and t	ox, K. G. and Bell. J. D. (1979). The Interpretation of Igneous Rocks.
 Bose Wint Prent Ehler Meta Ehler Meta Ehler Meta Hync Hill. Frost Petro Rolli prese Rayn meta McB & Co G W Bowd Inc, I Bowd Inc, I Barth Turn McG Hatcl Well Johar Allie Mach and t 	ringer/Chapman and Hall.
 Wint Prent Ehler Meta Ehler Meta Hync Hill. Frost Petro Rolli prese Rayn meta McB & Co G W Bowo Inc, I Bowo Inc, I Barth Turn McG Turn McG Hatcl Well Johan Allie Mach and t 	ose M. K. (1997). Igneous Petrology.
Prent Prent Meta Meta D. Hync Hill. O. Frost Petro 1. Rolli prese 2. Rayn meta 3. McB & Co 4. G W 5. Bowd Inc, I 6. Barth 7. Wals 8. Turn McG 9. Hatcl Well C. Johan Allie 21. Mach and t	inter, J.D. (2001) An introduction to Igneous and Metamorphic Petrology.
 Ehler Meta Hync Hill. Frost Petro Rolli prese Rayn meta McB & Co G W Bowd Inc, I Barth Turn McG Hatcl Well Johar Allie Mach and t 	entice Hall, New Jersey.
Meta Meta Hyno Hill. O. Frost Petro 1. Rolli prese 2. Rayn meta 3. McB & Co 4. G W 5. Bowo Inc, I 6. Barth 7. Wals 8. Turn McG 9. Hatcl Well 20. Johan Allie 21. Mach and t	lers, G.E. and Blatt, H. (1999) Petrology – Igneous, Sedimentary and
 Hynd Hill. Frost Petro Rolli prese Rayn meta McB & Co McB & Co G W Bowo Inc, I Barth Turn McG Hatcl Well Johan Allie Mach and t 	etamorphic. CBS Publishers and Distributors, New Delhi.
Hill. 0. Frost Petro 1. Rolli prese 2. Rayn meta 3. McB & Co 4. G W 5. Bowd Inc, I 6. Barth 7. Wals 8. Turm McG 9. Hatcl Well 20. Johan Allie 21. Mach and t	ndman, D.W. (1972) Petrology of Igneous and Metamorphic Rocks. MC-Gra
Petro 1. Rolli prese 2. Rayn meta 3. McB & Co 4. G W 5. Bowo Inc, I 6. Barth 7. Wals 8. Turn McG 9. Hatcl Well 20. Johan Allie 21. Mach and t	
Petro 1. Rolli prese 2. Rayn meta 3. McB & Co 4. G W 5. Bowo Inc, I 6. Barth 7. Wals 8. Turn McG 9. Hatcl Well 20. Johan Allie 21. Mach and t	ost B. R. and Frost C. D (2014). Essentials of Igneous and Metamorphic
 Rolli prese Rayn meta McB & Co G W Bowe Inc, I Well Johar Allie Mach and t 	trology. Cambridge University Press.
prese 2. Rayn meta 3. McB & Co 4. G W 5. Bowo Inc, I 6. Barth 7. Wals 8. Turn McG 9. Hatcl Well 20. Johan Allie 21. Mach and t	ollinson, H. R. (2014). Using geochemical data: evaluation,
 Rayn meta McB & Co G W Bowo Inc, I Barth Wals Turn McG Hatcl Well Johan Allie Mach and t 	esentation, interpretation. Routledge.
 McB & Co & Co & Co & Co & G W Source Bower Inc, I Bower Bower Bower Bower Mach And t 	ymond, L. A. (2002). Petrology: the study of igneous, sedimentary, and
& Co 4. G W 5. Bowe Inc, I 6. Barth 7. Wals 8. Turn McG 9. Hatcl Well 20. Johan Allie 21. Mach and t	etamorphic rocks. McGraw-Hill Science Engineering.
 G W Bowe Inc, I Barth Wals Turn McG Hatcl Well Johan Allie Mach and t 	cBirney, A. R. (1984). Igneous Petrology. San Francisco (Freeman, Coope
 Bowe Inc, I Barth Barth Wals Turn McG Hatch Well Johan Allie Mach and t 	Company) and Oxford (Oxford Univ. Press),
Inc, 1 6. Barth 7. Wals 8. Turn McG 9. Hatcl Well 20. Johan Allie 21. Mach and t	W Tyrrell. (1926). Principles of Petrology. Springer
 Barth Wals Turn McG Hatcl Well Johan Allie Mach and t 	owen, N.L.M. (1956) The Evolution of the Igneous Rocks. Dover publication,
 7. Wals 8. Turn McG 9. Hatcl Well 20. Johan Allie 21. Mach and t 	c, New York.
 7. Wals 8. Turn McG 9. Hatcl Well 20. Johan Allie 21. Mach and t 	rth, T.W. (1962) Theoretical Petrology. Wiley.
McG 9. Hatcl Well 20. Johan Allie 21. Mach and t	alstrom, E.E. (1961) Theoretical Igneous Petrology, Wiley.
9. Hatch Well 20. Johan Allie 21. Mach and t	rner, F.J. and Verhoogen, J. (1960) Igneous and Metamorphic Petrology.
Well 20. Johan Allie 21. Mach and t	cGraw Hill.
20. Johan Allie 21. Mach and t	ttch, F.H. and A.K. Wells (1949) Petrology of Igneous Rocks. Thomas Murby
Allie 1. Macl and t	ells, M.K.(Publ.)
Allie 1. Macl and t	hannesen, A (1962) Descriptive Petrography of Igneous Rocks. Vols. I to IV,
and t	lied Pacific. Allied Pacific.
and t	ackenzie, W.S., Donaldson, C.H. and C. Guilford (1988) Atlas of Igneous rock
	d their textures. ELBS Longman.
2. Wils	ilson, M. (1989) Igneous Petrogenesis: A Global Tectonic Approach. Unwin
	/man, London Inc., USA.
•	hn D. Winter (2012) An Introduction to Igneous and Metamorphic Petrology.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understanding properties magma and formation of various igneous rocks from magma	U	С	Assignment, Final Exam				
CO2	Scientific study of Igneous Rocks.	An	Р	Assignment, Final Exam				
CO3	Identification of igneous rocks in hand specimen and	AP	Р	Assignment Final Exam				
	* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive							

	Mapping of COs with PSOs and PO										
	I	PSO1	I	PSO2	PSO3	PSO3 PSO4 PSO5		РО			
CO 1				3	3					2	
CO 2				3						3	
CO 3		_						3		3	
Leve	el			1		2				3	
Correla	tion	Nil		Slightly/Low		Moderate / Medium			S	ubstantial/High	
				Мар	ping of	COs	s to Assess	ment Rubri	ics		
	Assi	gnment		Seminar	End S	Sem	ester Exan	ninations		Internal Examina	ations
CO 1		\checkmark					\checkmark		\checkmark		
CO 2				\checkmark			\checkmark	\checkmark			
CO3							\checkmark			\checkmark	

Discipline and Type of Course	Geology		Di	ific Core - DSC		
Course Code and Title	UK5DSCG	GLY321		Sedimentology and Sedimentary Petrology		
Semester		5	Acad	Academic Level: 300 - 399		
Course Details	Credit	orial week	Practical per week	Total Hours/Week		
	4	2 hours	-	2 hours	4	

Content	Hrs.
Module I: Sedimentology	12
Origin of sediments. Diagenesis - Compaction, cementation, authigenesis,	
recrystallization and replacement. Sediment transport mechanism- types of flow	
(Newtonian and Non-Newtonian), laminar and turbulent flow, subcritical, critical	
and supercritical flows; concept of mean flow velocity; particle entrainment,	
transport and deposition. Depositional environments, facies concept and	
sedimentary provinces.	
Module II: Sedimentary structures and textures	17
Sedimentary structure, Primary, penecontemporaneous deformation and biogenic	
structures. Paleocurrent analysis using sedimentary structures. Clastic texture -	
concept of size, Udden-Wentworth and Phi scale. Grain shape, morphology and	
fabric. Non- clastic texture – crystalline texture. Plate Tectonics and major types of	
sedimentary basin. Quaternary sediments.	
Module III: Classification and Descriptions of sedimentary rocks.	17
Classification of sedimentary rocks – Clastic and non-clastic rocks. Argillaceous,	1/
arenaceous and rudaceous rocks. Classification of Sedimentary rocks:	
Conglomerates, sandstones, Claystone, Shale. Non clastic rocks. Allogenic and	
authigenic matter. Classification of limestone – Folk and Dunham scheme.	
dolomites and dolomitization. General outline of controls on deposition of	
sandstones and carbonate rocks. Evaporates. Diagenesis: Concepts of diagenesis,	
processes and stages of diagenesis. Sedimentary rocks of Kerala	
Module IV: Practical	14
Megascopic and microscopic study (textural and mineralogical) of major	
sedimentary rocks. Study of sandstone, shale, conglomerate, breccias, limestone,	
dolomite	

Modu	le V: Teacher specific content	10
	er specific content related to sedimentology and sedimentary petrology	
Refere	ence	<u> </u>
1.	Prothero, D. R., & Schwab, F. (2004). Sedimentary geology. Macmillan	
2.		
3.	· · · · ·	
4.	Nichols, G. (2009). Sedimentology and Stratigraphy Second Edition. Wiley Blackwell	
5.	Folk, R.L. (1980) Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, 184 p	
6.	Pettijohn FJ, 1970, Sedimentary rocks, New York: Harper & Row, 628p.	
	Blatt H., Middleton G. and Murray R. Origin of Sedimentary rocks. Prentice 1972.Carver R. E. (Ed). Procedures in Sedimentary Petrology, Inter sci 1971.	
8.	Krumbein W. C. and Pettijohn E. J. Manual of Sedimentary Petrology. Apple 1938Stelley R. C. Ancient Sedimentary Environments, Cornell University P 1972.	
9.	Pettijohn F. J, Potter P. E., Siever R. Sand and Sandstone. Springer-Verlag, 1	972.
10	Nichols G. Sedimentology and Stratigraphy. Wiley-Blackwell, 2009.	
	Harker, A. (1964) Petrology for Students. Cambridge.	
12.	Greensmith, J. (1989) Petrology of the Sedimentary Rocks. 7 th Edn., CBS Publishers, Delhi.	
13.	Carver R. E. (Ed). Procedures in Sedimentary Petrology, Inter science, 1971.	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand the basic sedimentological process.	U	F	Assignment, Final Exam				
CO2	Systematic study of sedimentary rocks.	An	Р	Assignment, Final Exam				
CO3	Examine sedimentary rocks	AP	Р	Assignment, Final Exam				
	* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive							

	Mapping of COs with PSOs and PO										
	I	PSO1	PSC)2	PSO3	3	PSO4	PSO5		РО	
CO 1				3		3				2	
CO 2			3							2	
CO 3								3		2	
Leve	el			1		2				3	
Correla	tion	Nil	SI	lightly	/Low	Low Moderate / Medium S			Sı	ubstantial/ High	
				Map	ping of	CO	s to Assess	ment Rubri	ics		
	Assi	gnment	Ser	ninar	End S	Sem	nester Exam	ninations		Internal Examina	ations
CO 1		\checkmark							\checkmark		
CO 2				\checkmark		\checkmark			\checkmark		
CO3							\checkmark			\checkmark	

Discipline and Type of Course	Geology		Di	Discipline Specific Core - DSC			
Course Code and Title	UK5DSCG	GLY322		Principles of Metamorphic Petrology			
Semester		5	Acad	Academic Level: 300 - 399			
Course Details	Credit	 orial week	Practical per week	Total Hours/Week			
	4	3 hours	-	2 hours	5		

Content	Hrs.
Module I: Definition of metamorphism	12
Metamorphism- Factors of metamorphism - pressure, temperature, chemically	
active fluids, time and parent rock chemistry, limits of metamorphism. anatexis,	
palingenesis and migmatites. Depth zone concepts. Types of metamorphism -	
Contact metamorphism, regional metamorphism - orogenic and ocean floor, burial	
metamorphism, cataclastic metamorphism, hydrothermal metamorphism	
Impact/shock metamorphism and plutonic metamorphism.	
Module II: Metamorphic Facies, Grades, Zones, Isograds and Index minerals	16
Concept of metamorphic facies, Mineralogical phase rule of closed and open	
system. Composition-paragenesis diagrams. Basic concept of ACF, AKF and	
AFM diagrams. Winkler's grade concept. Progressive and retrogressive	
metamorphism. Stability of alumina silicate minerals in P-T field. Metamorphic	
mineral zone concept - index minerals and isograd, Metamorphic facies series.	

Module III: Metamorphic textures and structures	18
Crystalloblastic and Relict textures. Metamorphic structures - foliations,	
lineations, cataclastic and miscellaneous. Metamorphism of pelitic, carbonate and	
mafic rocks. Regional occurrence and tectonic significance of metamorphic rocks:	
Metamorphism along convergent plate margins, in continent-continent collisions,	
in rifting terrains and sea floor metamorphism. Metamorphic rocks of Kerala.	
Module IV: Practical	14
Megascopic and microscopic study (textural and mineralogical) of the following	
metamorphic rocks: Slate, Phyllite, Quartzite, Marble, Schists, Amphibolite,	
Gneisses, Eclogite, Blueschist, mylonite, Hornfels and Granulites - Charnockite	
(massive, incipient), Khondalite and Leptynite.	
Module V:Teacher specific content	10
Teacher specific content related to Metamorphic petrology	
Reference	
1. Philpotts, A., & Ague, J. (2009). Principles of igneous and metamorphic petrology. Cambridge University Press.	
 Winter, J. D. (2014). Principles of igneous and metamorphic petrology. Pearso 	on
3. Rollinson, H. R. (2014). Using geochemical data: evaluation, presentation,	
interpretation. Routledge.	
4. Yardley, B. W. D. (1989). An introduction to metamorphic petrology. Longm	an
Scientific and Technical, London.	-
 Spear F. S. 1993. Metamorphic phase equilibria and Pressure-Temperature-Ti paths. Mineralogical Society of America. Monograph 799 	me
6. Raymond, L. A. (2002). Petrology: the study of igneous, sedimentary, and	d
metamorphic rocks. McGraw-Hill Science Engineering.	
 Blatt, J., Tracy J. R. and Owens B.E. 2006 Petrology: Igneous, Sedimentary, a Metamorphic. 	and
Edition3, W. H. Freeman.	
8. Shelley D. Igneous and metamorphic rocks under the microscope: classification	
textures, micro structures, and mineral preferred - orientations Springer, 1993	3.
9. Fry N. The field description of metamorphic rocks. Geological Society of	
London hand book series. Open University Press, 1984 10. Vernon R. H. and Clarke G. L. 2008 Principles of metamorphic petrology	
Cambridge University Press.	
11. Vernon R. H. A practical guide to rock microstructure Cambridge University	
Press, 2004 Books	
12. Bucher K and Frey M. 1994 Petrogenesis of metamorphic rocks Edition6,	
Illustrated Publisher Springer-Verlag.	
13. Barker A. J. 1998 Introduction to metamorphic textures and microstructures Edition 2, Routledge	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used						
CO1	Discuss types and process and environment of metamorphism	U	F	Assignment, Final Exam						
CO2	Analyze texture, structure and classification of metamorphic rocks.	An	Р	Assignment, Final Exam						
CO3										
	 * - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive 									

Mapping of COs with PSOs and PO											
	I	PSO1	Р	PSO2	PSO3	3	PSO4	PSO5		РО	
CO 1				3						2	
CO 2				3						3	
CO 3								3		3	
Leve	Level 1				l		2		3		
Correla	tion	Nil		Slightl	y/Low	I	Moderate /]	Medium	S	ubstantial/ High	
				Map	ping of	CC	s to Assess	ment Rubr	ics		
	Assi	gnment	9	Seminar	EndS	Sen	nester Exam	ninations		Internal Examination	ations
CO 1		\checkmark		\checkmark		\checkmark				\checkmark	
CO 2						\checkmark				\checkmark	
CO3						\checkmark \checkmark					

Discipline and Type of Course	Geology		Discipline Specific Elective - DSE				
Course Code and Title	UK5DSEGL	Y300	Marine Geology				
Semester	5		Academic Level: 300 - 399				
Course Details	Credit	Lectur Per we	-	Tutorial Per week	Practical per week	Total Hours/Week	
	4	2 hou	urs	-	2 hours	4	

Content	Hrs.
Module-1-	15
Oceanographic expedition, Ocean floor drilling programmes - ODP, DSDP and	
JOIDES. Morphology of ocean floor, Mid-oceanic ridge system, Subduction	
zones, island arcs, trenches, conjugate oceanic basins, seamounts. Guyots and	
ridges. Ocean floor mapping - Echo sounding - multi beam survey and ROVs.	
Module II	15
Turbidity currents and turbidites, Mud banks. Marine pollution - Oil spill, algal	
blooms, industrial effluents. Tar balls. Upwelling and Oxygen minimum zone. EEZ	
and CRZ. Law of sea.	
Module III	16
Marine Sediments - Classification and distribution. Factors controlling the deposition and distribution of oceanic/marine sediments - Biogenous, Cosmogenous, Hydrogenous, Terrigenous and Authigenic.	
Module IV	14
Mineral resources of the oceans - Distribution and classification of minerals of	
economic importance in different oceanographic settings: Seawater as a source of	
elements/minerals. Placer and heavy mineral deposits, petroleum, phosphorites,	
phosphatic deposits, gas hydrates, poly-metallic nodules, metals enriched crusts,	
hydrothermal and metalliferous sediments	
M - J-1- W	10
Module V Teachar Specific related to course Marine scale su	10
Teacher Specific related to course Marine geology	
Reference	<u> </u>
1.Pinet Paul, R. (1992). Oceanography – An Introduction to the Planet Oceanus,	
West Publishing Co.	
2.Pond, S. and Pickard, G. L. (1983). Introductory Dynamical Oceanography,	
2nd Ed., Pergamon Press.	
3.King, C. A. M. (1972). Beaches and Coasts, Arnold, London.	
4. Trask P. D. (1939). Recent Marine Sediments, Denver Publications.	
5.Krumbein, W. C. and Pettijohn, F. J. (1938). Manual of	
Sedimentary Petrology, Appleton Century Co. 6.Pickering, K. T. Hiscott, R. N. and F. J. Hedn (1989). Deep Marine Environment	te
- clastic sedimentation and Tectonics, Unwin and Hyman.	10
7.Roy Chester (1990). Marine Geochemistry, Unwin Hyman.	
. 8.Shepard F. P. (1963) Submarine Geology, Harper & Row, New York.	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the morphological features of ocean floor, Oceanographic expeditions and ocean drilling programs and ocean floor mapping, marine pollution and law of the sea.		F,C	Assignment, Final Exam
CO2	Understand the various physical and chemical parameters of ocean water.	R,U	F,C	Assignment, Final Exam
CO3	Understand the various aspects of marine sediments	R,U	F,C	Assignment, Final Exam
CO4	Understand the different mineral resources of the ocean floor.	R,U	F,C	Quiz Final exam
* - R- Re	member, U-Understand, Ap-Apply, An-Analys	e, E-Evaluate,	C-Create	

- F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	Mapping of COs with PSOs and PO												
	I	PSO1	PSO	2	PSO3	PSO3 PSO4 PSO		PSO5		РО			
CO 1		1								2			
CO 2		2								2			
CO 3			2							2			
CO4							2			2			
Leve	evel 1			2				3					
Correla	tion	Nil	Sl	ightly	//Low	N	Moderate / 1	Medium	S	ubstantial/ High			
				Мар	ping of	CO	s to Assess	ment Rubr	ics				
	Assi	gnment	Sen	ninar	End S	End Semester Examinations				Internal Examin	ations		
CO 1		\checkmark				\checkmark			\checkmark			\checkmark	
CO 2		\checkmark				\checkmark				\checkmark			
CO3		\checkmark				\checkmark			\checkmark				
CO4				\checkmark		\checkmark				\checkmark			

Discipline and Type of Course	Geology		Discipline Specific Elective - DSE				
Course Code and Title	UK5DSEGLY3	301	Advanced Paleontology				
Semester	5		Academic Level: 300 - 399				
Course Details	Credit	r	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week	
	4	3 h	ours	-	2 hours	5	

Content	Hrs.
Module-1-	15
Vertebrate Palaeontology – Introduction, Brief study of vertebrate life through ages. Origin and early evolution of life Patterns of evolution-Trends in the evolution of invertebrates-Ammonoidea-Trilobita- Graptozoa.	
Module II	15
Basic morphologic characters and evolution of Pisces, Horse and Man. Principal groups of vertebrates in Gondwana and Siwalik formations. Siwalik mammals; Gondwana flora and fauna.	
Module III	16
Micropalaeontology: scope and subdivisions. Sampling methods and sample processing techniques. Types of microfossils. Foraminifera: their palaeoecology and applications in petroleum exploration. Radiolarians, Diatoms, Ostracoda, Pteropods and Conodonts—morphology and classification. The role of microfossils in the study of Paleoclimatology and Paleoceanography. PalynologyGeneral morphology of spores and pollens and their classification and significance.	
Module IV	14
Collection, Separation and identification of microfossils	
Module V	10
Teacher Specific related to course Advanced Paleontology	
Reference	
 Ager D. V. Principles of palaeoecology, Mc Graw Hill, 1963. Krishnan M.S. Geology of India and Burma. Higginbothams, 1968. Easton W. H. Invertebrate Palaeontology. Harper and Brother, 1960. Cushman A. J. Foraminifera. Harvard University Press, 1959. Colebert H. E. Evolution of the Vertebrates. John Wiley & Sons, 1961. Moore R.C., Lalicker C.G., Fisher A.G. Invertebrate fossils. Mc Graw Hill, 1952. Glaessnar M. F. Principles of Micro Palaeontology. Mc Graw Hill, 1953. Woods H. Invertebrate Palaeontology. Cambridge University Press, 1961. Benton,M. J. Vertebrate Palaeontology, 2nd edition, Blackwell Science, 2000. 	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and remember the vertebrate life through various ages. Evaluate the trends in evolution of important invertebrates.	,	F,C	Assignment, Final Exam
CO2	Analyze the morphologic characters and evolution of Pisces, horses and man. Understand the principal groups of vertebrates in Gondwana and Siwalik formations and Gondwana flora and fauna.	An,U	F,C	Assignment, Final Exam
CO3	Understand about various types of microfossils and analyze the role of microfossils in palaeoclimatology and paleoceanography.	R,U	F,C	Assignment, Final Exam
CO4	Identification of microfossils	Ар	F,C	Quiz, Final exam
	emember, U-Understand, Ap-Apply, An-Analys actual, C- Conceptual, P-Procedural, M-Metaco		C-Create	

Mapping of COs with PSOs and PO										
	I	PSO1	PSO2	PSO3	3	PSO4	PSO5		PO	
CO 1			2						2	
CO 2			2						3	
CO 3			2						3	
CO4			2						3	
Leve	Level 1			1		2		3		
Correla	tion	Nil	Slight	ly/Low	1	Moderate /	Medium	ubstantial/ High		
			Ma	pping of	CO)s to Assess	ment Rubr	ics		
	Assi	gnment	Semina	r End S	End Semester Examinations				Internal Examina	ations
CO 1		\checkmark			\checkmark			\checkmark		
CO 2		\checkmark			\checkmark			\checkmark		
CO3		\checkmark			\checkmark			\checkmark		
CO4			\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology		Dis	Discipline Specific Elective - DSE				
Course Code and Title	UK5DSEG	LY320	Cli	Climatology & Marine Science				
Semester		5		Academic Level: 300 - 399				
Course Details	Credit	Lecture per week		orial week	Practical per week	Total Hours/Week		
	4	4 2hours			2hours	4		

Detailed Syllabus:

Content	Hrs.
Module I- Atmosphere and atmospheric processes	12
Atmosphere- Structure and composition, role of ozone, water vapor and carbon	
dioxide. Heat budget and radiation balance, factors affecting solar radiation.	
Milankovitch Cycle. Temperature Distribution on Earth: Heat transfer ways:	
Radiation, Conduction, convection: Factors - Transparency of atmosphere:	
Scattering, Absorption, Reflection, Albedo, Atmospheric window, Pressure systems	
& Wind system: Atmospheric pressure, Isobars: Cyclones and anti-cyclones,	
Factors affecting wind: Pressure Gradient force, Buoyant force, Frictional force,	
Coriolis force, Fundamentals of Monsoon systems in India, Koppen system of	
climate classification	
Module II-	12
Ocean floor morphology, tectonic origin of ocean basins, Paleo oceanographic	
expeditions & development of Marine Geology. Ocean floor drilling programmes -	1
DSDP, ODP & JOIDES. General distribution of temperature, salinity and density in	1
sea water, TS diagrams, deep ocean circulation and conveyor belt. Surface currents	1
- origin, distribution, influencing factors, Coriolis Effect, Warm & Cold currents,	1
and Ekman Transport. Concepts of coastal and deep-water upwelling and	1
downwelling.	1
Greenhouse effect and global warming, basics of El Niño and La Nina. Tides	
Module III- Marine sedimentation & distribution	12
Marine sediments- Terrigenous, biogenous and homogenous sediments with	
particular reference to oozes. Turbidity currents and turbidites. classification of	
marine environments, Redox environments and diagenesis in marine sediments.	
Mineral resources of oceans and factors controlling their distribution-	
polymetallic nodules, phosphatic and Hydrothermal sulphide deposits,	
beach placers.	1
Module IV- Teacher Specific	6

Teache	er Specific related to Climatology& Marine Science	
Refere	nce	
1.	Pinet Paul,R .Oceanography–	
	An Introduction to the Planet Oceanu s, West PublishingCo, 1992.	
2.	King,C.A.M. Beachesand Coasts, Arnold, London, 1972.	
3.	Krumbein, W.C. and Pettijohn, F.J. Manual of Sedimentary Petrology, Appleton Century Co., 1938.	
4.	Pettijohn, F.J Sedimentary Rocks, Harper and Row, 1957	
	Pettijohn,F.J, ,Potter, P.E and Siever, R Sand and sandstone,SpringerVerlag,1972.	
6.	Pickering, K.T. Hiscott, R.N. and F.J. Hedn. Deep Marine Environments– clastic sedimentation and Tectonics, Unwin and Hyman,1989.	
7.	Pond,S.andPickard,G.L.IntroductoryDynamicalOceanography,2 nd Ed.,Pergam o nPress,1983.	
8.	Roy Chester. Marine Geochemistry, Unwin Hyman, 1990.	
9.	Selley ,R.C Ancient SedimentaryEnvironments,CorwellUniversityPress,1972.	
10.	Trask P.D Recent Marine Sediments, Dever Publications .1939.	
11.	William L. Donn–Meteorology, McGraw–Hill Books Co., NewYork, 1975	
12.	Narora B ,Atmosphere, Weather and Climate: An introduction to Meteorology, Saunders Co., Philadelphia.	
13	M. Grant Gross, Principles of Oceanography.	
	Emerson, Eand Hedges, J–Chemical Oceanography and the Marine	
17.	Carbon Cycle. Cambridge University Press, 2008	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Understand various Atmospheric Processes	U	C, F	Assignment, Final Exam					
CO2	Analyze Ocean Floor Drilling programs and General distribution of temperature, salinity and density of sea water.	An	С	Assignment, Final Exam					
CO3	Classify various Marine Sediments, marine environments and marine resources	U	F, C	Assignment, Final Exam					
	 # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive 								

Mapping of COs with PSOs and PO											
	I	PSO1	I	PSO2	PSOS	3	PSO4	PSO5		РО	
CO 1							3			2	
CO 2							3			3	
CO 3							3			3	
Leve	el			1			2	2 3		3	
Correla	tion	Nil		Slightl	y/Low	1	Moderate / Medium		S	ubstantial/ High	
				Map	ping of	CO)s to Assess	ment Rubri	ics		
	Assi	ignment		Seminar	End S	Sen	nester Exan	ninations		Internal Examina	ations
CO 1		\checkmark				\checkmark					
CO 2				\checkmark		\checkmark				\checkmark	
CO3							\checkmark			\checkmark	

Discipline and Type of Course	Geology		Skill Enhancement Course - SEC				
Course Code and Title	UK5SECGLY3	00 Geotechnical Investigation of Soils					
Semester	5		Academic Level: 300 - 399				
Course Details	Credit	Lectur e per week		Tutorial per week	Practical per week	Total Hours/Week	
	3	3 h	ours	-	-	3	

Content	Hrs.
Module-1- Fundamentals of Soils	12
Geological processes responsible for soil formation- weathering, erosion, transportation and deposition. Soil profile. Classification of soils- Origin (Residual and transported soils), depositional regimes (alluvial, colluvial, aeolian, glacial, organic and volcanic soils), textural (coarse-grained, fine-grained, and organic soils). Soil types of India, characteristics and occurrence (alluvial soil, black soil, lateritic soil, red soiland other soil types).	
Module II- Soil Mechanics	12
Physical properties of soils (colour, texture, structure, porosity, density, void ratio, consistency, aggregate stability, and temperature). Soil sampling methods- Boring, Auguring and Drilling.	
Field testing of soils-Insitu soil density and compactiontests, Rollers, Pressure meters, Piezometer, Pressure cells, Sensors, Inclinometers, and Strain gauge. Laboratory testing of soils-Grain size analysis (sieve analysis, hydrometer analysis), Atterberg limits tests (liquid limit, plastic limit), Compaction tests	

N		10
	II- Factors Influencing Strength of Soil	12
	ngth and Shear Strength Testing- Unconfined compression test, Triaxial	
-	on test and Direct shear test. Interpretation of Soil Investigation data-	
•	of field and laboratory data, Soil profile interpretation, Bearing capacity	
analysis a	nd Slope stability analysis.	
	V Practical	12
Soil test	ing experiments- Preparation of a laboratory procedure or field	
investigat	ion report of soil testing methods adopted for a major engineering project	
(either in	India or in the world).	
		10
Module V		10
Module V Teacher S	Specific related to course Geotechnical Investigation of Soils	10
Teacher S	Specific related to course Geotechnical Investigation of Soils	10
Teacher S Referenc	Specific related to course Geotechnical Investigation of Soils	
Teacher S Reference 1. Da	Specific related to course Geotechnical Investigation of Soils	
Teacher S Reference 1. Da pu	Specific related to course Geotechnical Investigation of Soils e as, B. M. (Ed.). (2011). Geotechnical engineering handbook. J. R	OSS
Teacher S Reference 1. Da pu 2. Si	Specific related to course Geotechnical Investigation of Soils Re as, B. M. (Ed.). (2011). Geotechnical engineering handbook. J. R blishing.	OSS
Teacher S Reference 1. Da pu 2. Si sit	Specific related to course Geotechnical Investigation of Soils Re as, B. M. (Ed.). (2011). Geotechnical engineering handbook. J. R blishing. mons, N., Menzies, B., & Matthews, M. (2002). A short course in geotechn	OSS
Teacher S Reference 1. Da pu 2. Si sit 3. Bu	Specific related to course Geotechnical Investigation of Soils Re as, B. M. (Ed.). (2011). Geotechnical engineering handbook. J. R blishing. mons, N., Menzies, B., & Matthews, M. (2002). A short course in geotechn e investigation (Vol. 5). Thomas Telford.	oss
Teacher S Reference 1. Da pu 2. Si sit 3. Bu 4. Ve	Specific related to course Geotechnical Investigation of Soils Re as, B. M. (Ed.). (2011). Geotechnical engineering handbook. J. R blishing. mons, N., Menzies, B., & Matthews, M. (2002). A short course in geotechn e investigation (Vol. 5). Thomas Telford. adhu, M. (2010). Soil mechanics and foundations. John Wiley and Sons.	oss
Teacher S Reference 1. Da pu 2. Si sit 3. Bu 4. Ve 5. Ke	Specific related to course Geotechnical Investigation of Soils Se as, B. M. (Ed.). (2011). Geotechnical engineering handbook. J. R blishing. mons, N., Menzies, B., & Matthews, M. (2002). A short course in geotechn e investigation (Vol. 5). Thomas Telford. udhu, M. (2010). Soil mechanics and foundations. John Wiley and Sons. enkatramaiah, C. (1995). Geotechnical engineering. New Age International.	oss
Teacher S Reference 1. Da pu 2. Si sit 3. Bu 4. Ve 5. Ke Lt	Specific related to course Geotechnical Investigation of Soils Re as, B. M. (Ed.). (2011). Geotechnical engineering handbook. J. R blishing. mons, N., Menzies, B., & Matthews, M. (2002). A short course in geotechn e investigation (Vol. 5). Thomas Telford. udhu, M. (2010). Soil mechanics and foundations. John Wiley and Sons. enkatramaiah, C. (1995). Geotechnical engineering. New Age International. esavalu N. C. (1993) A Textbook of Engineering Geology, Macmillan In	oss

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand more about soil and its types- origin, types and classification	U, An	F,C	ESE Quiz
CO2	Understand the physical properties of soil and major soil tests adopted for geotechnical investigation	U, Ap	F,C, P	Assignment ESE
CO3	Understand the major factors and tests for the determination of soil strength	Ap, An	F,C, P	Assignment ESE
CO4	Preparation of a laboratory procedure or field investigation report of soil testing methods adopted for a major engineering project	E	F, C, P	Assignment (Field Report)

- F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	Mapping of COs with PSOs and PO										
	I	PSO1	PS	502	PSO3	3	PSO4	PSO5		РО	
CO 1				3						3	
CO 2				3						3	
CO 3				3						3	
CO4								2		3	
Leve	el			1			2	2		3	
Correla	tion	Nil	S	Slightly	y/Low	Ν	Moderate / Medium		S	ubstantial/ High	
				Мар	ping of	COs	s to Assess	ment Rubri	ics		
	Assi	gnment	Se	eminar	End Semester Examinations Internal Examinations		Internal Examina	ations			
CO 1							\checkmark			\checkmark	
CO 2		\checkmark		\checkmark		\checkmark			\checkmark		
CO3		\checkmark				\checkmark			\checkmark		
CO4							\checkmark			\checkmark	

Discipline and Type of Course	Geology		Skill Enhancement Course - SEC			
Course Code and Title	UK5SECG	LY320	Geotechnics			
Semester		5	Academic Level: 300 - 399			
Course Details	Credit	Lecture per week	Tutorial per week		Practical per week	Total Hours/Week
	3	3 hours		-		3

Content	Hrs.
Module I- Introduction to Engineering Geology	11
Role of Geology in Civil engineering. Role of Engineering geologists in planning,	
design and construction of major man-made structural features. Site investigation and	
characterization, Engineering properties of rocks. Rock as construction and foundation	
material, road aggregate. Rock mass classification - general ideas of RMR, RQD and	
SMR. Soils – Geological and Engineering classification.	
Module II- Geology & Construction	12
Significance of Geology in the construction of dams and reservoirs, tunnels, roads,	
railways, bridges, buildings, and shorelines. Foundation treatment; Grouting, Rock	
Bolting and other support mechanisms.	

Modu	e III- Significance of Structures				12
Earthq	uake resistant structures, Groundwater pro	oblems related	l manmade stru	uctures,	
Landsl	ides; Causes, Factors and corrective/Prever	ntive measures	5		
Modu	le IV - Practical				14
Simple	calculations related to engineering propert	ties of rocks ar	nd soil (Porosity	y,	
permea	ability calculation)				
Modu	e V- Teacher Specific content				7
Teache	er Specific content related to Geotechnics				
Refere	nce				
1.	Krynin, D.P.andJuddW.R.1957.Principleso McGraw Hill (CBS Publ).	ofEngineeringC	GeologyandGeo	technique	е,
2.	Johnson, R.B. and DeGraf, J.V. 1988. Principle	esofEngineerir	ngGeology,John	Wiley.	
3.	Goodman,R.E.,1993.EngineeringGeology: y& Sons, N.Y.	RockinEngine	eringconstructio	ons.JohnV	Vile
4.	Waltham, T., 2009. Foundations of Engineering	ngGeology(3rd	lEdn.)Taylor&F	Francis.	
5.	Bell:F.G-,2006.BasicEnvironmentalandEng	gineeringGeolo	ogyWhittlesPub	lishing.	
6.	Bell,.F.G,2007.EngineeringGeology,Butter	worth-Heinem	nan		
7.	Crozier.M.J.(1989)Landslides:causes,conse	equencesanden	vironment.Aca	demicPre	ess.
CO	Course Outcome	Cognitive Level*	Knowledge Category#		ation s used
CO1	Understand the role of Geology in Civil Engineering and analyze Geology's Influence in the construction of various infrastructure projects	U, Ap	C, F	Assignr Final E	
CO2	Understand the geological factors causing earthquake, identify and evaluate issues related to Groundwater and Landslide	U, Ap, E	С	Assignr Final E	
CO3	Recommend earthquake resistant Structures and preventive measures to mitigate hazards. Apply Engineering Calculations to analyses engineering properties of rocks and soils.	Ap. An	F, P	Assignm Final Ex	
	member, U-Understand, Ap-Apply, An-Analys actual, C- Conceptual, P-Procedural, M-Metaco		C-Create		

			Mappi	ng of CC	Ds v	vith PSOs a	nd PO			
	I	PSO1	PSO2	PSO3	3	PSO4	PSO5		РО	
CO 1							3		3	
CO 2							3		3	
CO 3							3		3	
Leve	vel 1			2				3		
Correla	Correlation Nil		Slightly/Low			Moderate /	Medium	S	ubstantial/ High	
			Мар	ping of	CC)s to Assess	ment Rubri	ics		
	Assi	gnment	Seminar	End	Sen	nester Exan	ninations		Internal Examination	ations
CO 1			\checkmark		\checkmark				\checkmark	
CO 2		\checkmark			\checkmark			\checkmark		
CO3						\checkmark			\checkmark	

5.5 COURSES IN GEOLOGY: Semester 6

Discipline and Type of Course	Geology		Disc	ipline Specific Core - DSC			
Course Code and Title	UK6DSCGI	LY300	Foundation of Structural Geology				
Semester	6		Academic Level: 300 - 399				
Course Details	Credit	Lectur per we	-	Tutorial per week	Practical per week	Total Hours/Week	
	4	3 hou	rs	-	2 hours	5	

Content	Hrs.
Module-1- Attitude of Structural Planes	11
Attitude of planar and linear structures. Strike, dip, plunge and pitch. Width of	
outcrops, outlier and inlier, Rule of Vs. Primary and secondary structures. Use of	
primary structures in determining the top and bottom of beds.	
Module II- Rock Deformation	11
Concept of Stress and strain, Stress and strain ellipsoids. Stages of rock	
deformation, Basic concepts of stereographic projections. Tectonites and its	
classification.	
Module III- Major Rock Structures	12
Folds: Terminology, Classification-genetic and geometric. Recognition of folds in	14
the field and map. Unconformity-types and their recognition in the field. Fault	
terminology and classification. Fault mechanics. Recognition of faults in the field	
and map.	
Foliation- Tectonites, Compositional, Disjunctive, Continuous, Slaty cleavage,	
Schistosity, Flow cleavage, Fracture cleavage, Shear cleavage. Relationship of	
foliation with fold and shear zones. Lineation - Discrete, constructional and	
mineral lineation. Joints – Nature, origin, classification and geologic significance.	
Fractures and its types.	
Module IV Practical	12
Rose diagram, Structural problems involving true dip, apparent dip, true thickness	
and width of outcrop. Geological Maps.	
Module V	10
Teacher Specific related to course Structural Geology	

Reference

- 1. Billings (1974) Structural Geology. 11th edition, Prentice Hall.
- 2. Park R. G. (1997) Foundations of Structural Geology 3rd, Chapman & Hall.
- 3. Hills, E. S. (1961) Elements of Structural Geology, Asia Publishing House.
- 4. Hobbs, Means and Williams (1976). An Outline of Structural Geology. John Wiley.
- 5. John Robberts (1982) Introduction to Geological Maps and Structures, Pergamon Press.
- 6. Ken McClay (1991) The mapping of Geological Structures. Geological Society of London. Wiley, New edition.
- 7. R. J. Twiss and E M Moore (2007) Structural Geology 2nd edition. Freeman & Company
- 8. Ghosh SK (2013) Structural Geology Fundamentals and Modern developments, Elsevier Science.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand basic concepts in structural geology, primary and secondary structures and their significance.	U,Ap	F,C	ESE
CO2	Understandand analyse rock deformation and its stages, stereographic projections, tectonites and their classification.	U,An	F,C	ESE Quiz
CO3	Understand and analyse the folds, faults, foliations, lineation, unconformities, joints, fractures- classification, identification, mechanism and geological significance.	U,An	F, M	ESE Assignment
CO4	Apply the concepts of structural geology in determining the attitude of beds and for solving problems using stereographic projections and analyse geological maps		Р	ESE
	member, U-Understand, Ap-Apply, An-Anal Ictual, C- Conceptual, P-Procedural, M-Meta	-	e, C-Create	

			Ma	ppir	ng of CC	s with PSOs	a	nd PO			
	I	PSO1	PSO2	2	PSO3	PSO4		PSO5		РО	
CO 1					2					2	
CO 2					2					2	
CO 3					3					3	
CO4								2		3	
Leve	el			1		2				3	
Correla	tion	Nil	Sli	Slightly/Low		Low Moderate / Medium S			S	ubstantial/ High	
				Мар	ping of	COs to Asse	ss	ment Rubri	ics		
	Assi	gnment	Sem	inar	End S	Semester Ex	an	ninations		Internal Examination	ations
CO 1						\checkmark			\checkmark		
CO 2			V	/		\checkmark				\checkmark	
CO3		\checkmark				\checkmark				\checkmark	
CO4						V	'			\checkmark	

Discipline and Geology Type of Course				pline Specif	ic Core - DSC			
Course Code and Title	UK6DSCGLY301		Indian stratigraphy					
Semester	6		Acad	emic Level:	Level: 300 - 399			
Course Details	Credit	p	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week		
	4	4ho	ours	-	-	4		

Content	Hrs.
Module-1- Precambrian Stratigraphy	11
Physiographic divisions of India. Major cratons and fold belts of the Indian shield.	
Detailed study of the lithology, classification, age, structure, syn- and post-	
tectonic intrusives, organic remains, radiometric age and economic resources of	
Dharwar Craton- Sargur Schist Complex, Peninsular Gneiss. Charnockite-	
Khondalite bearing High-Grade terrains of Peninsular India. Eastern Ghat belts and	
Southern Granulite terrain.	
Module II- Proterozoic Succession in India	12
Detailed study of the lithology, classification, age, structure, syn- and post-	
tectonic intrusives, organic remains, radiometric age and economic resources of	
Cudappah Supergroup, Aravalli Supergroup, Delhi Supergroup, and Vindhyan	
Supergroup.	

Module III- Phanerozoic formations of India	12
A brief study of the distribution of marine Palaeozoic and Mesozoic successions of India and detailed study of the following – Palaeozoic, Mesozoic and Triassic successions of Spiti, Jurassic of Spiti and Kutch.	
Cretaceous of Trichinopoly and Narmada valley, Distribution, lithology, classification, age, structural features, fossils and coal resources of Gondwana Supergroup. Deccan Traps and associated sedimentaries, their distribution, lithology, classification, fossils and age.	
Module IV Cenozoic Deposits	11
Detailed study of following Cenozoic succession of India. Tertiaries of Tamilnadu. Siwalik Supergroup. Karewa Formation. Indo – Gangetic alluvium. Stratigraphy of Kerala- Precambrian rocks, Intrusive rocks of Kerala, Tertiaries of Kerala, Quaternary sediments.	
Module V	10
Teacher Specific related to course Indian Stratigraphy Reference	
1. Krishnan, M.S. (1982) Geology of India and Burma, 6th Edition, CBS.	
2. Wadia, D.N. (1944) Geology of India, Tata McGraw–Hill.	- f
3. Ravindra Kumar (2020) Fundamentals of Historical Geology and Stratigraphy India. 2nd edition, New Age International Private Limited.	01
4. Pascoe, E.H. (1954) A Manual of the Geology India and Burma, Govt. of Ind	dia
Publications.	uiu
 Vaidyanathan and Ramakrishnan (2008). Geology of India (Vol. I & II). Geologic Society of India, Bangalore. 	al
6. Soman, K. (2013) Geology of Kerala, Geological Society of India, Bangalore.	
7. Radhakrishna, B.P and R. Vaidyanathan (1997) Geology of Karnataka, Geolog	gical
Society of India, Bangalore.	env
Society of India, Bangalore.8. Sanjib Chandra, Sarkar, Anupendra Gupta (2012). Crustal evolution and Metallogo in	city

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the physiographic, geologic divisions, and the Precambrian formations of India		F	ESE Quiz
CO2	Understand the Proterozoic, Paleozoic, Mesozoic and Cenozoic formations in India.	U	F	ESE Assignment
CO3	Understand the geologic formations in Kerala and its stratigraphic significance		F	ESE Quiz
	emember, U-Understand, Ap-Apply, An-An actual, C- Conceptual, P-Procedural, M-Met	-	ite, C-Create	

	Mapping of COs with PSOs and PO										
	F	PSO1	PSO2	PSO3	PSO4	PSO5		РО			
CO 1				2		2		2			
CO 2				3		2		2			
CO 3				3		2		2			
Leve	el			1	2			3			
Correla	tion	Nil	Slight	y/Low	Low Moderate / Medium S			ubstantial/ High			
			Ma	oping of	COs to Assess	ment Rubri	ics				
	Assi	gnment	Semina	r End S	End Semester Examinations			Internal Examination	ations		
CO 1			\checkmark		\checkmark			\checkmark			
CO 2		\checkmark			\checkmark			\checkmark			
CO3			\checkmark		\checkmark			\checkmark			

Discipline and Type of Course	Geology	Disci	pline Specif	ne Specific Core - DSC				
Course Code and Title	UK6DSCGLY302		Economic Geology					
Semester	6		Acad	emic Level:	vel: 300 - 399			
Course Details	Credit	ŗ	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week		
	4	2 h	ours	-	2 hours	4		

	Hrs.
Module-1- Classification of Mineral Deposits	12
Ore and gangue minerals, Tenor and grade of ore, Bateman's classification of mineral deposits. A brief introduction to UNFC classification of mineral deposits. Strategic and critical minerals, National mineral policy of India, EEZ, SEZ	
Module II- Processes of Formation	17
Processes of formation of mineral deposits: Origin due to internal processes- Magmatic, Hydrothermal, contact metasomatic and metamorphic processes. Skarn and Greisen deposits.	
Origin due to external or surface processes- Evaporite deposits, sedimentary deposits: mechanical and residual concentration, Oxidation and supergene enrichment, Volcanic exhalative deposits.	
Module III- Metallogeny in India	17
Metallogenic epochs and provinces in India. Atomic minerals (U, Th) occurrence and distribution. Coal- theories of origin, Distribution of Coal resources in India. Petroleum- Origin, Source rock, cap rock and traps. Brief study on the petroliferous basins of India. Mineral deposits of Kerala.	
Module IV Practical	14
A brief study on physical properties, economic uses, mode of occurrence and Indian distribution of the following ore and industrial minerals: Bauxite, chromite, gold, magnetite, haematite, chalcopyrite, pyrite, galena, pyrolusite, psilomelane, ilmenite, monazite, sphalerite, realgar, orpiment, asbestos, uranium minerals, abrasives, refractories and clay minerals.	
Module V	10
Teacher Specific related to course Economic Geology	

Reference

1. Anthony M. Evans (1980). An introduction to Ore Geology, Second edition, ELBS.

2. Gokhale, K. V. G. K. and Rao, T.C. (1978) Ore Deposits of India. Thomson Press (India).

- 3. Krishnaswamy, S. (1988) Indian Mineral Resources. South Asia Books.
- 4. Mead L. Jensen and Alan M. Bateman (1981). Economic Mineral Deposits, John Wiley& Sons Third edition.
- 5. Park and Macdiarmid (1964). Ore Deposits, Freeman.
- 6. Roy Chacko (ed.) (2005) Mineral Resources of Kerala. Dept of Mining and Geology.

7. Soman, K. (2002) Geology of Kerala, Geological Society of India, Second revised edition.

8. Umeshwar Prasad (1996). Economic Mineral Deposits, CBS Publishers.

9. Wadia, D.N. (1994) Minerals of India, National Book Trust, India, 5th Edition.

10. Leverson (1967). Geology of Petroleum, McGraw Hill

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Understand the terminologies, classification of economic mineral deposits, national mineral policy, EEZ and SEZ	U	F	ESE Quiz					
CO2	Understand and analyse the processes of formation of mineral deposits.	U,An	F	Assignment ESE					
CO3	Understand the metallogenic epochs and provinces, distribution and occurrence of natural energy resources in India and analyse the mineral deposits of Kerala.		F,C	Assignment ESE					
CO4	Identify the economic minerals based on their physical properties and understand its uses, occurrence and distribution.	17	Р	ESE Quiz					
* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive									

Mapping of COs with PSOs and PO											
	PSO1 PSO2		PSO3	3	PSO4 PSO5		РО				
CO 1				2			3			2	
CO 2		1		2	2		3			3	
CO 3				3			3			3	
CO4								3		3	
Level			1			2		3			
Correla	Correlation Nil			Slightl	/Low Moderate / Medium S			S	ubstantial/ High		
				Мар	ping of	CO	s to Assess	ment Rubri	ics		
	Assignment Seminar E			End S	End Semester Examinations				Internal Examination	ations	
CO 1				\checkmark		√ v				\checkmark	
CO 2		\checkmark			1		\checkmark			\checkmark	
CO3		\checkmark				\checkmark					
CO4				\checkmark	\checkmark \checkmark						

Discipline and Type of Course	Geology		Discipline Specific Core - DSC			
Course Code and Title	UK6DSCG	LY320	Structural Geology			
Semester		Academic Level: 300 - 399				
Course Details	Credit	Lecture per week	 orial week	Practical per week	Total Hours/Week	
	4	3 hours	-	2 hours	5	

Content	Hrs.
Module I: Introduction to structural Geology:	12
Introduction and basic concepts in Structural Geology, Primary and secondary	
structures, planar and linear structures, Structural elements, concept of strike and	
dip, trend and plunge, rake/pitch, contour, Rule of V's. Geological Mapping -	
Procedures and equipment in mapping. Concept of rock deformation, Stress and	
Strain in Rocks. Stages of deformation.	
Module II: Stress & Strain:	17
Concept of Stress: normal stress, shear stress, stress ellipse concept, principal axes	
of stress, Brief idea of Mohr's circle of stress. Concept of strain: Longitudinal and	
shear strain, principal axes of strain, strain ellipsoid concept. Strain ellipsoids-	
different types and their geological significance. Concept of brittle and ductile	
deformation, Factors controlling deformation behaviour of rocks.	

	17
Fold morphology; Geometric classification of folds- Ramsay's classification,	
Fleuty diagram; elementary idea on mechanism of folding-buckling, bending,	
flexural slip and flow folding, Foliation and Lineation. Tectonic significance of	
foliation and lineation. Classification of fractures, Faults and Joints, fault zone	
terminology, geometric classification of faults. Anderson dynamic analysis of	
faulting. Effects of faulting on the outcrops. Criteria for recognition of faults and	
fold on field and map. Basic idea of shear zone and shear sense indicators.	
Module IV: Practical	14
Interpretation of geological maps with unconformity, fault, fold and igneous bodies. Construction of structural cross section. Stereographic projections of planes and lines. Outcrop thickness, True dip and apparent dip problems, 3-point problems.	
Module V: Teacher specific content	10
Reference	
 Davis, H.G, Reynolds, S.J, Kluth, C. F. (2011), Structural Geology of Rocks a Region, John Wiley Ragan, D. M. (2009) Structural Geology: an introduction to geometrical techniques (4th. Ed.) Cambridge University Press(For Practical) Twiss, R. J. and Moores, E. M (2007) Structural Geology, Second Edition. W Freeman and Company. Fossen, H (2010), Structural Geology, Cambridge University Press. Marshak, S and Mitra G. (1988) Basic Methods in Structural Geology, Prenti- Hall. Ben A. van der Pluijm and Stephen Marshak (2004) Earth Structure: An Introduction to Structural Geology and Tectonics(Second Edition) 2nd Edition 	⁷ . H.

СО	Course Outcome	Cognitive Level*	Knowled ge Category #	Evaluation Tools used					
CO1	Understand the basics of structural deformation	U	F	Assignment, Final Exam					
CO2	Examine different geological structures based on geometry and genesis.	An	Р	Assignment, Final Exam					
CO3	Evaluate structural features and its attitude using construction and calculation methods.	AP	Р	Assignment, Final Exam					
	* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive								

	Mapping of COs with PSOs and PO										
	I	PSO1	PSO2	PSO2 PSO3		3	PSO4	PSO5		РО	
CO 1					3					2	
CO 2					3					3	
CO 3								3		3	
Leve	Level			1	2				3		
Correla	Correlation Nil		Slig	ghtly	//Low Moderate / Medium S				ubstantial/ High		
			Ν	Лар	ping of	СО)s to Assess	ment Rubr	ics		
	Assi	gnment	Semi	nar	End S	End Semester Examinations				Internal Examinations	
CO 1		\checkmark				√				\checkmark	
CO 2			\checkmark	,		\checkmark				\checkmark	
CO3						\checkmark \checkmark					

Discipline and Type of Course	Geology			Di	iscipline Speci	ific Core - DSC	
Course Code and Title	UK6DSCG	LY321		R	esource Geolo	ogy	
Semester		6		Acad	cademic Level: 300 - 399		
Course Details	Credit	Lecture Tutoria per week per wee			Practical per week	Total Hours/Week	
	4	2 hours		-	2 hours	4	

Content	Hrs.
Module I: Introduction to Earth's Resources	14
Types of Resources: Ore deposits & Fossil Fuel. Ore geology definitions: Assay	
value and Clark value. Basic concepts of ores, gangue minerals, tenor, grade,	
resources, reserves. Syngenetic and epigenetic deposits, stratiform and strata	
bound deposits. Morphology of ore bodies. Characters of ore deposits: Rock-	
Mineral association and association among ore minerals. Classification of ore	
deposits on the basis of formation- Bateman's classification.	
Module II: Processes of formation of mineral deposits	15
Ore forming fluids. Origin due to internal processes - Magmatic deposits, Contact	
metasomatic deposits- (Skarn and Greisen), Metamorphic deposits. Origin due to	
Hydrothermal activities- Replacement and filling – VMS and SEDEX, Origin due	
to External / Surface processes - Evaporite deposits, Sedimentary deposits -	
mechanical concentration, residual concentration, Oxidation and Supergene	
enrichment. Polymetallic nodules.	
Module III: Fuel Geology: Fossil Fuels, Coal	15
Physical Properties, types and grade of coal, Macroscopic and microscopic	
constituents. origin, theories of origin; coal resources in India - classification and	
distribution. Petroleum - origin and migration of petroleum, Source and reservoir	
rock characters. theories of origin - Source rocks - Cap rocks - Traps - Structural	
- Stratigraphic - Distribution. brief study on the petroliferous basins of India; Non-	
conventional Petroleum resources - Introduction to Coal Bed Methane (CBM),	
Shale gas, Gas hydrates, Tar sands, Oil shales. Mineral Policy of India. Mineral	
resources of Kerala. Critical and Strategic Minerals. Materials for Abrasives,	
Refractories, Ceramics and Cement. Gemstones. Strategic and Critical minerals.	

Module IV: Practical	12
Study of important economic minerals and coal samples in hand specimen -	
Physical properties, economic uses, mode of occurrence and Indian distribution of	
the following ore and industrial minerals: Bauxite, chromite, gold, magnetite,	
haematite, chalcopyrite, pyrite, galena, pyrolusite, psilomelane, ilmenite,	
monazite, sphalerite, realgar, orpiment, asbestos, uranium minerals, abrasives,	
refractories and clay minerals	
Module V: Teacher specific content	10
Teacher specific content related to Economic Minerals and Ore forming processes	
Reference	ı
1. Evans, A.M. (1993) Ore Geology and Industrial minerals. Wiley	
2. Thomas L. (2013) Coal Geology: Second Edition, John Wiley & Sons, Ltd.	

- 3. Anthony M. Evans (1980). An introduction to Ore Geology, second edition, ELBS.
- 4. Park and MacDiarmid (1964). Ore Deposits, Freeman.
- 5. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distribution and processing, Tata-McGraw Hill, New Delhi.
- 6. Wadia, D.N. (1994) Minerals of India, National Book Trust, India, 5th edition
- 7. Gokhale, K. V. G. K. and Rao, T.C. (1978) Ore Deposits of India. Thomson Press(India).
- 8. Krishnaswamy, S. (1988) Indian Mineral Resources. South Asia Books.
- 9. Anthony M. Evans (1980). An introduction to Ore Geology, second edition, ELBS.
- 10. Mead L. Jensen and Alan M. Bateman (1981). Economic Mineral Deposits, John Wiley& Sons Third edition, revised printing.
- 11. Park and Macdiarmid (1964). Ore Deposits, Freeman.
- 12. Roy Chacko (ed.) (2005) Mineral Resources of Kerala. Dept of Mining and Geology.
- 13. Soman, K. (2002) Geology of Kerala, Geological Society of India, Second revised edition.
- 14. Umeshwer Prasad (1996). Economic Mineral Deposits, CBS Publishers.
- 15. Leverson (1967). Geology of Petroleum, McGraw Hill.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Realize the basic concepts of ore geology and ore formation process	U	F	Assignment, Final Exam				
CO2	Perceive the basic concepts and occurrence of fossil fuels in India	U	С	Assignment, Final Exam				
CO3	Identification of economic minerals and analyzing their uses.	AP	Р	Assignment FinalExam				
* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive								

	Mapping of COs with PSOs and PO										
	I	PSO1	F	PSO2	PSO	3	PSO4	PSO5		PO	
CO 1							3			2	
CO 2							3			2	
CO 3								3		3	
Leve	el			1		2				3	
Correla	tion	Nil		Slightl	y/Low	Low Moderate / Medium		Substantial/High			
				Мар	ping of	CO)s to Assess	ment Rubr	ics		
	Assi	gnment		Seminar	End	Sen	nester Exam	ninations		Internal Examina	ations
CO 1		\checkmark				\checkmark				\checkmark	
CO 2				\checkmark		\checkmark				\checkmark	
CO3						\checkmark				\checkmark	

Discipline and Type of Course	Geology		Discipline Specific Core - DSC			
Course Code and Title	UK6DSCG	LY322	Stratigraphy of India			
Semester		6	Academic Level: 300 - 399			
Course Details	Credit	Lecture per week	 orial week	Practical per week	Total Hours/Week	
	4	4 hours	-		4	

Content	Hrs
Module I: Introduction to Precambrian Stratigraphy-	18
Introduction to lithostratigraphy; Divisions of Precambrian time scale,	
Characteristics and status of Archaean and Proterozoic Eras in global perspective.	
Physiographic and Tectonic subdivisions of India, Introduction to Indian shield,	
cratons and mobile belts, Detailed study of the stratigraphy, lithology,	
classification, age, structure and economic resources of Dharwar supergroup,	
Aravalli, Delhi Supergroup, Cuddapah Supergroup, Vindhyan Supergroup and	
Kurnool Group.	
Module II: Important Phanerozoic successions in India:	18
Important Palaeozoic and Mesozoic successions in India with emphasis on	
succession, lithology, flora and fauna, correlation and paleoenvironment of the	
following: palaeozoic and Mesozoic of spiti, Gondwana succession of Peninsular	
and extra-peninsular India, Jurassic of Kutch, Cretaceous of Trichinapoly,	
Cretaceous of Narmada valley, Deccan Traps.	
Module III: Cenozoic successions of India	10
Cenozoic successions of Siwalik, Assam and Cuddalore. Karewa and Indo	
Gangetic Alluvium. Pre Cambrian, Tertiaries and Quaternary Geology of Kerala.	
Module IV: Stratigraphic boundaries	6
Introduction of important stratigraphic boundaries and their significance: a)	
Cambrian boundary, b. Permian-Triassic boundary, and c. Cretaceous-Tertiary	
boundary.	
Module V: Teacher specific content	4
Teacher specific content related to Geology of India	

Reference

- 1. Doyle P. and Bennett, M.R. (1996), Unlocking the Stratigraphic Record. John Wiley
- 2. Ramakrishnan, M. and Vaidyanadhan, R. (2008), Geology of India Volumes 1 and 2,
- 3. Geological Society of India, Bangalore,
- 4. Valdiya K.S. (2010). The making of India, Macmillan India Pvt. Ltd.
- 5. Nichols, G. (2009). Sedimentology and Stratigraphy Second Edition. Wiley Blackwell
- 6. Wadia, D.N. (1944) Geology of India, Tata McGraw-Hill.
- 7. Pascoe, E.H. (1954) A Manual of the Geology India and Burma, Govt. of India Publications.
- 8. Soman, K. (2013) Geology of Kerala, Geological Society of India, Bangalore.
- 9. Radhakrishna, B.P and R. Vaidyanadhan (1997) Geology of Karnataka, Geological Society of India, Bangalore.
- 10. Sanjib Chandra, Sarkar, Anupendra Gupta (2012). Crustal evolution and Metallogeny inIndia. Cambridge University Press, Delhi, India.
- 11. Amal Das Gupta (2006). An introduction to Earth Science, World Press Private Limited, Kolkata.
- 12. Code of International Stratigraphy Commission

СО	Course Outcome	Cognitive Level*	Knowled ge Category #	Evaluation Tools used				
CO1	Understand the basic physiographic and tectonic units of India	U	F	Assignment, Final Exam				
CO2	Analyze various stratigraphic units in Indian Shield.	An	F	Assignment, Final Exam				
CO3	Examine the major events marking lithostratigraphic boundaries in India	An	F	Assignment, Final Exam				
* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create								
# - F-Fac	tual, C- Conceptual, P-Procedural, M-Met	acognitive						

				Mappi	ng of CC	Ds w	ith PSOs a	nd PO			
	I	PSO1]	PSO2	PSO3	3	PSO4	PSO5		РО	
CO 1				3						2	
CO 2				3						3	
CO 3								2		3	
Leve	el			1		2				3	
Correla	tion	Nil		Slightl	y/Low	low Moderate / Medium		S	ubstantial/ High		
				Мар	ping of	COs	s to Assess	ment Rubri	ics		
	Assi	gnment		Seminar	End S	Sem	ester Exan	ninations		Internal Examination	ations
CO 1		\checkmark									
CO 2				\checkmark							
CO3						\checkmark				\checkmark	

Discipline and Type of Course	Geology	Disci	cipline Specific Elective - DSE				
Course Code and Title	UK6DSEGLY3	Exploration and Mining Geology					
Semester	6		Academic Level: 300 - 399				
Course Details	Credit	Lecture per week		Tutorial per week	Practical per week	Total Hours/Week	
	4	4 -h	ours	-		4	

Content	Hrs.
Module-1-	15
Introduction to Exploration and prospecting-Geologic exploration-Exploratory grids, Location and Documentation. Significance of exploration in Resource identification. Reconnaissance survey, Exploratory methods-Trenching and pitting. Drilling- methods and types. Geophysical prospecting- Gravity, Magnetic, Electrical and Seismic methods. Logging methods.	
Module II	15
Geochemical exploration- Mobility of geochemical elements, factors controlling mobility of elements. Sampling techniques, Types of sampling techniques- Rock soil, stream sediment, water, vegetation and vapour sampling. Gossan-Threshold values and Geochemical anomalies.	
Biogeochemical exploration- Accumulation of mineral elements by plants, relation of biogeochemical anomalies with ore deposits. Biogeochemical surveys and techniques. Indicator plants.	

Module III	16
Mining methods- Different methods of opencast mining and underground mining. Mine design, metallurgical design and planning. Environmental baseline data needed for mine planning, its acquisition and documentation during different	
stages of mineral exploration. Nature and extent of environmental problems due to surface and underground mining. Mine waste management.Role of the geologist at	
operative mines. Grade control in open-pit and underground operations. Blending and stock-piling of ores. Mining legislation in India, Mining plan and mine closure plan. Beach placer mining in Kerala.	
Module IV -	14
Selection of suitable sampling method. Recognition of anomalies. Preparation of level plans and sections. Averaging assays.	
Module V	10
Teacher Specific related to course Exploration and Mining Geology	
Reference	
 Peters W. C. Exploration and mining geology. Wiley. Rose A. W. Hawkes H. E. and Webb J. S. Geochemistry in mineral 	
exploration Academic Press.	
 Arogyaswamy R. N. P. Courses in Mining Geology. Oxford and IBH, New Delhi. Low J. W. Geological field methods. Mc Graw Hill. 	
4. Lahee F. H. Field Geology. Mc Graw Hill.	
Compton R. R. Manual of Field Geology. Wiley.	
5. Malyuga D. P. Biochemical methods of prospecting. Consultants Bureau N York. Dobrin M. B.	
6. Introduction to geophysical prospecting. Pergamon Press.	
 Ginzburg D. H. Principles of geochemical prospecting. Pergamon Ginzburg D. H. and Kind R. F. Applied geophysics for geologists and engineers. Pergamon. 	
 Bagchi T. C. Elements of prospecting and exploration. Kalyan Publishers. Sinha R. K. and Sharma N. L. Mineral economics. Oxford and IBH. Reedman J. H. Techniques in Mineral exploration. Allied Scientific. 	
 Umathy R. M. Textbook of Mining Geology. Chandra D., Singh R. M. and Singh M. P. Textbook of coal (Indian context) Tara Book Agency, Varanasi, 2000. 	
 12. Banerjee P. K. and Ghosh S. Elements of prospecting for non – fuel mineral deposits 1997. 	
 13. Moon, Charles J., Whatley, Michael, K. G. and Evans, Anthony M., (ed.). Introduction to Mineral Exploration. 2 Edn. Blackwell, 2012. 	
 Roger W. Marjoribanks. Geological Methods in Mineral Exploration and Mining.Chapman &Hall, 1997. 	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the fundamentals of geological and geophysical explorations.	R,U	F,C	Assignment, Final Exam
CO2	Understand the concepts of geochemical exploration, mobility of geochemical elements, sampling techniques and biogeochemical exploration	R,U	F,C	Assignment, Final Exam
CO3	Understand the basics of mining, its type, legislature and beach placer mining. Analyse the effects of mining and apply the geological knowledge in mine design, plan and operations.	R,U	F,C	Assignment, Final Exam
CO4	Apply the knowledge in selection of suitable mining methods, recognition of anomalies, preparation of level plans and sections and averaging assays.	Ар	С	Quiz, Final exam
	emember, U-Understand, Ap-Apply, An-Analys actual, C- Conceptual, P-Procedural, M-Metaco		C-Create	

				Mappi	ng of CC)s v	with PSOs a	nd PO			
	I	PSO1	I	PSO2	PSO3	3	PSO4	PSO5		PO	
CO 1							2			2	
CO 2							2			2	
CO 3							2			3	
CO4							2			3	
Leve	el			1	1		2			3	
Correla	tion	Nil		Slightl	y/Low	Low Moderate / Medium			S	ubstantial/ High	
				Map	ping of	CO)s to Assess	ment Rubr			
	Assi	gnment		Seminar	End S	Sen	nester Exan	ninations	Internal Examination	ations	
CO 1		\checkmark					\checkmark			\checkmark	
CO 2		\checkmark					\checkmark			\checkmark	
CO3		\checkmark				\checkmark				\checkmark	
CO4				\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology		Discipline Specific Elective - DSE				
Course Code and Title	UK6DSEGLY301		Engineering Geology				
Semester	6		Academic Level: 300 - 399				
Course Details	Credit	edit Leo I w		Tutorial per week	Practical per week	Total Hours/Week	
	4	3 h	ours	-	2 hours	5	

Hrs.
15
15
16
14
10

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the significance of engineering geoogy and various mechanical properties of rocks.	,	F,C	Assignment, Final Exam
CO2	Understand the fundamentals of soil mechanics	R,U	F,C	Assignment, Final Exam
CO3	Apply the geological knowledge in major civil engineering constructions and analyse the engineering problems related to various hazards		C,P	Assignment, Final Exam
CO4	Apply the knowledge to calculate the engineering properties of rock and soil samples	-	Р	Quiz, Final exam
	emember, U-Understand, Ap-Apply, An-Analys actual, C- Conceptual, P-Procedural, M-Metaco		C-Create	

				Mappi	ng of CC)s v	vith PSOs a	nd PO			
	I	PSO1	I	PSO2	PSO3	3	PSO4	PSO5		PO	
CO 1				2						2	
CO 2				2						2	
CO 3				2						3	
CO4				2						3	
Leve	el			1			2			3	
Correla	tion	Nil		Slightl	y/Low	Low Moderate / Medium S			S	ubstantial/ High	
				Map	ping of	CC)s to Assess	ment Rubr			
	Assi	gnment		Seminar	EndS	Sen	nester Exan	Internal Examination	ations		
CO 1		\checkmark				\checkmark				\checkmark	
CO 2		\checkmark				\checkmark			\checkmark		
CO3		\checkmark					\checkmark			\checkmark	
CO4				\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology	Skill	Skill Enhancement Course - SEC				
Course Code and Title	UK6SECGLY3	Remote Sensing & Geographic Information System					
Semester	6		Academic Level: 300 - 399				
Course Details	р		cture per reek	Tutorial per week	Practical per week	Total Hours/Week	
	3	3 h	ours	-	-	3	

Content	Hrs.
Module-1- Principles and Materials for Remote Sensing	12
Basic principles of remote sensing. Electromagnetic spectrum and interaction with	
Earth's surface. Types of remote sensing platforms (satellites, aerial platforms,	
UAVs), Characteristics of remote sensing sensors (optical, thermal, radar). Aerial	
photography-types of aerial photographs, their geometry and characters.	
Geostationary and sun-synchronous satellites. Global Positioning System.	
Module II- Introduction to Geographical Information System	12
Geographical Information System – Introduction, definition, components of GIS –	
GIS software - Raster and Vector data - Spatial data - Introduction - Maps and	
GIS – thematic characters of spatial data – Different sources of spatial data. Spatial	
data modelling – Entity – definition – spatial data models – spatial data structures.	
Module III- Applications of Remote Sensing	12
Remote sensing applications in geological studies and natural hazards. Brief idea	
on Thermal IR remote sensing, Microwave sensing and SLAR system.	
Applications of GIS in urban planning, geology and agriculture. Status of remote	
sensing studies in India-Bhaskara and IRS systems.	
Module IV Remote Sensing Practical	
Interpretation of aerial photographs and satellite imageries for the identification of	
major landforms, structures and lithology on earth's surface.	
Module V	6
Teacher Specific related to course Remote Sensing & Geographic Information	
System	
Reference	L
1. Shekhawat, N. (2021). Geographic information systems and remote sensing.	
2. Sahu, K. C. (2007). Textbook of remote sensing and geographical information	tion
systems. Atlantic Publishers & Dist.	
3. Favorskaya, M. N., & Jain, L. C. (2017). Handbook on advances in rer	note
e. raverskaja, in in, a van, 2. e. (2017). Handbook on advances in fer	

sensing and geographic information systems. New York: Springer.

- 4. Bernhardsen, T. (2002). Geographic information systems: an introduction. John Wiley & Sons.
- 5. Nag, P., & Sengupta, S. (2008). Introduction to geographical information systems. Concept Publishing Company.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the fundamental principles, major platforms and tools for remote sensing	U, An	F,C	ESE Quiz
CO2	Understand the components and data in Geographical Information Systems	An, Ap	F,C, P	Assignment ESE
CO3	Understand the remote sensing applications and their practices in India.	Ap, An	F,C, P	Assignment ESE
CO4	Interpretation of aerial photographs and satellite imageries for deciphering the landforms, structures and lithology	An, E	F, C, P	Assignment ESE
* - R-R (emember, U-Understand, Ap-Apply, An-Analys	se, E-Evaluate,	C-Create	
# - F-Fa	actual, C- Conceptual, P-Procedural, M-Metaco	gnitive		

				Mappi	ng of CC)s v	vith PSOs a	nd PO			
]	PSO1]	PSO2	PSO3	3	PSO4	PSO5		PO	
CO 1				3						3	
CO 2				3						3	
CO 3					2					3	
CO4								3		3	
Leve	el]	l		2			3	
Correla	tion	Nil		Slightl	y/Low	I	Moderate / 1	Medium	S	ubstantial/ High	
				Мар	ping of	CC)s to Assess	ment Rubr	ics		
	Assi	gnment		Seminar	End	Sen	nester Exan	ninations		Internal Examina	ations
CO 1		\checkmark				\checkmark				\checkmark	
CO 2		\checkmark		\checkmark			\checkmark			\checkmark	
CO3		\checkmark		\checkmark		\checkmark				\checkmark	
CO4		\checkmark					\checkmark			\checkmark	

Discipline and Type of Course	Geology		Ski	Skill Enhancement Course - SEC					
Course Code and Title	UK6SECG	Ess	Essentials of Geo Informatics						
Semester		6			Academic Level: 300 - 399				
Course Details	Credit		orial week	Practical per week	Total Hours/Week				
	3	3 hours		-		3			

Content	Hrs
Module I- basic concepts in Remote Sensing	12
Basic concepts in Remote sensing, Electromagnetic Spectrum, Energy sources, Energ	У
interaction in the atmosphere. Atmospheric windows, atmospheric effects on remotel	у
sensed data. Spectral signatures in Remote Sensing. Interaction with atmosphere an	d
interaction with object. Sensors and sensor platforms. Remote Sensing, Concepts i	n
Remote Sensing, Sensors and scanners. Satellites and data repositories in world.	
Module II- History of Aerial photographs	12
Photogeology -types and acquisition of aerial photographs; Scale and resolution; Principles of stereoscopy, relief displacement, vertical exaggeration and distortion elements of aerial photo interpretation, study of lithology, geological structures, and geomorphology from aerial photos	
Module III- Digital Image Processing	12
, Image Errors, Rectification and Restoration, FCC, Image Enhancement, Filtering	<u>,</u>
Image Rationing, Image classification and accuracy assessment GIS integration an	d
Case studies-Indian Examples. GIS, Datum, Coordinate systems and Projection	n
systems Spatial data models and data editing Introduction to DEM analysis. GPS	5,
Concepts of GPS Integrating GPS data with GIS Applications in earth system science	
Module IV- Teacher Specific content	6
Teacher Specific content related to Remote sensing and GIS	
Reference	
1. Jensen, J R, RemoteSensingof theEnvironment An Earth Resource Perspective, Pearson education, Inc2000.	
 Liiesand, Thomas M., Ralph W. Kiefer, Remote ssensing and image interpretation ThirdEdn, John Wiley and sons, 1994. 	,
3. Ravi P.Gupta, Remote sensing geology, Second Edn, Springer (India), PvtLtd.	,2008.
4. Nayar, N.B., Encyclopedia of surveying, mapping and remote sensing, Rawat Publications, India, 1996.	
 George Joseph,2005,Fundamentals of Remotesensing, 2nd Edn, Uni. Press (In . Ltd. 	dia) Pv

- 6. Demers, M.N.(1997). Fundamentals of Geographic Information System, John Wiley and sons.Inc.
- 7. Hoffmann-Wellenhof ,B., Lichtenegger, H.andCollins,J .(2001) .GPS: Theory and Practice, Springer Wien, NewYork.
- 8. Jensen, J.R. (1996). Introductory Digital Image Processing: A Remote Sensing Perspective. Springer-Verlag.
- 9. Lillesand, T.M. and Kiefer, R.W. (2007). Remote Sensing and Image Interpretation. Wiley.
- 10. Richards, J.A. and Jia, X. (1999). Remote Sensing Digital Image Analysis. Springer-Verlag.
- 11. Lillesand T.M. and Keifer R.W. Remote sensing and Image interpretation. John Wiley and Sons,1979.
- 12. Estors J. E. and Senger L. W. Remote Sensing. Hamilton Publishing Company, 1974.
- 13. SeigalB.S.and Gillespie A.R. Remote sensing in Geology, John Wiley & Sons, 1980.
- 14. GuptaR.P. RemoteSensing Geology. Springer, 2003.
- 15. Chandra A. MandGhosh S.K. Remote Sensing and Geographical Information Systems. Narosa Publishing House, 2007.
- 16. ReddyA.M. Textbook of Remote Sensing and Geographical Information Systems .BS Publications, 2006.
- 17. Rees W. G. Physical principles of Remote Sensing. Cambridge University Press, 2001.
- 18. BernhardsenT. Geographic Information Systems-introduction. Wiley India, 2002.
- 19. LoC.P.andYeungA.K.W. Concepts and Techniques of Geographic Information Systems. PrenticeHall 2002.
- 20. HeywoodI.,Cornelius.S.and CarverS .An Introduction to Geographical Information Systems, Longman Limited
- 21. Bonham,G.Fand Carter. Geographic Information system for Geoscientists-Modelling with GIS, Elsevier.
- 22. SabbinsF.F. Remote Sensing–Principles and Applications. Freeman, 1985.
- 23. Panda,B.C.Remote Sensing–Principles and Applications. Viva Books Private Limited, NewDelhi,2005.
- 24. George Joseph. Fundamentals of Remote Sensing. Universities Press, Hyderabad. 2003
- 25. Pandey, S.N. Principles and Applications of Photogeology. New Age International(P) Limited Publishers, NewDelhi, 2001.

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Understand Basic Concepts in Remote Sensing and analyze Sensors and Platforms in Remote Sensing.	U, An	C, F	Assignment, Final Exam							
CO2	Interpret Aerial Photographs to identify geological features to apply different aspects in earth system science.	E, Ap	С	Assignment, Final Exam							
CO3	Understand the integration of GIS with remote sensing and apply Remote Sensing and GIS.	U, Ap	F, P	Assignment, Final Exam							
	* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive										

	Mapping of COs with PSOs and PO												
	1	PSO1]	PSO2	PSO3	3	PSO4	PSO5		PO			
CO 1								3		3			
CO 2								3		3			
CO 3								2		3			
Leve	el	1		[2				3				
Correla	tion	Nil		Slightl	y/Low	Low Moderate / Medium		Sı	ubstantial/High				
				Мар	ping of	CC	s to Assess	ment Rubri	ics				
	Assi	gnment		Seminar	End	Sen	nester Exan	ninations		Internal Examination	ations		
CO 1		\checkmark				\checkmark				\checkmark			
CO 2				\checkmark		\checkmark				\checkmark			
CO3						\checkmark				\checkmark			

5.6 COURSES IN GEOLOGY: Semester 7

Discipline and Type of Course	Geology		Discipline Specific Core – DSC					
Course Code and Title	UK7DSCG	LY400	Advanced Geosciences-1					
Semester	7		Academic Level: 400 – 499					
Course Details	Credit	Lecture per wee		Tutorial Per week	Practical per week	Total Hours/Week		
	4	3 hour	'S	-	2 hours	5		

Content	Hrs.
Module-1- Advanced Geomorphology	15
Seismotectonics. Geodesy. Models of Landscape Evolution by Davis and Penck. Geomorphic indicators of neotectonics movements: Stream channel morphology changes, drainage modifications, fault reactivation, uplift-subsidence pattern in coastal areas.	
Module II- More about Crystals and Rocks	16
Repetition Theory, Translation periodicity of crystals. Basic rotational symmetries and the Possibility of simultaneous rotational symmetries indifferent directions of crystals. Space lattices. Herman-Maugin notation. Conoscopic study and interference figures. Optic orientation-optic anomalies-extinction angle-optic axial angle and optic sign.	
Study of important ternary and quaternary systems in Igneous petrology (Forsterite- Anorthite-Silica and Orthoclase-Anorthite-Albite.) Simple basalt systems. Trace element trends in magmatic evolution. Variation diagrams – significance and interpretation.	
Application of phase rule in metamorphic mineral paragenesis. Equilibrium thermodynamics in metamorphic petrology – Gibb's free energy, enthalpy, entropy, Clasius – Clapeyron equation, buffering, Schreinemaker'srule and bundle. Chemographic diagrams – principles of ACF, A'KF and Thompson's AFM diagrams. Paired metamorphic belts. P-T-t paths – isobaric cooling (IBC) and isothermal decompression (ITD) paths.	

Module III- Advanced Approach to Structures	15					
Strain diagrams and their use in studying the stages of deformation. Mohr circle and its use in structural geology. Stress and strain ellipsoids and their application in the study of fractures. Pumpelly's rule. Fold classification of Donath, Parkar and Ramsay. Petrofabric analyses. Foliation and Lineation – Types, classification and origin. Use of axial plane foliation in the determination of major structures. Geometric analysis of folds and lineations.						
Module IV Practical	14					
Norm analyses, Variation diagrams, ACF, AKF and AFM diagrams, Structural problems using stereographic projections, Determination of sign of elongation, extinction angle and order of interference color. Determination of optic sign and anorthite content.						
Module V	10					
Teacher Specific related to course Advanced Geosciences						
Reference						
 Ahmad E. Coastal Geomorphology. Orient Longman, 1972. Cox A. Plate Tectonics and geomagnetic reversals. Freeman, 1973. Holmes A. Principles of Physical Geology. Ronald, 1965. King C. A. M. Beaches and Coasts. Arnold, 1972. Leopold L., Wolman C. and Miller J. P. Fluvial processes in geomorphology. 1963. Thornbury W. D. Principles of geomorphology. Wiley, 1968. Hamilton E. I. Applied Geomorphology. Academic Press, 1965. Darlrymple B. G. and Lampere M. A. Potassium-Argon dating. Freeman, 1969. Windley B. F. The evolving continents. John Wiley, 1977. Lay Thorne, Terry W. C. Modern Global Seismology. Academic Press, 1995. R.D. Russell, John Arthur Jacobs, J. Tuzo Wilson. Physics and Geology. McGraw-Hill Inc., US, 1974 Sharma H. S. Indian Geomorphology. Concept Publishing Co., New Delhi, 1913. Philips F. C. Introduction to Crystallography. Nelson T, 1963. Burger M. J. Elements of Crystallography, Revised by Ford W E, Wiley, 1962. Berry L. G. and Mason B. Mineralogy, Freeman, 1959. Wahlstrom E. E. Optical Crystallography, Wiley, 1962. Winchell A. N. Elements of optical mineralogy, Pt I, Wiley, 1951. Perkins D. Mineralogy. Pearson Education, 2002. Nesse W. D. Introduction to Optical Mineralogy. Oxford University Press, 20 	9. 990.					

22.	. Carmichael, I. S. E., Turner F. J. Verh	oogen J. Igne	ous Petrology.									
	Mc Graw Hill, 1971.											
	. Barth T. F. W. Theoretical Petrology.	-										
	Bowen N. D. Evolution of Igneous Ro			б.								
	. Wahlstrom E. Theortical Igneous Petr											
	26. Ehlers E. G. The interpretation of Geological Phase Diagrams. Freeman, 1972.											
27.	27. Myron G. Best 2003 Igneous and metamorphic petrology Edition2, Wiley-Blackwell, 2003											
28.	. Kornprobst J. 2002 Metamorphic rock	and their ge	eodynamic									
	significance: a petrological handbook, Springer.											
29.	Blatt, J., Tracy J. R. and Owens B.E. 2	2006 Petrolog	y: Igneous,									
	Sedimentary, and Metamorphic.Edition	on3, W. H. Fr	eeman.									
30.	Shelley D. Igneous and metamorphic	rocks under t	he microscope:									
	classification, textures, microstructure	es, and minera	al preferred - orio	entations								
	Springer, 1993.											
31.	. Fry N. The field description of metam	orphic rocks.	Geological Soci	ety								
	of London handbook series. Open Ur	niversity Pres	s, 1984									
32.	. Vernon R. H. and Clarke G. L. 2008 F	Principles of r	netamorphic peti	rology								
	Cambridge University Press.											
	. Winter J. Principles of Igneous and M	-	•••									
34.	. Bucher K and Frey M. 1994 Petrogen		orphic rocks Ed	ition6,								
	Illustrated Publisher Springer-Verlag.											
35.	. Barker A. J. 1998 Introduction to meta	amorphic text	ures and microst	tructures								
	Edition 2, Routledge.											
36.	Marshak S. and Gautam Mitra. Basic	methods of St	tructural Geolog	у.								
	Prentice Hall Inc. 1988.											
	. Ragan M. D. Structural Geology, Wil	•										
	Philips F. C. Stereographic projection											
39.	. Turner F.J. and Weiss L.E. Structural	Analysis of N	Aetamorphic Tec	ctonites.								
	Mc Graw Hill, 1963.											
40.	Hobbs B.E., Means W.B. and William	n P. F. An Ou	tline of Structura	al Geology								
	. John Wiley 1976.											
CO	Course Outcome	Cognitive	Knowledge	Evaluation								
CO1	Analyse the concents of	Level*	Category#	Tools used								
CO1	Analyse the concepts of	An,U	F,C	ESE Assignment								
	geomorphology in land scape evolution and understand			Quiz								
	seismotectonics and geodesy.											
CO2	Apply and analyse the modern	Ap,	F,C,P	ESE								
	concepts in the fields of	An		Assignment								
	crystallography, mineralogy, igneous			Quiz								

and metamorphic petrology

CO3	Analyse the recent methods used in structural geology for studying rock deformation, petrofabric analysis, rock structures identification and problem solving.		C P	ESE Assignment Quiz					
CO4	Identify the rocks by evaluating the chemical data, make an interpretation and analyse optical properties of minerals.	An	Р	ESE Assignment Quiz					
* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive									

			Mapping of COs with PSOs and PO												
	I	PSO1	PSO	02	PSO3	PSO4	PSO5		PO						
CO 1		1							3						
CO 2			3						3						
CO 3					3				3						
CO4							3		3						
Leve	evel		1		2			3							
Correla	tion	Nil	Sl	lightly	//Low	Moderate /	Medium	S	ubstantial/ High						
				Мар	ping of	COs to Assess	sment Rubr	ics							
	Assi	gnment	Sen	ninar	End S	Semester Exar	ninations	Internal Examina	ations						
CO 1		\checkmark		\checkmark		\checkmark			\checkmark						
CO 2		\checkmark		\checkmark		\checkmark			\checkmark						
CO3		\checkmark		\checkmark		\checkmark			\checkmark						
CO4		\checkmark		\checkmark		\checkmark			\checkmark						

Discipline and Type of Course	Geology		Discipline Specific Core – DSC					
Course Code and Title	UK7DSCGLY4	Advanced Geosciences-2						
Semester	7		Academic Level: 400 – 499					
Course Details	Credit	ŗ	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week		
	4	3h	ours	-	2hours	5		

Content	Hrs.
Module-1- New Trends in Stratigraphy	15
Types of stratigraphy – Sequence stratigraphy, Magnetostratigraphy and Seismic Stratigraphy. Sedimentary Basin Analysis: Facies and interpretation of the environment. Study of GSSP and their occurrence in Tertiary and Quaternary systems. Boundary problems in Indian stratigraphy. Crustal evolution of Dharwar	
and Southern granulite terrains. Applications of microfossils and nano fossils in palaeoclimatology, paleoceanography petroleum exploration.	
Module II- Advanced Mineralogy	15
Analytical techniques and interpretation of geoscience process using instruments like XRD, ICP-MS, MS, XRF, SEM, IRMS, TEM. Isotope dating techniques of C-14, U-Pb, K-Ar, Rb-Sr and Sm-Nd and their significance in geoscience. Stable isotope application in geoscience – Carbon, Oxygen and Sulphur isotopes. Geochemical classification of elements. Geochemical cycles-Carbon, oxygen and Nitrogen. REE, Al, Fe and Mn geochemistry of Rocks, soil and sediments.	
Module III- Ore Genesis and Mineral Exploration	16
Principle and application of ore microscopy, Ore texture and genetic significance. Diamond in kimberlite, ores in pegmatite. Cr, Pt, Ti, Cu and Ni deposits associated with basic and ultrabasic rocks.VMS deposits, SEDEX and MVT deposits. Origin and occurrence of polymetallic nodules, coal bed methane and gas hydrates. Dating of ore deposits. Controls of ore localization. Metamorphism of ore deposits. Plate tectonic controls in mineralization. Ore mineralization through geologic time. Geophysical prospecting of mineral deposits - Magnetic, Gravity, seismic and Electric methods. Geochemical prospecting of mineral deposits – Principle, geochemical anomalies, geobotanical indicators, geochemical relief indicators and pathfinders. Surface and subsurface mining methods. Seabed mining methods. Ore dressing -Physical, Magnetic, electric and bioleaching methods	
Module IV Practical	14
Ore reserve estimation- grade and tonnage calculation, Interpretation of bore hole data. Geological section preparation.	

10

Module V

Teacher Specific related to course Advanced Geosciences

Reference

- 1. Brookfield M. E. Principles of Stratigraphy. Blackwell Publishing, 2004.
- 2. Dunbar C. O. & Rogers J. Principles of Stratigraphy. Wiley, 1960
- 3. Gignoux M. Stratigraphic Geology. Freeman, 1960.
- 4. Flint R. F. Glacial & Pleistocene Geology. Wiley, 1961.
- 5. Kay & Golbert. Stratigraphy & Life history. Wiley, 1965.
- 6. Weller J. M. Stratigraphic principles & Practice. Harper & Row, 1959.
- 7. Krumbein N. C. & Sloss L. D. Stratigraphy and sedimentation. Freeman, 1963
- 8. Perkins D. Mineralogy. Pearson Education, 2002.
- 9. Kula.C. Misra. Introduction to Geochemistry-Principles and Applications, Wiley Blackwell 2012.
- 10. Evans A. M. An introduction to ore geology. Blackwell Scientific Publ., 1980.
- 11. Cameroon E. N. Ore microscopy. Wiley, 1961.
- Edwards A. B. Textures of ore minerals. Aust. Inst. Min. & Met, 1960. Stanton R. K. Ore petrology. Mc Graw Hill, 1972.
- 13. Sullivan C. J. Ore and granitization. Econ. Geol., Vol.43, pp 470-489, 1948.
- 14. Park C. G and Mc Diamird R. A. Ore deposits. Freeman, 1964.
- 15. Jensen and Bateman A. M. Economic Mineral Deposits, III Edn, John Wiley, 1990.
- 16. Sawking F. J. Sulphide ore deposits in relation to plate tectonics. Journ. Geol. Vol.80, No.40, pp377-397, 1972.
- Mukherjee A. Metamorphic and metamorphosed sulphide deposits. Econ. Geol., Vol. 65, No.70,1970.
- 18. Mukherjee A. Ore genesis A holistic approach. Prentice Hall, 1998.
- 19. Peters W. C. Exploration and mining geology. Wiley.
- 20. Rose A. W. Hawkes H. E. and Webb J. S. Geochemistry in mineral exploration Academic Press.
- 21. Arogyaswamy R. N. P. Courses in Mining Geology. Oxford and IBH, New Delhi.
- 22. Low J. W. Geological field methods. Mc Graw Hill.
- 23. Lahee F. H. Field Geology. Mc Graw.
- 24. Compton R. R. Manual of Field Geology. Wiley.
- 25. Malyuga D. P. Biochemical methods of prospecting. Consultants Bureau N York.
- 26. Dobrin M. B. Introduction to geophysical prospecting. Pergamon Press.
- 27. Ginzburg D. H. Principles of geochemical prospecting. Pergamon
- 28. Ginzburg D. H. and Kind R. F. Applied geophysics for geologists and engineers. Pergamon.
- 29. Bagchi T. C. Elements of prospecting and exploration. Kalyan Publishers.
- 30. Sinha R. K. and Sharma N. L. Mineral economics. Oxford and IBH.

- 31. Reedman J. H. Techniques in Mineral exploration. Allied Scientific.
- 32. Umathy R. M. Textbook of Mining Geology.
- 33. Chandra D., Singh R. M. and Singh M. P. Textbook of coal (Indian context) Tara Book Agency,
- 34. Varanasi, 2000.
- 35. Boyle R. W. Geochemical prospecting for thorium and uranium deposits. Elsevier.
- 36. Banerjee P. K. and Ghosh S. Elements of prospecting for non-fuel mineral deposits 1997.
- 37. Moon, Charles J., Whatley, Michael, K. G. and Evans, Anthony M., (ed.). Introduction to Mineral Exploration. 2nd Edn. Blackwell, 2012.
- Ramachandra Rao, M.B. An Out line of Geophysical Prospecting-A Manual for Geologists 1975. University of Mysore.
- 39. William Lowrie, Fundamentals of Geophysics 1997, Cambridge.

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used										
CO1	Analyse the modern concepts in stratigraphy and understand the boundary problems and the models of crustal evolution with special reference to India.	,	F,C	ESE Assignment Quiz										
CO2	Analyse the modern instruments used in various fields of geology	Ap, An	F,P	ESE Assignment Quiz										
CO3	Understand the concepts of ore geology and analyse different types of ore deposits.		F,C	ESE Assignment Quiz										
CO4	Analyse the various geophysical prospecting and mining methods.	An	F,C,P	ESE Assignment Quiz										
		-	ite, C-Create	* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive										

	Mapping of COs with PSOs and PO											
	I	PSO1	PS	O2	PSO3		PSO4 PSO5			РО		
CO 1					3					3		
CO 2			2	2						3		
CO 3							3			2		
CO4							3			3		
Leve	el			1		2				3		
Correla	tion	Nil	S	Slightly	y/Low	Low Moderate / Medium			S	ubstantial/ High		
				Мар	ping of	CO	s to Assess	ment Rubri	ics			
	Assi	gnment	Se	minar	End S	End Semester Examinations			Internal Examination	ations		
CO 1		\checkmark		\checkmark			\checkmark			\checkmark		
CO 2		\checkmark		\checkmark			\checkmark			\checkmark		
CO3		\checkmark		\checkmark			\checkmark			\checkmark		
CO4		\checkmark		\checkmark			\checkmark			\checkmark		

Discipline and Type of Course	Geology		Di	Discipline Specific Core - DSC			
Course Code and Title	UK7DSCG	GLY420		Geochemistry and Isotope Geology			
Semester		7	Acad	Academic Level: 400 - 499			
Course Details	Credit	Lecture per week	 orial week	Practical per week	Total Hours/Week		
	4	3 hours	-	2 hours	5		

Content						
Module I: Origin and cosmic abundance of elements						
Introduction to Geochemistry- Geochemical classification of elements.						
Geochemical cycles. Chemical evolution of the earth. Primary geochemical						
differentiation. Geochemical constitution of earth's crust, mantle and core. Phase						
transitions in the mantle. Goldschmidt's classification of elements. Nernst's						
partition coefficient (compatible and incompatible elements), LILE and HFSE.						
Major, minor and trace elements, REEs and PGEs. Thermodynamic system,						
Thermodynamic potential, State function, STP and Rule of thumb and Derivation						
of Gibbs free energy. Oxygen Fugacity: Definitions, concepts and geology.						
Oxidation potential, Eh-pH diagrams, Limits of Eh-Ph in aqueous environment and						
their applications in sedimentation process.						

Module II: Radiogenic Isotopes	18
Introduction to isotope geology: Isotopes, isobars and isotones, stable and	
radioactive isotopes. Laws of radioactivity, half-life and basic equation for age	
calculation. Various decay mechanisms- alpha, beta (positron and negatron),	
gamma decay, electron capture and branched decay. Study of different absolute	
dating techniques: Rb-Sr - model age and isochron age, mineral and whole rock	
isochrones, their merits and demerits. Importance of Sr initial concentration in	
understanding the source characteristics of igneous and metamorphic rocks. Sm-	
Nd systematics - isochron ages, isotopic evolution of Nd, CHUR model, epsilon	
parameter and nature of mantle source, BABI, crustal residence of igneous and	
metamorphic rocks. U-Th-Pb systematics - model age, ²⁰⁷ Pb- ²⁰⁶ Pb method, U-Pb	
Concordia-discordia method, U-Pb, Th-Pb isochron methods, Zircon dating-	
analysis of single zircon and SHRIMP analysis. K-Ar systematics - modal age and	
isochron age, the problem of Ar loss. Applications – metamorphic veil. Ar- Ar	
method. Fission track dating.	
Module III: Stable isotope studies Isotope fractionation, Delta notation and its significance, significance of stable	12
isotopes of Carbon, Oxygen and Sulphur in petrology. Isotope hydrogeology –	
fractionation, H-O isotopes in water vapor and hydrologic cycle, δ^{18} O and δ^{2} H,	
Global meteoric water line, altitude, continentality and latitudinal effects on rain	
water. Paleoclimatic records of sediments and polar ice from isotopes.	
Module IV: Practical	12
Sample preparation Procedures for different chemical analysis. Problems in	
Thermodynamics. Half-life, decay constant and age calculations using radiogenic	
isotopic ratios. Problems related to fractionation of stable isotope.	
Module V:Teacher specific content	10
Teacher specific content related to Geochemistry and Isotope Geology	
Reference	
 Mason, B. and Moore, C.B. (1985) Principles of geochemistry, Wiley Eastern Ltd,Bangalore 	1
2. Faure G. (1986) Principles of isotope geology1, John Wiley & Sons	
 Faure, G., Mensing, T. M., Isotopes – Principles ans Applications, Wiley Indi Pvt. Ltd., New Delhi 	ia
 Krauskopf, E.B. (1979) Introduction to geochemistry, McGraw Hill Book 	
Company,New Delhi.	
 Gill, R. (1989) Chemical fundamentals of geology, Unwin Hyman, London Albarede F. (2003) Geochemistry- An introduction, Cambridge university preserved. 	ress.
168 Geology	

- 7. Dickin, A.P. Radiogenic isotope geology. Cambridge University Press.
- 8. Rankama K. Progress in Isotope Geology, Interscience, 1963.
- 9. Walther J. V. Essentials of Geochemistry. Jones and Barlett Publishers, 2005.
- 10. Mason, B. (1986) Principles of Geochemistry. 3rd Edition, Wiley New York.
- 11. Rollinson, H. (2007) Using geochemical data evaluation, presentation and interpretation. 2nd Edition. Publisher Longman Scientific & Technical.
 - Interpretation. 2nd Edition. Publisher Longman Scientific & Technical.
- Walther, J. V. (2009). Essentials of geochemistry. Jones & Bartlett Publishers.
 Albarède, F. (2003). Geochemistry: an introduction. Cambridge University Press.
- 14. Kula C. Mishra (2012). Introduction to Geochemistry Principles and
 - Applications, Blackwell Publishing Ltd.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used						
CO1	Evaluate thermodynamic state of natural systems using different proxies.	E	F	Assignment, Final Exam						
CO2	Distinguish various radioactive decay mechanism and dating techniques.	An	С	Assignment, Final Exam						
CO3	Develop an idea about radiogenic age calculation and fractionation.	С	Р	Assignment, Final Exam						
	* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive									

Mapping of COs with PSOs and PO											
	I	PSO1		PSO2	PSO3	3	PSO4	PSO5		РО	
CO 1								3		2	
CO 2								3		2	
CO 3								2		3	
Leve	el		1			2				3	
Correla	relation Nil			Slightly/Low		w Moderate / Medium			S	ubstantial/ High	
				Map	ping of	CC	s to Assess	ment Rubri	ics		
	Assi	gnment		Seminar	End	Sen	nester Exan	ninations		Internal Examina	ations
CO 1		\checkmark				\checkmark			\checkmark		
CO 2				\checkmark		\checkmark				\checkmark	
CO3						\checkmark \checkmark					

Discipline and Type of Course	Geology		Di	Discipline Specific Core – DSC			
Course Code and Title	UK7DSCG	LY421		Applied Geophysics and Exploration Geology			
Semester		7	Acad	Academic Level: 400 – 499			
Course Details	Credit	Lecture per week	 orial week	Practical per week	Total Hours/Week		
	4	3 hours	-	2 hours	5		

Content	Hrs.
Module I: Planet Earth dimensions and geodesy	18
Earth Gravity- Gravitational Potential and acceleration. Gravity anomalies and	
Correction. Modern Survey methods. Isostasy- Isostatic anomalies. Significance of	
isostatic anomalies. Earthquake Seismology. Velocities of P& S wave, magnitude	
and intensity scales. Travel time curves, Phase transition inside the Earth and	
interior structure of Earth- PREM Model. Earth's magnetic field- properties and	
types, changes in magnetic field, origin of geomagnetic field, magnetic anomalies	
and corrections. Palaeomagnetism. Magnetic timescale Thermal conductivity of	
earth surface.	
Module II: Geophysical Exploration	18
Principles of geological prospecting and mineral exploration. Stages of exploration.	
Concept of geophysical exploration - Electrical prospecting, Resistivity survey,	
Induced Polarization and Self Potential methods. Concept of magnetic prospecting,	
Magnetometers, Magnetic anomalies and Magnetic time scale. Magneto telluric	
survey. Concept of Gravity survey, principles of gravity measurements, stable and	
unstable gravimeters. Gravity anomalies - regional and local, factors that affect	
gravity measurements, gravity corrections. Seismic survey methods- concepts of	
seismic refraction, reflection surveys. applications and limitations of seismic	
refraction and reflection survey. Instruments used in detection and measurements of	
nuclear minerals.	
Madula III: Caashamical Exploration	10
Module III: Geochemical ExplorationPrinciples of Geochemical exploration, Geochemical mobility of element, factors	10
controlling mobility of elements in the surficial and deep-seated environments,	
Indicators and Pathfinders, threshold values and geochemical anomalies, dispersion	
pattern. Geochemical survey and sampling – lithological & pedological.	
Atmospheric and hydrogeochemical surveys, Geobotanical survey techniques,	

Module IV: Practical	14
Problems related to earths gravitational field, earthquake waves, Ore reserve	e
estimation –grade and tonnage calculation, Interpretation of borehole data	
Geological section preparation.	
Module V: Teacher specific content	10
Teacher specific content related to Geophysical application in Exploration	
Reference	
1. Bagchi, T.C. Elements of Prospecting and Exploration, Kalyan Publishers.	
2. Crompton, R.R. Mannual of Field Geology, John Wiley.	
3. Dobrin, M.B. Introduction to Geophysical Prospecting, Pergamon Press.	
4. Davis and Dewiest. Hydrogeology, 1966.	
5. Ginzburg, I.I. Principles of geochemical Prospecting, Pergamon Press.	
6. Griffths, D.H. and Kind, R.F Applied Geophysics for Geologists and engineers, Pergamon Press.	
 Kearey, P Brooks (1991) An introduction to geophysical exploration, Black 	vell
8. Kovalarkim. Biochemical Hill.	weni.
9 Lahee, F.H. Field Geology, McGraw Hill	
9. Lahee, F.H. Field Geology, McGraw Hill. 10. Low, J.W Geologic Field Methods, Harper and Brothers.	
 Lahee, F.H. Field Geology, McGraw Hill. Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. 	ew
 Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. Milson J (1989) Field geophysics, John Wiley & sons 	
 Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. Milson J (1989) Field geophysics, John Wiley & sons Moon, Charles, Michel Whateley and Antony Evans (2005), Introduction 	
 Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. Milson J (1989) Field geophysics, John Wiley & sons Moon, Charles, Michel Whateley and Antony Evans (2005), Introduction MineralExploration, Wiley – Blackwell. 	
 Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. Milson J (1989) Field geophysics, John Wiley & sons Moon, Charles, Michel Whateley and Antony Evans (2005), Introduction MineralExploration, Wiley – Blackwell. Rose, K.W., Hawkes, H.E. and Webb, J.S., Geochemistry in Mineral 	
 Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. Milson J (1989) Field geophysics, John Wiley & sons Moon, Charles, Michel Whateley and Antony Evans (2005), Introduction MineralExploration, Wiley – Blackwell. Rose, K.W., Hawkes, H.E. and Webb, J.S., Geochemistry in Mineral Exploration, Academic Press. 	n to
 Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. Milson J (1989) Field geophysics, John Wiley & sons Moon, Charles, Michel Whateley and Antony Evans (2005), Introduction MineralExploration, Wiley – Blackwell. Rose, K.W., Hawkes, H.E. and Webb, J.S., Geochemistry in Mineral Exploration, Academic Press. Sinha, R.K. and Sharma, N.L. Mineral economies, Oxford and IBH Published 	n to
 Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. Milson J (1989) Field geophysics, John Wiley & sons Moon, Charles, Michel Whateley and Antony Evans (2005), Introduction MineralExploration, Wiley – Blackwell. Rose, K.W., Hawkes, H.E. and Webb, J.S., Geochemistry in Mineral Exploration, Academic Press. Sinha, R.K. and Sharma, N.L. Mineral economies, Oxford and IBH Publishe 16. Todd, D.K. Groundwater Hydrology, John Wiley and Sons, 1980. 	n to ers.
 Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. Milson J (1989) Field geophysics, John Wiley & sons Moon, Charles, Michel Whateley and Antony Evans (2005), Introduction MineralExploration, Wiley – Blackwell. Rose, K.W., Hawkes, H.E. and Webb, J.S., Geochemistry in Mineral Exploration, Academic Press. Sinha, R.K. and Sharma, N.L. Mineral economies, Oxford and IBH Published 	n to ers. 1997
 Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. Milson J (1989) Field geophysics, John Wiley & sons Moon, Charles, Michel Whateley and Antony Evans (2005), Introduction MineralExploration, Wiley – Blackwell. Rose, K.W., Hawkes, H.E. and Webb, J.S., Geochemistry in Mineral Exploration, Academic Press. Sinha, R.K. and Sharma, N.L. Mineral economies, Oxford and IBH Publishe 6. Todd, D.K. Groundwater Hydrology, John Wiley and Sons, 1980. William Lowrie, Fundamentals of Geophysics, Cambridge University Press, 18. Ginzburg D. H. and Kind R. F. Applied geophysics for geologists and engine 	n to ers. 1997 eers.
 Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. Milson J (1989) Field geophysics, John Wiley & sons Moon, Charles, Michel Whateley and Antony Evans (2005), Introduction MineralExploration, Wiley – Blackwell. Rose, K.W., Hawkes, H.E. and Webb, J.S., Geochemistry in Mineral Exploration, Academic Press. Sinha, R.K. and Sharma, N.L. Mineral economies, Oxford and IBH Published for Todd, D.K. Groundwater Hydrology, John Wiley and Sons, 1980. William Lowrie, Fundamentals of Geophysics, Cambridge University Press, Sinzburg D. H. and Kind R. F. Applied geophysics for geologists and engine Pergamon. Chandra D., Singh R. M. and Singh M. P. Textbook of coal (Indian context) 	n to ers. 1993 eers. Tara
 Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. Milson J (1989) Field geophysics, John Wiley & sons Moon, Charles, Michel Whateley and Antony Evans (2005), Introduction MineralExploration, Wiley – Blackwell. Rose, K.W., Hawkes, H.E. and Webb, J.S., Geochemistry in Mineral Exploration, Academic Press. Sinha, R.K. and Sharma, N.L. Mineral economies, Oxford and IBH Publishe for Todd, D.K. Groundwater Hydrology, John Wiley and Sons, 1980. William Lowrie, Fundamentals of Geophysics, Cambridge University Press, Solid Biology, Computer Science Science	n to ers. 1992 eers. Tara sevie
 Low, J.W Geologic Field Methods, Harper and Brothers. Malyuga, D.P. Biochemical Methods of Prospecting, Consultants Bureau, N York. Milson J (1989) Field geophysics, John Wiley & sons Moon, Charles, Michel Whateley and Antony Evans (2005), Introduction MineralExploration, Wiley – Blackwell. Rose, K.W., Hawkes, H.E. and Webb, J.S., Geochemistry in Mineral Exploration, Academic Press. Sinha, R.K. and Sharma, N.L. Mineral economies, Oxford and IBH Publishe 6. Todd, D.K. Groundwater Hydrology, John Wiley and Sons, 1980. William Lowrie, Fundamentals of Geophysics, Cambridge University Press, 8. Ginzburg D. H. and Kind R. F. Applied geophysics for geologists and engine Pergamon. Chandra D., Singh R. M. and Singh M. P. Textbook of coal (Indian context) Book Agency, Varanasi, 2000. Boyle R. W. Geochemical prospecting for thorium and uranium deposits. El 	n to ers. 1997 eers. Tara sevie

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used								
CO1	Evaluate the Geophysical properties of Earth	Е	F	Assignment, Final Exam								
CO2	Distinguish various procedures in exploration of Economic minerals.	An	С	Assignment, Final Exam								
CO3	Developing idea about simple geophysical calculations for exploration purpose	С	Р	Assignment, Final Exam								
* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create												
# - F-Fa	actual, C- Conceptual, P-Procedural, M-Met	acognitive	# - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive									

Mapping of COs with PSOs and PO											
	I	PSO1]	PSO2	PSOS	PSO3 PSO4 PSO5		РО			
CO 1								3		3	
CO 2								3		3	
CO 3								2		3	
Leve	el			1	1	2			3		
Correla	tion	Nil		Slightl	y/Low	I	Moderate /	/ Medium Su		ubstantial/ High	
				Мар	oping of	CC)s to Assess	ment Rubr	ics		
	Assi	gnment		Seminar	End	Sen	nester Exan	ninations		Internal Examination	ations
CO 1		\checkmark				\checkmark				\checkmark	
CO 2				\checkmark		\checkmark				\checkmark	
CO3						\checkmark \checkmark					

Discipline and Type of Course	Geology		Disci	Discipline Specific Core - DSC			
Course Code and Title	UK7DSCGLY4	Remote sensing and Geoinformatics					
Semester	7		Academic Level: 400 - 499				
Course Details	Credit	Lecture per week		Tutorial per week	Practical per week	Total Hours/Week	
	4	3 h	ours	-	2 hours	5	

Content	Hrs.						
Module-1- Remote sensing	16						
Concept of Remote sensing, -Electromagnetic radiation-characteristics, energy interactions with the atmosphere, atmospheric windows. Aerial photography – types of aerial photographs, their geometry and photo characters, stereoscopy, stereoscopic parallax, relief displacement; principles of photogrammetry. Elements used for the interpretation of aerial photographs. Satellite remote sensing-Sensors and platforms. Geostationery and sunsynchronous satellites. Global Positioning System.							
Module II- Geographical information system							
Geographical Information System – Introduction, definition, components of a GIS – GIS softwares – Raster and Vector data – Spatial data – Introduction – Maps and GIS – thematic characters of spatial data – Different sources of spatial data. Spatial data modeling – Entity – definition – spatial data models – spatial data structures.							
Module III- Application of remote sensing	15						
Status of remote sensing studies in India-Bhaskara and IRS systems. Remote sensing applications in geological studies and natural hazards. Brief introduction on Thermal IR remote sensing, Microwave sensing and SLAR system. Applications of GIS in urban planning, geology and agriculture.							
Module IV Practical	14						
Interpretation of aerial photographs							
Module V	10						
Teacher Specific related to course Remote Sensing and Geoinformatics							
Reference							
 Ian Haywood, Sarah Cornelius and Steve Carver (2000) An introduction to Geographical Information Systems. Addison Wesley Longman Ltd., New Yor 2. Heywood, D. I., Cornelius, S., and Carver, S. (1998). An introduction 							
Geographical Information Systems. Longman, New Delhi.	4.0.000						
 Pandey S. N. (1987) Principles and Applications of Photogeology, Wiley Eas LO CP and Young A.K.W.(2003) concept and technique of geographical 	tern.						
 information system. prentice hall of India, New Delhi. 5. Lillesand, T. M. & Kiefer, R.W., 2007. Remote Sensing an Interpretation Wiley. 	ıd						
Image Interpretation, Wiley.6. Demers, M.N., 1997. Fundamentals of Geographic Information System, John Wiley & sons. Inc.	L I						
 7. Richards, J.A. and Jia, X., 1999. Remote Sensing Digital Image Analysis, Springer-Verlag. 							

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the basics of remote Sensing, photogrammetry and Geographical information system and their application in geoscience.	U & E	F &C	Assignment & final exam
CO2	Understand and describe the aerial photography, satellite remote sensing, GPS, GIS software, data analysis	U & E	F &C	Quiz, Assignment & final exam
CO3	Analysis of aerial photographs.	U, E, &A	F, C &P	Assignment & final exam
	member, U-Understand, Ap-Apply, An-An ctual, C- Conceptual, P-Procedural, M-Me	2	ate, C-Create	

				Mappi	ng of CC	Ds w	vith PSOs a	nd PO			
	I	PSO1	Р	SO2	PSO	3	PSO4	PSO5		PO	
CO 1		3					2	1		3	
CO 2		3					3	3		3	
CO 3		1					2	3		3	
Leve	el	-		1		2				3	
Correla	tion	Nil		Slightl	y/Low	ľ	Moderate /	Medium	S	ubstantial/ High	
				Map	ping of	CO	s to Assess	ment Rubr	ics		
	Assi	gnment	S	Seminar	End	Sem	nester Exan	ninations		Internal Examination	ations
CO 1		\checkmark		\checkmark			\checkmark			\checkmark	
CO 2		\checkmark		\checkmark		\checkmark				\checkmark	
CO3		\checkmark		\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology	Disci	Discipline Specific Core - DSC				
Course Code and Title	UK7DSCGLY451		Crystallography				
Semester	7		Acad	Academic Level: 400 - 499			
Course Details	Credit	ŗ	cture oer eek	Tutorial per week	Practical per week	Total Hours/Week	
	4	3 h	ours	-	2 hours	5	

Content	Hrs.
Module-1- Crystallography	15
Significance of crystallography in mineralogy. Elements of crystallography:	
crystalline state and crystals. Morphology of crystals, faces, edges, vertex, forms	
and zones. Crystal angles - plane angles, interfacial angles and solid angles;	
Goniometer - contact and reflection, Law of Constancy of Interfacial Angles.	
External symmetry elements in crystals. Crystallographic axes: choice of axes,	
labeling and orientation.	
Module II- Classification of crystals	15
Classification of crystals into systems and classes. Nomenclature of crystal faces:	
intercepts, parameters, unit face, Weiss notation, Miller indices. Law of crystal	
indices, axial ratio. Brief study of holohedral, hemihedral, hemimorphic and	
enantiomorphic forms.	
Module III- Systematic crystallography	16
Systematic crystallography: The study of symmetry, simple forms and	
combinations of normal class of isometric, tetragonal, hexagonal, orthorhombic,	
monoclinic and triclinic systems.	
Module IV Practical	14
Forms and symmetry elements of normal class of isometric, tetragonal, hexagonal,	
orthorhombic, monoclinic and triclinic systems.	
Module V	10
Teacher Specific related to course Crystallography	
Reference	
1. Dana, E. S. (1955) A Textbook of Mineralogy. Asia Publishing House, Wile	
2. Phillips, F.C. (1956) An Introduction to Crystallography. Longmans Green	
3. Klein, C., Dutrow, B., Dwight, J., & Klein, C. (2007). The 23rd Edition of	the
Manual of Mineral Science (after James D. Dana). J. Wiley & Sons.	
4. Deer, W. A., Howie, R. A., & Zussman, J. (1992). An introduction to the r	ock-
forming minerals (Vol. 696). London: Longman	

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the elements of crystallography, laws of crystallography, classification of crystals into systems and classes, crystal notations and indices and the types of crystal forms	U & E	F &C	Assignment & final exam
CO2	Understand and explain the symmetry, simple forms and combinations of the normal crystal classes of the six crystal systems	U & E	F &C	Quiz, Assignment & final exam
CO3	Describe and illustrate the symmetry elements and identify and describe the crystal models of Normal classes of the six crystal systems.	U, E, &A	F, C &P	Assignment & final exam
	nember, U-Understand, Ap-Apply, An-Ar ctual, C- Conceptual, P-Procedural, M-Me	-	ite, C-Create	

			Ma	ppin	g of CC)s v	vith PSOs a	nd PO			
	I	PSO1	PSO2		PSO3	3	PSO4	PSO5		РО	
CO 1		2	2					1		3	
CO 2		3	3					2		3	
CO 3		2	2					3		3	
Leve	el	-		1		2				3	
Correla	tion	Nil	Slig	ghtly	/Low	Low Moderate / Med			S	ubstantial/ High	
			Ν	Ларр	oing of	СО	s to Assess	ment Rubr	ics		
	Assi	gnment	Semi	nar	End S	Sen	nester Exan	ninations		Internal Examination	ations
CO 1		\checkmark	\checkmark	/		\checkmark				\checkmark	
CO 2		\checkmark	\checkmark	,		\checkmark				\checkmark	
CO3		\checkmark	\checkmark	'			\checkmark			\checkmark	

Discipline and Type of Course	Geology	Discipline Specific Core - DSC						
Course Code and Title	UK7DSCGLY4	UK7DSCGLY452		Paleoecology				
Semester	7	7		Academic Level: 400 - 499				
Course Details	Credit	ŗ	cture oer reek	Tutorial per week	Practical per week	Total Hours/Week		
	4	4 h	ours	-		4		

Content	Hrs.
Module-1- Ecosystem science	15
Introduction-Basic ecosystem science concepts- Biological Interactions:	
Foundation Species, Ecological Engineers; Ecosystem. Geological time scale,	
paleobiological methods and understanding the biota of the Deep past. Plate	
tectonics and biotic (taxonomic and distributional) changes, late Paleozoic to	
early Cenozoic Eras.	
Module II- Biogeographic processes	15
Biogeographical Processes: Dispersal and Colonization, Major events in the	
earth's history. Extinction events and its causes. Evolutionary and	
Distributional Changes Among Land Plants; Gymnosperms and Angiosperms;	
Key Developments in land mammals. Expansion of Dryland and Alpine	
Biomes; Evolution of Grazing fauna; American Exchange of Mammals.	
Module III- Ecosystem and environments	15
Ecosystems and Environments: Developments Over the Cenozoic . Early to	
Middle-Cenozoic Environmental Changes and Development and	
Diversification of Terrestrial Biomes in the Eocene: Development of Cenozoic	
Climates and Environments; Flora and Fauna. Biogeographic Changes during	
Pleistocene Glacial and Inter-glacial cycles. Humans as a Force of Evolution	
and Extinction. Pleistocene Megafauna Extinctions: Causes and Consequences	
Module IV Anthropocene ecosystems	15
Anthropocene Ecosystems and Global Change Drivers. Anthropocene Policy	
and Management Dilemmas 1: Modern extinction; altered disturbance regimes,	
biogeochemical changes; Invasive species and emerging epidemics 2: Habitat	
Destruction, Ecosystem Fragmentation, Climate Change, Shifting Ranges.	
Module V	10

rlson, D. and Plummer, C. (2010) F Edn., Mc-Graw Hill Co. Iler, E.A. (1978) Environmental G A nal Das Gupta (2006). An introduct nited, Kolkata. diman, W.F., 2001. Earth's clima blisher. anley, S.M., 2008 Earth System His nfield, D.E. & Konhauser, K.O., 20 Course Outcome nderstand the paleo-	Geology. Bell tion to Earth S te: past and story	and Howell, Science, World future. Edition	Prentice Hall, Press Private 2, Freeman logy Blackwell
ller, E.A. (1978) Environmental (A nal Das Gupta (2006). An introduct nited, Kolkata. diman, W.F., 2001. Earth's clima blisher. nley, S.M., 2008 Earth System His nfield, D.E. & Konhauser, K.O., 20 Course Outcome nderstand the paleo-	tion to Earth S te: past and story D12 Fundamen Cognitive Level*	Science, World future. Edition ntals of Geobio Knowledge	Press Private 2, Freeman logy Blackwell Evaluation
A nal Das Gupta (2006). An introduct nited, Kolkata. diman, W.F., 2001. Earth's clima blisher. nley, S.M., 2008 Earth System His nfield, D.E. & Konhauser, K.O., 20 Course Outcome nderstand the paleo-	tion to Earth S te: past and story D12 Fundamen Cognitive Level*	Science, World future. Edition ntals of Geobio Knowledge	Press Private 2, Freeman logy Blackwell Evaluation
nal Das Gupta (2006). An introduct nited, Kolkata. diman, W.F., 2001. Earth's clima blisher. nley, S.M., 2008 Earth System His nfield, D.E. & Konhauser, K.O., 20 Course Outcome nderstand the paleo-	te: past and story D12 Fundamer Cognitive Level *	future. Edition ntals of Geobio Knowledge	2, Freeman logy Blackwell Evaluation
nited, Kolkata. diman, W.F., 2001. Earth's clima blisher. nley, S.M., 2008 Earth System His nfield, D.E. & Konhauser, K.O., 20 Course Outcome nderstand the paleo-	te: past and story D12 Fundamer Cognitive Level *	future. Edition ntals of Geobio Knowledge	2, Freeman logy Blackwell Evaluation
diman, W.F., 2001. Earth's clima blisher. nley, S.M., 2008 Earth System His nfield, D.E. & Konhauser, K.O., 20 Course Outcome nderstand the paleo-	story 012 Fundamer Cognitive Level *	ntals of Geobio Knowledge	logy Blackwell Evaluation
blisher. Inley, S.M., 2008 Earth System His Infield, D.E. & Konhauser, K.O., 20 Course Outcome Inderstand the paleo-	story 012 Fundamer Cognitive Level *	ntals of Geobio Knowledge	logy Blackwell Evaluation
nfield, D.E. & Konhauser, K.O., 20 Course Outcome nderstand the paleo-	012 Fundamen Cognitive Level*	Knowledge	Evaluation
Course Outcome	Cognitive Level*	Knowledge	Evaluation
nderstand the paleo-	Level*		
1	II & F		
avironmental conditions and ajor life events in the earth story	UQL	F &C	Assignment & final exam
nderstand and explain the cosystem and biogeographic rocess through geologic time ith emphasis on evolution and stribution of flora and fauna	U & E	F &C	Quiz, Assignment & final exam
escribe and analysis the major uses of development and attinction of organism; explain the athropocene Ecosystems and imate changes.	U, E, &A	F, C &P	Assignment & final exam
	nderstand and explain the osystem and biogeographic ocess through geologic time th emphasis on evolution and stribution of flora and fauna escribe and analysis the major uses of development and tinction of organism; explain the thropocene Ecosystems and mate changes.	Inderstand and explain the osystem and biogeographic ocess through geologic time th emphasis on evolution and stribution of flora and faunaU & Eescribe and analysis the major uses of development and tinction of organism; explain the thropocene Ecosystems and mate changes.U, E, & A	Inderstand and explain the osystem and biogeographic ocess through geologic time th emphasis on evolution and stribution of flora and faunaU & EF &CExercise and analysis the major uses of development and tinction of organism; explain the thropocene Ecosystems andU, E, &AF, C &P

			Марр	ing of CO	Ds v	vith PSOs a	nd PO			
]	PSO1	PSO2	PSO	3	PSO4	PSO5		PO	
CO 1		3		2			1		2	
CO 2		3		3			2		2	
CO 3		1		1	1		3		3	
Leve	el	-		1	2				3	
Correla	tion	Nil	Slight	ly/Low	Low Moderate / Medium			S	ubstantial/ High	
			Ma	pping of	^E CC	s to Assess	ment Rubr	ics		
	Assi	gnment	Semina	r End	Sen	nester Exan	ninations		Internal Examina	ations
CO 1		\checkmark	\checkmark		\checkmark				\checkmark	
CO 2		\checkmark	\checkmark		\checkmark				\checkmark	
CO3		\checkmark	\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology		Discipline Specific Core - DSC					
Course Code and Title	UK7DSCG	LY470	Planetary Science					
Semester	7	,	Academic Level: 400 - 499					
Course Details	Credit	Lecture per week		Practical per week	Total Hours/Week			
	4	3 hours	-	2 hours	5			

Content	Hrs
Module I- The expanding Universe	15
Universe, Big Bang theory, Milky Way, solar system, sun. Astronomical units.	
Dimensions and relative positions of Inner planets, Outer planets, planetoids,	
moons. Asteroid belts. Layers and processes in Sun.	
Module II- Into the cosmos	15
Origin of chemical elements- primordial and stellar nucleosynthesis, abundance of	
elements in cosmos. Evolution of star.	
Module III- The Mars, Moon and Meteorites	16
Mars and its interior; The Martian atmosphere and hydrosphere. The	
characteristics of Moon and its interior Composition and classification of	
meteorites. Cratering dynamics- and classification. Major impact craters in India.	
Module IV- Practical	14
Interpretation of planetary imageries and ariel photos. Calculations related to	
luminescence of stars and elemental origin.	
Module V- Teacher Specific content	10
Teacher Specific content related to Planetary Science	
Reference	
1. Cook, AH, 1973, Physics of Earth and planets. London: Macmillian	
2. Kaula, WM, 1996, Theory of satellite geodesy. Blaisedell	
3. Beatty, J., Petersen C. and Chaikin, A., 1999, The New Solar System,	
CambridgeUniversity Press, Cambridge, England.	
4. Lodders K. and Fegley, B., 1998, The Planetary Scientist's Companion, Oxfo	ord
UniversityPress, New York, 1998	
5. Morrison, D., 1993, Exploring Planetary Worlds, Scientific American	
Library, New York.	
6. Ahrens, T. (ed.), 1995, Global Earth Physics - A Handbook of Physical	
Constants, American Geophysical Union, Washington, D.C.7. Pamela Clark, 2007, Dynamic Planet: Mercury in the Context of its	
	, Svlla

ſ	Environment, Springer, New York.				
	8. Cattermole, P., 1994, Venus, The Geological Story, Johns Hopkins				
	University Press, Baltimore.				
	9. Wilhelms, D., 1993, To a Rocky Moon - A Geologist's				
	History of Lunar Exploration, University of Arizona Press,				
	Tucson.				
	10. Cattermole, P., 1993, Mars - The Story of the Red Planet,				
	Chapman and Hall, London.				
	11. Mutch, T., Arvidson, R., Head, J., Jones, K., and Saunders, R.,				
	1976, The Geology of Mars, Princeton University Press,				
	Princeton.				
	12. Rogers, J., 1995, The Giant Planet Jupiter, Cambridge				
	University Press, Cambridge, England.				
	13. Hunt G., and Moore, P., 1982, Saturn, Rand McNally, New York.				
	14. Miner, E., 1998, Uranus - The Planet, Rings, and Satellites, Wiley, New York.				
	15. Miner, E. and Wessen, R., 2002, Neptune - The Planet,				
	Rings, and Satellites, Praxis, Chichester, England.				
	16. White, A., 1980, The Planet Pluto, Pergamon, New York.				
	17. Davies, J., 2001, Beyond Pluto - Exploring the Outer Limits of the				
	Solar System, Cambridge University Press, Cambridge, England.				
	18. www.pdsa.jpl.nasa.gov//planets				
	19. Planetary Geomorphology by Ronald Greely				
20. Planetary Surface Processes by J. H. Melosh					
	21. Planetary tectonics by T. R. Watters and R. A. Schultz				
	22. Asteroids by T. H. Burbine				
	23. Introduction to Planetary Science by G. Faure and T.M. Mensing				

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used	
CO1	Understand Universe and its various components.	U	F	Assignment & final exam	
CO2	Formulate an idea about Mars, Moon, meteorites and impact craters	С	F, C	Quiz, Assignment& final exam	
CO3	Evaluate the satellite imageries and ariel photos	An	Р	Assignment & final exam	
* - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive					

			Мар	ping	of CO	s with	PSOs a	nd PO			
	F	PSO1	PSO2		PSO3	SO3 PSO4 PSO5		PO			
CO 1		3								2	
CO 2		3								3	
CO 3							2		3		
Level -			1		2				3		
Correla	tion	Nil	Slig	Slightly/Low			ow Moderate / Medium S			ubstantial/ High	
			N	lappi	ing of	COs to	Assess	ment Rubr	ics		
	Assi	gnment	Semir	nar	End S	emest	er Exan	ninations		Internal Examination	ations
CO 1		\checkmark			\checkmark				\checkmark		
CO 2			\checkmark		\checkmark				\checkmark		
CO3					\checkmark					\checkmark	

Discipline and Type of Course	Geology		Discipline Specific Core - DSC						
Course Code and Title	UK7DSCGLY471			Advanced Remote Sensing and GIS					
Semester	7		Academic Level: 400 - 499						
Course Details	Credit	Lecture per week		Tutorial per week		Practical per week	Total Hours/Week		
	4	3 hours		-		2 hours	5		

Content	Hrs.
Module I- Basic concepts of remote sensing	15
Concept of remote sensing -Types and platforms of remote sensing. Energy sources and radiation principles. Electromagnetic radiation- EMR spectrum. Energy interaction with atmosphere and earth surface. Satellite remote sensing-basic principles. LANDSAT, SPOT. Indian remote sensing satellites. Thermal, Multi-spectral and Hyper-spectral remote sensing. Microwave remote sensing-Radar, SLAR system, SRTM, LIDAR	
Module II- Aerial photography	15
Basic principles and geometrical characteristics of aerial photographs. Types of aerial photographs- vertical/oblique/high oblique. Aerial mosaics. Flight plan of aerial photography. Photogrammetry – analogue and digital photogrammetry. Terminologies associated with photogrammetry- Scale, Relief displacement, Vertical exaggeration and Stereoscopic Image parallax – a brief description. Stereoscopic vision – Stereoscopes – types - pocket and mirror stereoscopes. Tilt, drift and crab in aerial photographs.	

Module III- Fundamentals of GIS	16
Basic concepts. Components of GIS- hardware and software. Projections,	
geographic and Cartesian co-ordinates; Georeferencing. Datum transformation; GIS	
data structures- Raster and Vector, DEM; GIS softwares- open source and	
commercial softwares.	
Data Analysis – Measurements in GIS – Queries – Reclassification – Buffering –	
Brief idea of Data integration, map overlay, spatial interpolation, analysis of	
surfaces, network analysis - Applications of GIS in geology, urban planning,	
hydrology, forestry and agriculture – The future of GIS – Current Issues and trends	
Module IV- Practical	14
Interpretation of satellite imageries. Interpretation of aerial photos with special	
references to topography, drainage, structure and geology. Simple calculations	
based on aerial photos- determination of photo scale, total number of photos	
required to cover a given area, height of objects and relief displacement from aerial	
photographs Identification and mapping of drainage patterns, lineaments, litho	
contacts and geological structures. Hypsometric analysis. Data inputs to GIS	
software. Georeferencing, digitization and digital cartography. Determination of	
slope and slope map preparation. Identification of lineaments and preparation of	
lineament maps.	
Module V- Teacher Specific content	10
Teacher Specific content related TO Advanced RS& GIS	
Reference	
1. Jensen, J R, Remote Sensing of the Environment An Earth Resource Perspective Pearson education, Inc 2000.	ve,
 Liiesand, Thomas M., Ralph W. Kiefer, Remotes sensing and image 	
interpretation, Third Edn, John Wiley and sons, 1994.	
 Ravi P. Gupta, Remote sensing geology, Second Edn, Springer (India), Pvt Ltd 2008. 	l.,
 Nayar, N.B., Encyclopedia of surveying, mapping and remote sensing, Rawat Publications, India, 1996. 	
 George Joseph, 2005, Fundamentals of Remote sensing, 2nd Edn, Uni. Press (India) Pvt. Ltd. 	
6. Demers, M.N. (1997). Fundamentals of Geographic Information System, John	
 Wiley and sons. Inc. 7. Hoffmann-Wellenhof, B., Lichtenegger, H. and Collins, J. (2001). GPS: Theor and Practice, Springer Wien, New York. 	У

8. Jensen, J.R. (1996). Introductory Digital Image Processing: A Remote Sensing

- 9. Lillesand, T. M. and Kiefer, R.W. (2007). Remote Sensing and Image Interpretation. Wiley.
- 10. Richards, J.A. and Jia, X. (1999). Remote Sensing Digital Image Analysis. Springer-Verlag.
- 11. Lillesand T. M. and Keifer R. W. Remote sensing and Image interpretation. John Wiley and Sons, 1979.
- Estors J. E. and Senger L. W. Remote Sensing. Hamilton Publishing Company, 1974. Seigal B. S. and Gillespie A. R. Remote sensing in Geology, John Wiley & Sons, 1980. Gupta R. P. Remote Sensing Geology. Springer, 2003.
- 13. Chandra A. M and Ghosh S. K. Remote Sensing and Geographical Information Systems. Narosa Publishing House, 2007.
- 14. Reddy A. M. Text book of Remote Sensing and Geographical Information Systems. BS Publications, 2006.
- 15. Rees W. G. Physical principles of Remote Sensing. Cambridge University Press, 2001.
- 16. Bernhardsen T. Geographic Information Systems An introduction. Wiley India, 2002.
- 17. Lo C. P. and Yeung A. K. W. Concepts and Techniques of Geographic Information Systems Prentice Hall 2002.
- 18. Heywood I., Cornelius. S. and Carver S. An Introduction to Geographical Information Systems, Longman Limited
- 19. Bonham, G. F and Carter. Geographic Information system for Geoscientists-Modelling with GIS, Elsevier.
- 20. Sabbins F. F. Remote Sensing Principles and Applications. Freeman, 1985.
- 21. Panda, B. C. Remote Sensing Principles and Applications. Viva Books Private Limited, New Delhi, 2005.
- 22. George Joseph. Fundamentals of Remote Sensing. Universities Press, Hyderabad. 2003 Pandey,
- 23. S. N. Principles and Applications of Photogeology. New Age International (P) Limited Publishers, New Delhi, 2001.

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Recognize various concepts and components of Remote sensing, Aereal Photographs and GIS.	U	F, C, P	Assignment & final exam							
CO2	Analyze data interpretation techniques in GIS.	An	C,P	Quiz, Assignment& final exam							
CO3	create a clear-cut understanding on the various aspects and methods of Geomatics and also its applications in delineating the geomorphological characteristics.	С	Р	Assignment & final exam							
	 * - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive 										

				Mappi	ng of CC	Ds w	ith PSOs a	nd PO			
	I	PSO1	F	PSO2	PSO3		03 PSO4 PSO5		PO		
CO 1								3		3	
CO 2								3		3	
CO 3							2		3		
Level -			1		2			3			
Correla	tion	Nil		Slightly/Low			foderate /]	Medium	S	ubstantial/ High	
				Map	ping of	COs	s to Assess	ment Rubr	ics		
	Assi	gnment	0,	Seminar	EndS	Sem	ester Exan	ninations		Internal Examination	ations
CO 1		\checkmark				\checkmark					
CO 2				\checkmark		\checkmark				\checkmark	
CO3							\checkmark	\checkmark			

Discipline and Type of Course	Geology	Discipline Specific Core - DSC							
Course Code and Title	UK7DSCGLY472		Indian Fuel Resources and Mining Policies						
Semester	7		Academic Level: 400 - 499						
Course Details	Credit	_	cture week	Tutorial per week	Practical per week	Total Hours/Week			
	4	3 h	nours	-	2 hours	5			

Content	Hrs.
Module I- Coal Geology	15
Coal- Origin of Coal, Coalification process, in situ and transported theory of coal	
formation. Microscopic and Megascopic constituents of Coal. Classification of	
coal - Peat, lignite, bituminous and anthracite coal. Spatial and temporal	
distribution of coal in India – Gondwana and Tertiary coal. Essential, Strategic and	
critical minerals in India. National Mineral Policy.	
Module II -Petroleum geology	16
Introduction – Chemical and physical properties of petroleum. Origin of	
petroleum- Organic and Inorganic concepts. Kerogen and its types. Migration,	
accumulation and entrapment of petroleum. Source and Reservoir rocks.	
Characteristics of reservoirs. Types of reservoir traps - Classification of traps-	
Stractural, Diapiric, Stratigraphic, Hydromorphic traps and Combination traps.	

	le III - Nuclear Fuels	15
Atomi	c Minerals in India. Carbonate hosted and sandstone type uranium deposits.	
Major	Uranium deposits in India. Beach Placers in India.	
Modu	le IV- Practical	14
Simple	e calculation of reservoir parameters, Coal reserve estimation.	
	le V- Teacher specific content	10
Tea	cher specific content related to Indian Fuel Resources and Mining Policies	
Refere	ence	1
1.	John M Hunt Petroleum Geochemistry and Geology, W H Freeman and Company, 1996.	
2.	Leverson, A.I, Geology of Petroleum, 2nd Edn, CBS Publishers and distributors, NewDelhi.	
3.	North, F.K., Petroleum geology, Unwin Hyman Inc, USA, 1990.	
4.		nc.
5.	Jon Gluyas & Richard Swarbrick, Petroleum Geoscience, Blackwell Science publishing LtdUK 2004.	
6.	Knut Bjorlykke, Petroleum Geoscience- From Sedimentary to Rock Phys Springer Heidelberg Dordrecht, London, New York 2010.	ics,
7.	Stach, E., (eds.), 1975, Stach's Textbook of Coal Petrology, Gebruder Borntraeger, Berlin	
8.	Thomas, L., 2012, Coal Geology, Wiley India Pvt Ltd, Delhi. Thomas L. (20 Coal Geology: Second Edition, John Wiley & Sons, Ltd.	13)
9.	Press	ic
	. Bjorlykke, K. (1989). Sedimentology and petroleum geology. Springer- Verlag.	
11	Bastia, R., and Radhakrishna, M. (2012). Basin evolution and petroleum prospectively of the continental margins ofIndia (Vol. 59). Newness.	
	. Howard L Hartman, Jan M. Mutmansky, Introductory Mining Engineering, John Wiley and Sons Inc 2002.	
13	Barry A. Wills, Tim Napier-Munn. Mineral Processing Technology, An Introduction to the Practical Aspects of Ore Treatment and Mineral	
1 /	Recovery, Elsevier Science & Technology Books R M Umathy, Taxt book of Mining geology, Dattsons 2002	
	. R.M Umathy, Text book of Mining geology, Dattsons 2002. . Gaudin, A.M. Principles of Mineral Dressing, McGraw Hill, 1938.	
	. Taggart, A.P. Handbook of Mineral Dressing, Willey.	
	Petters, W.C. Exploration and Mining Geology. John Wiley.	
	. Reedman, JH Techniques in Mineral Exploration, Allied Scientific Publisher	

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used						
CO1	Differentiate coal and petroleum based on origin, types, and properties and their distribution in India.	An	C, F	Assignment & final exam						
CO2	Detailed study of Strategic, Critical, Atomic Minerals, minerals of India and National Mineral Policy.	An	С	Quiz, Assignment& final exam						
CO3	Apply the knowledge of properties of coal to identify and classify various type of Coals.	Ар	F, P	Assignment & final exam						
	 * - R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create # - F-Factual, C- Conceptual, P-Procedural, M-Metacognitive 									

			N	1appir	ng of CC)s v	vith PSOs a	nd PO			
	I	PSO1	PSC	02	PSO3	3	PSO4	PSO5		РО	
CO 1						3			3		
CO 2										3	
CO 3								2		3	
Leve	Level -			1	-	2				3	
Correla	tion	Nil	S	Slightly/Low			Moderate /	Medium	S	ubstantial/ High	
				Мар	ping of	CO	s to Assess	ment Rubr	ics		
	Assi	gnment	Sei	minar	End S	End Semester Examinations				Internal Examination	ations
CO 1				\checkmark		\checkmark				\checkmark	
CO 2		\checkmark				\checkmark				\checkmark	
CO3						\checkmark				\checkmark	

Discipline and Type of Course	Geology		Dis	cipline Specif	ic Elective - 1	DSE
Course Code and Title	UK7DSE	GLY400	Re	search Metho	odology in G	eosciences
Semester	7	7	Aca	ademic Level:	400 - 499	
Course Details	Credit	Lecture per week		Tutorial Per week	Practical per week	Total Hours/Week
	4	3 hours		-	2 hours	5

Content	Hrs.
Module-1-	15
Research Methods -An Introduction-Research Methodology -overview-Types of research in Earth Science-Literature review and its importance in problem formulation-Identification of research gaps and question formulation.	
Research Design and Sampling Techniques in Earth Science. Data collection- Fieldwork and laboratory techniques. Instrumentations in Earth Science research.	
Module II	15
Statistical Analysis for Earth Scientists - Basic statistical concepts. Concept and Application of statistical tests in Earth Science. Spatial data analysis in GIS-Data Visualization Techniques - Graphical and spatial representation of data. Qualitative data analysis, Data interpretation and drawing conclusions, Effective communication of results.	
Brief study about important software used in geosciences-Arc GIS, QGIS, Rocks works, GeoStudio. Emerging techniques in earth science-AI and machine learning.	
Module III	16
Research paper writing and presentation, Scientific design, writing and presentation of geoscience data. Understanding the peer review and publication process for successful publication. Importance of Ethics in Earth Science research.	
Module IV -Practical	14
Interpretation of Geoscientific data (Mineralogical, hydrological, geo-chemical and geo-physical data)	
Module V	10
Teacher Specific related to course Research Methodology in Geosciences	10
Reference	
 Christian Tiberius, Hans van der Marel, René Reudink & Freek van I (2021) Surveying and Mapping. Publisher: TU Delft OPENTU Open Textbook Delft University of Technology — The Netherlands. ISBN (e-book): 978-94-6366-4 DOI: ttps://doi.org/10.5074/T.2021.007. Gautam, N.C. (2004) Development of Research tools, Shree Publishers, Delhi Gupta Santosh (2005) Research Methodology and Statistical Techniques, Deep and Deep Publications. Kothari C R, Research Methodology (Methods and Techniques) 	Delft 489-9.
New Age Publications.	
New Age Publications.6. Panneerselvam, R., Research Methodology, Prentice Hall of India, New De7. Sharon Lohr, "Sampling: Design and Analysis" Duxbury Press	elhi.

(Eds) Apple Academic Press. ISBN 9781774631874

- 9. Geographic Information Systems and Science, Longley, Goodchild, Rhind, Wiley & Sons
- 10. The Design and Analysis of Spatial Data Structures by Hanan Samet, Addison Wesley
- 11. Spatial Databases- A Tour by Shekhar Chawla, Upper Saddle River, NJ, USA, PrenticeHall.
- 12. Statistics and data analysis in geology by Davis.
- 13. An introduction to statistical model in geology by W.C.Krumbein and F.A. Graybill.
- 14. Statistical analysis in geological sciences by Miller and Khan.
- 15. Research Methodology C.R.Kothari

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand research methodology, sampling, data collection and instrumentation.	R,U	F,C	Assignment, Final Exam
CO2	Create awareness about statistical methods, software, data analysis and interpretation in geosciences including usage of AI and machine learning.	,	F,C	Assignment, Final Exam
CO3	Understand research paper writing procedure, effective communication and publishing the paper in journals	Ap,An	C,P	Assignment, Final Exam
CO4	Analyse the geoscientific data	An	Р	Quiz, Final exam
	emember, U-Understand, Ap-Apply, An-Analys actual, C- Conceptual, P-Procedural, M-Metaco		C-Create	

				Mappi	ng of CC	Ds v	vith PSOs a	nd PO			
]	PSO1]	PSO2	PSO3	3	PSO4	PSO5		PO	
CO 1				2				2		2	
CO 2								3		3	
CO 3								3		3	
CO4								3		3	
Leve	el	-		1	1		2			3	
Correla	tion	Nil		Slightl	y/Low	ľ	Moderate /	Medium	S	ubstantial/ High	
				Maj	oping of	[:] Co	s to Assess	ment Rubri	CS		
	Assi	gnment		Seminar	End S	Sen	nester Exan	ninations		Internal Examin	ations
CO 1		\checkmark					\checkmark			\checkmark	
CO 2		\checkmark					\checkmark			\checkmark	
CO3		\checkmark					\checkmark			\checkmark	
CO4				\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology		Dis	cipline	e Specific Elec	tive - DSE
Course Code and Title	UK7DSEG	GLY420		neral v ategies		ia and Mining
Semester		7		Acad	emic Level: 4	00 - 499
Course Details	Credit	Lecture per week		orial week	Practical per week	Total Hours/Week
	4	2 hours		-	2	4

Content	Hrs.
Module I- Mineral as a resource	12
Definition of minerals. Basic concepts of Ores, gangue minerals, tenor, grade, Assay	
value and Clark value, resources, reserves. Basic fuel minerals. Strategic and critical	
minerals of India	
Module II- Distribution	12
Mode of occurrence, geographic location in India and geology of the following	
mineral deposits. Iron – Kudremukh, Karnataka, Lead and Zinc – Zawar, Rajasthan,	
Gold – Kolar, Karnataka, Mica – Nellore, Andhra Pradesh, Manganese – Chindwara,	
Madhya Pradesh, Copper – Khetri, Rajasthan, Aluminium – Koraput, Orissa, Lignite	
– Neyveli, Tamilnadu, Coal – Bokaro, Jharkhand, Petroleum – Naharkotiya, Assam	
and Bombay.	

Module III - Ore Mining methods	12
Ore Mining and Beneficiation Surface Mining Methods - Strip mining, Open-pi	ţ
mining, Auger mining, Mountaintop removal mining. Underground Mining	5
Methods- Room-and-pillar mining, Longwall mining, Retreat mining, Blast mining	5
and Horizon mining.	
Seabed mining – Marine mining equipment's and methods – General ideas.	
Module IV- Ore Mining and beneficiation	12
Ore Mining and Beneficiation Surface Mining Methods - Strip mining, Open-pi	t
mining, Auger mining, Mountaintop removal mining. Underground Mining	5
Methods- Room-and-pillar mining, Longwall mining, Retreat mining, Blast mining	5
and Horizon mining. Seabed mining - Marine mining equipment's and methods	-
General ideas. Types and uses of Crushers, Grinding mills, Screens and Classifiers	
Physical methods of separation by grain size, gravity, and magnetism. Chemical	
methods – reagents and their functions. Floatation. Flowsheets and its importance.	
Module V- Teacher Specific	6
Teacher Specific related to Mineral wealth of India and Mining Strategies	
Reference 1. Anthony M. Evans (1980). An introduction to Ore Geology, second edition]]],
Reference 1. Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS.]]
 Reference 1. Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS. 2. Park and MacDiarmid (1964). Ore Deposits, Freeman. 3. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distribution 	
 Reference 1. Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS. 2. Park and MacDiarmid (1964). Ore Deposits, Freeman. 3. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distributio processing, Tata-McGraw Hill, New Delhi. 	
 Reference Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS. Park and MacDiarmid (1964). Ore Deposits, Freeman. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distributio processing, Tata-McGraw Hill, New Delhi. Wadia, D.N. (1994) Minerals of India, National Book Trust, India, 5th edition Gokhale, K. V. G. K. and Rao, T.C. (1978) Ore Deposits of India. Thomse 	n and
 Reference Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS. Park and MacDiarmid (1964). Ore Deposits, Freeman. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distributio processing, Tata-McGraw Hill, New Delhi. Wadia, D.N. (1994) Minerals of India, National Book Trust, India, 5th edition Gokhale, K. V. G. K. and Rao, T.C. (1978) Ore Deposits of India. Thomse (India). 	n and
 Reference Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS. Park and MacDiarmid (1964). Ore Deposits, Freeman. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distributio processing, Tata-McGraw Hill, New Delhi. Wadia, D.N. (1994) Minerals of India, National Book Trust, India, 5th edition Gokhale, K. V. G. K. and Rao, T.C. (1978) Ore Deposits of India. Thomse 	n and on Press
 Reference Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS. Park and MacDiarmid (1964). Ore Deposits, Freeman. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distributio processing, Tata-McGraw Hill, New Delhi. Wadia, D.N. (1994) Minerals of India, National Book Trust, India, 5th edition Gokhale, K. V. G. K. and Rao, T.C. (1978) Ore Deposits of India. Thomse (India). Krishnaswamy, S. (1988) Indian Mineral Resources. South Asia Books. 	n and on Press
 Reference Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS. Park and MacDiarmid (1964). Ore Deposits, Freeman. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distribution processing, Tata-McGraw Hill, New Delhi. Wadia, D.N. (1994) Minerals of India, National Book Trust, India, 5th edition Gokhale, K. V. G. K. and Rao, T.C. (1978) Ore Deposits of India. Thomse (India). Krishnaswamy, S. (1988) Indian Mineral Resources. South Asia Books. Mead L. Jensen and Alan M. Bateman (1981). Economic Mineral Deposits, Job 	n and on Press nn
 Reference Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS. Park and MacDiarmid (1964). Ore Deposits, Freeman. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distributio processing, Tata-McGraw Hill, New Delhi. Wadia, D.N. (1994) Minerals of India, National Book Trust, India, 5th edition Gokhale, K. V. G. K. and Rao, T.C. (1978) Ore Deposits of India. Thomse (India). Krishnaswamy, S. (1988) Indian Mineral Resources. South Asia Books. Mead L. Jensen and Alan M. Bateman (1981). Economic Mineral Deposits, Jow Wiley & Sons Third edition, revised printing. Howard L Hartman, Jan M. Mutmansky, Introductory Mining Engineerin Wiley, andSons Inc 2002. Barry A. Wills, Tim Napier-Munn. Mineral Processing Technology, An Introductory Kelsevier Sciet 	n and on Press in ig, John iction
 Reference Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS. Park and MacDiarmid (1964). Ore Deposits, Freeman. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distributio processing, Tata-McGraw Hill, New Delhi. Wadia, D.N. (1994) Minerals of India, National Book Trust, India, 5th edition Gokhale, K. V. G. K. and Rao, T.C. (1978) Ore Deposits of India. Thomso (India). Krishnaswamy, S. (1988) Indian Mineral Resources. South Asia Books. Mead L. Jensen and Alan M. Bateman (1981). Economic Mineral Deposits, Joi Wiley & Sons Third edition, revised printing. Howard L Hartman, Jan M. Mutmansky, Introductory Mining Engineerin Wiley, andSons Inc 2002. Barry A. Wills, Tim Napier-Munn. Mineral Processing Technology, An Introduction of the second se	n and on Press in ig, John iction
 Reference Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS. Park and MacDiarmid (1964). Ore Deposits, Freeman. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distributio processing, Tata-McGraw Hill, New Delhi. Wadia, D.N. (1994) Minerals of India, National Book Trust, India, 5th edition Gokhale, K. V. G. K. and Rao, T.C. (1978) Ore Deposits of India. Thomse (India). Krishnaswamy, S. (1988) Indian Mineral Resources. South Asia Books. Mead L. Jensen and Alan M. Bateman (1981). Economic Mineral Deposits, Joi Wiley & Sons Third edition, revised printing. Howard L Hartman, Jan M. Mutmansky, Introductory Mining Engineerin Wiley, andSons Inc 2002. Barry A. Wills, Tim Napier-Munn. Mineral Processing Technology, An Introd to the Practical Aspects of Ore Treatment and Mineral Recovery, Elsevier Scie Technology Books 	n and on Press in ig, John iction
 Reference Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS. Park and MacDiarmid (1964). Ore Deposits, Freeman. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distributio processing, Tata-McGraw Hill, New Delhi. Wadia, D.N. (1994) Minerals of India, National Book Trust, India, 5th edition Gokhale, K. V. G. K. and Rao, T.C. (1978) Ore Deposits of India. Thoms (India). Krishnaswamy, S. (1988) Indian Mineral Resources. South Asia Books. Mead L. Jensen and Alan M. Bateman (1981). Economic Mineral Deposits, Jo Wiley & Sons Third edition, revised printing. Howard L Hartman, Jan M. Mutmansky, Introductory Mining Engineerin Wiley, andSons Inc 2002. Barry A. Wills, Tim Napier-Munn. Mineral Processing Technology, An Introd to the Practical Aspects of Ore Treatment and Mineral Recovery, Elsevier Scie Technology Books R.M Umathy, Text book of Mining geology, Datt sons 2002. Gaudin, A.M. Principles of Mineral Dressing, McGraw Hill, 1938. Taggart, A.P. Handbook of Mineral Dressing, Willey. 	n and on Press in ig, John iction
 Reference Anthony M. Evans (1980). An introduction to Ore Geology, second editio ELBS. Park and MacDiarmid (1964). Ore Deposits, Freeman. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distributio processing, Tata-McGraw Hill, New Delhi. Wadia, D.N. (1994) Minerals of India, National Book Trust, India, 5th edition Gokhale, K. V. G. K. and Rao, T.C. (1978) Ore Deposits of India. Thoms (India). Krishnaswamy, S. (1988) Indian Mineral Resources. South Asia Books. Mead L. Jensen and Alan M. Bateman (1981). Economic Mineral Deposits, Jow Wiley & Sons Third edition, revised printing. Howard L Hartman, Jan M. Mutmansky, Introductory Mining Engineerin Wiley, andSons Inc 2002. Barry A. Wills, Tim Napier-Munn. Mineral Processing Technology, An Introd to the Practical Aspects of Ore Treatment and Mineral Recovery, Elsevier Scie Technology Books R.M Umathy, Text book of Mining geology, Datt sons 2002. Gaudin, A.M. Principles of Mineral Dressing, McGraw Hill, 1938. 	n and on Press in ig, John iction

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyze concepts of resource minerals.	An	C, F	Assignment, Final Exam
CO2	Understand spatial distribution and mode of occurrence of some important Ore deposits in India.	U	С	Assignment, Final Exam
CO3	Formulate an Idea in Ore beneficiation and mining methods in different conditions.	С	F	Assignment, Final Exam
* - R-R (emember, U-Understand, Ap-Apply, An-Analy	se, E-Evaluate,	C-Create	
# - F-Fa	actual, C- Conceptual, P-Procedural, M-Metaco	ognitive		

				Маррі	ng of CC	Ds v	vith PSOs a	nd PO			
	I	PSO1	I	PSO2	PSO	3	PSO4	PSO5		PO	
CO 1							3			3	
CO 2							3			3	
CO 3							2	1		3	
Leve	el	-		1			2			3	
Correla	tion	Nil		Slightl	y/Low	1	Moderate /	Medium	S	ubstantial/ High	
				Мар	ping of	F Co	s to Assess	ment Rubri	ics		
	Assi	gnment		Seminar	End	Sen	nester Exan	ninations		Internal Examination	ations
CO 1				\checkmark			\checkmark			\checkmark	
CO 2		\checkmark					\checkmark				
CO3							\checkmark			\checkmark	

5.7 COURSES IN GEOLOGY: Semester 8

Discipline and Type of Course	Geology			Di	scipline Speci	fic Core - DSC
Course Code and Title	UK8DSCG	LY420		A	lvance Petrol	ogy
Semester		8		Ac	ademic Level	: 400 - 499
Course Details	Credit	Lecture per week	Tutoria per wee		Practical per week	Total Hours/Week
	4	4 hours	-			4

Content	Hrs.
Module I: Igneous petrology	20
Elementary thermodynamics – Gibbs free energy, entropy, Phase rule in igneous	
petrology. three component systems: Ternary eutectic system- Di-An-Fo system,	
Ternary system with solid solution- Di-An-Ab system, Ternary peritectic system-	
Fo-Qtz-Di system, Ternary system with solvus- Ab-Or-Qtz system. Magma	
formation – Crustal and mantle melting- Fractional melting, partial melting, batch	
and Rayleigh melting. Magma generation in relation to tectonic setting- Mid ocean	
ridge volcanism, subduction related volcanism (Island arc and continental arc	
volcanism), Oceanic intraplate volcanism and continental flood basalts. Large	
Igneous Provinces and mantle plumes.	
Module II: Sedimentary Petrology	20
Mineral stability and mineralogical maturity of sedimentary rock. Provenance	
analysis using minerals and elemental ratios as proxy. Sedimentary facies and	
environments, Concept of Facies models. Sedimentary Basin analysis - purpose	
and scope. Sedimentary basins - classification and definition. Detailed study of	
facies Continental environment- Fluvial, alluvial fan, sabkha environment,	
lacustrine, Transitional environment include deltaic, estuarine, beach, barrier	
island and lagoonal, tidal flat environment, Marine – Deep Sea facies. Carbonate	
depositional environment. Bouma Sequence.	
	l

	20
Application of phase rule in metamorphic mineral paragenesis. Equilibrium	
hermodynamics in metamorphic petrology, Clasius – Clapeyron equation,	
buffering, Schreinemaker's rule and bundle. Chemo graphic diagrams – principles	
of ACF, A'KF and Thompson's AFM diagrams. metamorphic zone concept –	
sograd and reaction isograd, metamorphic facies concept and facies series,	
Winkler's grade concept, Miyashiro's paired metamorphic belts and baric types	
metamorphism, P-T-t paths – isobaric cooling (IBC) and isothermal	
decompression (ITD) paths. Prograde and retrograde metamorphism,	
thermobarometry. Regional metamorphism of carbonate, pelitic and mafic rocks-	
Reactions and Paragenesis. Thermal metamorphism of carbonate rocks. Basic	
ideas of Geothermobarometry. Becke's Crystalloblastic series. Retrograde	
metamorphism. Metasomatism and metasomatic zonation, metamorphic	
differentiation	
Module IV: Teacher specific content	10
Teacher specific content related to petrology	
Reference	
	972
 Reference Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 	
1. Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19	
 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton 	
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. 	
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 	
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 Pettijohn, Potter and Siever: Sand and Sandstone , Springer Verlag, 1972. 	
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 Pettijohn, Potter and Siever: Sand and Sandstone , Springer Verlag, 1972. Pickering, Hiscott and Hedn: Deep Marine Environments – Clastic Sedimentation and Tectonics, Unwin and Hyman, 1989. 	
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 Pettijohn, Potter and Siever: Sand and Sandstone , Springer Verlag, 1972. Pickering, Hiscott and Hedn: Deep Marine Environments – Clastic Sedimentation and Tectonics, Unwin and Hyman, 1989. Selley: Ancient Sedimentary Environments, Corwell University Press, 1972. 	971.
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 Pettijohn, Potter and Siever: Sand and Sandstone , Springer Verlag, 1972. Pickering, Hiscott and Hedn: Deep Marine Environments – Clastic Sedimentation and Tectonics, Unwin and Hyman, 1989. Selley: Ancient Sedimentary Environments, Corwell University Press, 1972. Gary Nichols: Sedimentology and Stratigraphy (Second Edn.), Wiley Blackw 	971.
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 Pettijohn, Potter and Siever: Sand and Sandstone , Springer Verlag, 1972. Pickering, Hiscott and Hedn: Deep Marine Environments – Clastic Sedimentation and Tectonics, Unwin and Hyman, 1989. Selley: Ancient Sedimentary Environments, Corwell University Press, 1972. 	971. ell,
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 Pettijohn, Potter and Siever: Sand and Sandstone , Springer Verlag, 1972. Pickering, Hiscott and Hedn: Deep Marine Environments – Clastic Sedimentation and Tectonics, Unwin and Hyman, 1989. Selley: Ancient Sedimentary Environments, Corwell University Press, 1972. Gary Nichols: Sedimentology and Stratigraphy (Second Edn.) ,Wiley Blackw 2009 Prothero and Schwab: Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy, Freeman and Company, New York, 1996. 	ell,
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co., 1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 Pettijohn, Potter and Siever: Sand and Sandstone , Springer Verlag, 1972. Pickering, Hiscott and Hedn: Deep Marine Environments – Clastic Sedimentation and Tectonics, Unwin and Hyman, 1989. Selley: Ancient Sedimentology and Stratigraphy (Second Edn.) ,Wiley Blackw 2009 Prothero and Schwab: Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy, Freeman and Company, New York, 1996. Boggs, S. Jr., 2010, Principles of Sedimentology and Stratigraphy, Pearson 	ell,
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 Pettijohn, Potter and Siever: Sand and Sandstone , Springer Verlag, 1972. Pickering, Hiscott and Hedn: Deep Marine Environments – Clastic Sedimentation and Tectonics, Unwin and Hyman, 1989. Selley: Ancient Sedimentary Environments, Corwell University Press, 1972. Gary Nichols: Sedimentology and Stratigraphy (Second Edn.) ,Wiley Blackw 2009 Prothero and Schwab: Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy, Freeman and Company, New York, 1996. Boggs, S. Jr., 2010, Principles of Sedimentology and Stratigraphy, Pearson Education, Inc. 	ell,
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 Pettijohn, Potter and Siever: Sand and Sandstone , Springer Verlag, 1972. Pickering, Hiscott and Hedn: Deep Marine Environments – Clastic Sedimentation and Tectonics, Unwin and Hyman, 1989. Selley: Ancient Sedimentology and Stratigraphy (Second Edn.) ,Wiley Blackw 2009 Prothero and Schwab: Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy, Freeman and Company, New York, 1996. Boggs, S. Jr., 2010, Principles of Sedimentology and Stratigraphy, Pearson 	ell,
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 Pettijohn, Potter and Siever: Sand and Sandstone , Springer Verlag, 1972. Pickering, Hiscott and Hedn: Deep Marine Environments – Clastic Sedimentation and Tectonics, Unwin and Hyman, 1989. Selley: Ancient Sedimentary Environments, Corwell University Press, 1972. Gary Nichols: Sedimentology and Stratigraphy (Second Edn.) ,Wiley Blackw 2009 Prothero and Schwab: Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy, Freeman and Company, New York, 1996. Boggs, S. Jr., 2010, Principles of Sedimentology and Stratigraphy, Pearson Education, Inc. Winter, J.D. (2001) An introduction to igneous and metamorphic petrology, PrinticeHall, New Jersey. Wilson, M. (1989) Igneous Petrogenesis. Unwin Hyman Inc., USA 	ell, y
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 Pettijohn, Potter and Siever: Sand and Sandstone , Springer Verlag, 1972. Pickering, Hiscott and Hedn: Deep Marine Environments – Clastic Sedimentation and Tectonics, Unwin and Hyman, 1989. Selley: Ancient Sedimentary Environments, Corwell University Press, 1972. Gary Nichols: Sedimentology and Stratigraphy (Second Edn.) ,Wiley Blackw 2009 Prothero and Schwab: Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy, Freeman and Company, New York, 1996. Boggs, S. Jr., 2010, Principles of Sedimentology and Stratigraphy, Pearson Education, Inc. Winter, J.D. (2001) An introduction to igneous and metamorphic petrology, PrinticeHall, New Jersey. Wilson, M. (1989) Igneous Petrogenesis. Unwin Hyman Inc., USA Bowen, N. L. (1956) The Evolution of the Igneous Rocks. Dover publication 	ell, y
 Blatt, Middleton, and Murray: Origin of Sedimentary Rocks, Prentice Hall, 19 Carver (Ed.) Procedures in Sedimentary Petrology, John Wiley, New York 19 Folk: Petrology of Sedimentary Rocks, Hempill's, Texas, 1968. Krumbein and Pettijohn: Manual of Sedimentary Petrography, Appleton Century Co.,1938. Pettijohn: Sedimentary Rocks, Harper and Row ,1957 Pettijohn, Potter and Siever: Sand and Sandstone , Springer Verlag, 1972. Pickering, Hiscott and Hedn: Deep Marine Environments – Clastic Sedimentation and Tectonics, Unwin and Hyman, 1989. Selley: Ancient Sedimentary Environments, Corwell University Press, 1972. Gary Nichols: Sedimentology and Stratigraphy (Second Edn.) ,Wiley Blackw 2009 Prothero and Schwab: Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy, Freeman and Company, New York, 1996. Boggs, S. Jr., 2010, Principles of Sedimentology and Stratigraphy, Pearson Education, Inc. Winter, J.D. (2001) An introduction to igneous and metamorphic petrology, PrinticeHall, New Jersey. Wilson, M. (1989) Igneous Petrogenesis. Unwin Hyman Inc., USA 	ell, y

- 16. Subramanian K.S. & Selvan, T.A. (2001) Geology of Tamil Nadu, Geo Soc India, Bangalore.
- 17. Gupta, A. K., (1998), Igneous rock. Allied Publishers Ltd, Chennai
- 18. Ehler, G. E. and Blatt H., 1999, Petrology-Igneous, sedimentary and metamorphic, CBSPublishers and distributors, New Delhi.
- 19. Mihir K. Bose (1997), Igneous petrology, The World Press Private Ltd, Calcutta.
- 20. Philipots, A., and Ague, J. J., (2011) Principles of Igneous and metamorphic petrology, Cambridge publishers
- 21. Winkler, H.G.F., 1979, Petrogenesis of metamorphic rock, Springer-Verlag.
- 22. Mason, R., 1990, Petrology of the metamorphic rocks, Unwin Hyman, London.
- 23. Miyashiro, A., 1972, Metamorphism and Metamorphic Belts, Allen and Unwin.
- 24. Turner, F.J. and Verhoogen, J., 1999, Igneous and metamorphic petrology.
- 25. Barth, T.F.W., 1962, Theoretical Petrology, Wiley, Edition 1, Dover Publication.
- 26. Johanson, 1952, Manual of Petrographic Methods, Mc Graw Hill.
- 27. Carmichael, I. S. E., Turner F. J. Verhoogen J. Igneous Petrology. Mc Graw Hill, 1971.Tyrell G. W. Principles of Petrology. Metheun, 1963.
- 28. Ehlers E. G. The interpretation of Geological Phase Diagrams. Freeman, 1972.
- 29. Blatt, J., Tracy J. R. and Owens B.E. 2006 Petrology: Igneous, Sedimentary, and Metamorphic.Edition3, W. H. Freeman.
- 30. Shelley D. Igneous and metamorphic rocks under the microscope: classification, textures, microstructures, and mineral preferred orientations Springer, 1993.
- 31. Fry N. The field description of metamorphic rocks. Geological Society of London handbook series. Open University Press, 1984
- 32. Vernon R. H. and Clarke G. L. 2008 Principles of metamorphic petrology Cambridge University Press.
- 33. Vernon R. H. A practical guide to rock microstructure Cambridge University Press, 2004
- 34. Bucher K and Frey M. 1994 Petrogenesis of metamorphic rocks Edition6, Illustrated Publisher Springer-Verlag.
- 35. Barker A. J. 1998 Introduction to metamorphic textures and microstructures Edition 2, Routledge.

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Examine magma generation process in tectonic setting and and analyze the significance of different three component systems.	An	С	Assignment, Final Exam
CO2	Evaluate various sedimentary facies and facies models.	E	С	Assignment, Final Exam
CO3	Analyze phase rule in metamorphic mineral paragenesis, and compare regional metamorphism of various protoliths in different conditions.	An	С	Assignment, Final Exam
	emember, U-Understand, Ap-Apply, An-Ar actual, C- Conceptual, P-Procedural, M-Me	-	ite, C-Create	

			Mappi	ng of CC	Ds v	vith PSOs a	nd PO			
	I	PSO1	PSO2 P		O2 PSO3		PSO5		РО	
CO 1							2		3	
CO 2							3		3	
CO 3							2		3	
Leve	el	-	1			2			3	
Correla	tion	Nil	Slightl	y/Low	I	Moderate /	Medium	S	ubstantial/ High	
			Map	ping of	f Co	s to Assess	ment Rubri	ics		
	Assi	gnment	Seminar	End	Sen	nester Exan	ninations		Internal Examina	ations
CO 1		\checkmark	\checkmark		\checkmark				\checkmark	
CO 2		\checkmark	\checkmark		√ √				\checkmark	
CO3		\checkmark	\checkmark			\checkmark			\checkmark	

Discipline and Type of Course	Geology		Discipline Specific Core - DSC				
Course Code and Title	UK8DSCG	LY421	Advance Mineralogy and Analytical Techniques				
Semester		8	Academic Level: 400 - 499				
Course Details	CreditLectureTutorialPracticalper weekper weekper weekHe		Total Hours/Week				
	4	2 hours	-	2 hours	4		

Content	Hrs.
Module I: Principles of mineral optics	12
Principles of mineral optics- Birefringence, Optical accessories and their uses.	
Berek compensator, Bi quartz wedge and Betrand ocular. Conoscopic study and	
interference figures. Dispersion in minerals. Procedure for determining 2V	
(Mallard's method), optic orientation, extinction angle, optic axial angle, optic	
sign, Scheme of pleochroism and sign of elongation and Biaxial minerals.	
Module II: Paragenesis	12
Structure and co-ordination number of silicon tetrahedra. Structure, chemistry,	
paragenesis and P-T stability of the following mineral groups- Olivine, garnet,	
alumina-silicates, pyroxenes, amphiboles, Cordierite, Tourmaline, Beryl, clay,	
mica, feldspar, and quartz. Twinning in feldspars- simple and polysynthetic.	
Structure, chemistry and paragenesis of following non-silicates: Spinel,	
Perovskite, Calcite and Dolomite.	

Module III: Analytical methods on emission techniques	12
Principles of X- ray diffraction, Bragg's law, Basic feature of Xray diffractometer,	
single crystal and powder methods. Preparation of sample for XRD study and	
interpretation of data. Brief study of Flame Photometer, X-ray fluorescence	
(XRF), Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES),	
Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES),	
Instrument Neutron Activation Analysis (INAA).	
Iodule IV: Analytical methods on absorption techniques	12
Brief Atomic Absorption Spectrometer (AAS), Inductively Coupled Plasma Mass	
Spectrometer (ICP-MS), Laser Ablation ICP-MS, Multi-collector and Magnetic	
Sector ICP-MS, Thermal Ionization Mass Spectrometer (TIMS), Secondary Ion	
Mass Spectrometry (SIMS), Sensitive high-resolution ion microprobe (SHRIMP),	
Isotope Ratio Mass Spectrometer (IRMS), Electron Probe Micro Analyzer	
(EPMA). Analytical methods on electron microscopic techniques- Scanning	
Electron Microscope (SEM-EDX), Transmission Electron Microscope (TEM)-	
HR-TEM, Atomic Force Microscope	
The TEW, Atomic Porce Microscope	
Module V: Practical	8
Practical, Determination of the following optical characters of minerals, Relative	
refringence, order of interference colour, sign of elongation, birefringence, scheme	
of pleochroism and pleochroic formula, optic orientation, extinction angle,	
anorthite content. Mineral paragenesis.	
Reference	
 Ford, W. H. (1955) A textbook of Mineralogy- Asia publishing House – Wile Phillips, (1956) An Introduction to Crystallography – Longmans Green Cornelis Klein and Hurlbut (1985) Manual of Mineralogy, John Wiley Deer, W. A., Howie, R.A and Zussman, J. (1992) An introduction to the rot forming minerals, ELBS –Longman, England. Hans- Rudolf Wenk & Andrei Bulakh (2004) Minerals – their constitution and origin, Cambridge University press. Nesse, W. D. (1999) Introduction to Mineralogy, Oxford University Press, Ne Delhi. Perkins D. (2002) Mineralogy, Prentice-Hall of India Pvt Ltd, New Delhi. 	ck-

- 9. Wahlstrom E. E. Optical Crystallography, Wiley, 1962.
- 10. Winchell A. N. Elements of optical mineralogy, Pt I, Wiley, 1951.Perkins D. Mineralogy. Pearson Education, 2002.
- Wenk H. R. and Bulakh. Minerals: their constitution and origin. CUP, 2004. Perkins D. and Henke K. R. Minerals in thin section. Pearson Education Inc., 2004.Nesse W.D. Introduction to Optical Mineralogy. Oxford University Press, 2004.
- 12. Nesse W. D. Introduction to Mineralogy. Oxford University Press, 2008. Kerr, Paul F. Optical Mineralogy. McGraw-Hill, New York, London. 1977

СО	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Appraise a basic knowledge about mineral optics.	Е	С, Р	Assignment, Final Exam
CO2	Evaluate Structure, chemistry and paragenesis of major silicate and non silicate minerals.	E	С	Assignment, Final Exam
CO3	Develop an Idea about Analytical methods on emission techniques and absorption techniques for geochemical and mineralogical analysis.	С	С	Assignment, Final Exam
	nember, U-Understand, Ap-Apply, An-An ctual, C- Conceptual, P-Procedural, M-Met	2	ite, C-Create	

			Ma	appin	g of CC)s v	vith PSOs a	nd PO			
	I	PSO1 PSO2 H		PSO3	PSO3 PSO4 PSO5				РО		
CO 1								3		2	
CO 2								3		2	
CO 3								2		3	
Leve	el	-		1	2				3		
Correla	tion	Nil	Sli	ghtly	/Low	ow Moderate / Medium Substantial/ Hig					
				Map	ping of	Co	s to Assess	ment Rubri	ics		
	Assi	gnment	Sem	ninar	End S	Sem	nester Exan	ninations		Internal Examina	ations
CO 1							\checkmark			\checkmark	
CO 2			,	/		\checkmark \checkmark					
CO3		\checkmark					\checkmark			\checkmark	

Discipline and Type of Course	Geology				Discipline Specific Core - DSC				
Course Code and Title	UK8DSCG	LY422			dvance Strati ructural Geo				
Semester	8			Acad	emic Level: 4	00 - 499			
Course Details			Practical per week	Total Hours/Week					
	4	4 hours		-		4			

Content	Hrs
Module I: Crustal evolution:	12
Precambrian Crust- Nature and evolution of primitive crust Models of crustal	
evolution Craton-mobile belt concept. Granulite and Greenstone terrains -origin,	
rock associations, structure, metamorphism and models of evolution. Evolution of	
high-grade mobile belts. Introduction to Precambrian shields of India.	
Module II: Stratigraphy of India	12
Detailed study of Evolution of cratons and Precambrian stratigraphy in India with	
special references to SGT, Dharwar, Bastar, Singhbhum, Aravalli and Bundelkhand	
Cratons. Mobile belts in India - Pandyan, Eastern Ghats, Satpura and Aravalli	
mobile belts. Evolution and stratigraphy of Proterozoic sedimentary basins of India	
– Cuddapah, Vindhyan, Kurnool.	
Module III: Significance of secondary structures in understanding the deformation history	12
Behaviour of materials under stress- material classification, Structural analysis	
using stress strain diagram, Graphical representation of structural data -	
stereographic and equal-area projections in structural geology – π and β diagrams.	
Folds- Minor folds and their use in determining the major fold structure.	
Pumpelly's rule. Superposed folding, simple fold interference patterns. Shear zone-	
Ductile and Brittle-Ductile shear zones. Detailed study on shear sense indicators.	
Petrofabric analysis - field and laboratory techniques involved in the construction	
of fabric diagrams and their interpretation.	
Module IV: Geodynamic settings of plate margins.	12
Tectonic framework of Indian plate- Evolution of Himalaya, Central Indian	
Tectonic Zone (CITZ). Supercontinents- Indian plate journey through Rodinia,	
Gondwana and Pangaea. Tectonic framework of Southern Granulite Terrain (SGT).	

	le V: Teacher specific content	8
eache	er specific content related to structures and stratigraphy	
lefere	ence	
1.	Brookfield M. E. Principles of Stratigraphy. Blackwell Publishing, 2004.D	unbar
	C. O. & Rogers J. Principles of Stratigraphy. Wiley, 1960 Gignoux M.	
	Stratigraphic Geology. Freeman, 1960.	
2.	Eicher L. D. Geologic Time. Prentice Hall, 1968.	
	Flint R. F. Glacial & Pleistocene Geology. Wiley, 1961. Kay & Golbert.	
	Stratigraphy & Life history. Wiley, 1965.	
4.	Krumbein N. C. & Sloss L. D. Stratigraphy and sedimentation. Freeman, 1	963.
	Doyle P. and Bennett, M.R.(1996), Unlocking the Stratigraphic Record. Jol	
	Ramakrishnan, M. and Vaidyanadhan, R. (2008), Geology of India Volum	
	Geological Society of India, Bangalore,	
7.	Valdiya K.S. (2010). The making of India, Macmillan India Pvt. Ltd.	
	Nichols, G. (2009). Sedimentology and Stratigraphy Second Edition. Wiley	7
	Blackwell	
9.	Code of International Stratigraphy Commission.	
	. Wadia, D.N. (1944) Geology of India, Tata McGraw–Hill.	
	Pascoe, E.H. (1954) A Manual of the Geology India and Burma, Govt. of In	ndia
	Publications.	
12	Radhakrishna, B.P and R. Vaidyanadhan (1997) Geology of Karnataka,	
	Geological Society of India, Bangalore.	
13	Sanjib Chandra, Sarkar, Anupendra Gupta (2012). Crustal evolution and	
	Metallogeny in India. Cambridge University Press, Delhi, India.	
14	Amal Das Gupta (2006). An introduction to Earth Science, World Press Pri	vate
	Limited, Kolkata.	
15.	Davis, H.G, Reynolds, S.J, Kluth, C. F. (2011), Structural Geology of Rock	ts and
	Region, John Wiley	
16	Ragan, D. M. (2009) Structural Geology: an introduction to geometrical	
	techniques (4 th . Ed.) Cambridge University Press (For Practical)	
17.	Twiss, R. J. and Moores, E. M (2007) Structural Geology, Second Edition.	W. H.
	Freeman and Company.	
18	Fossen, H (2010), Structural Geology, Cambridge University Press.	
	. Marshak, S and Mitra G.(1988) Basic Methods in Structural Geology, Prent	tice Hal
	Ben A. van der Pluijm and Stephen Marshak (2004) Earth Structure: An	
	Introduction to Structural Geology and Tectonics(Second Edition) 2nd Edit	tion
	Park, R. G. (2004) Foundations of Structural Geology. Chapman & Hall	
22.	Pollard, D. D. (2005) Fundamental of Structural Geology. Cambridge	
	University Press.	
	. Lahee F. H. (1962) Field Geology. McGraw Hill	
	Hills, E. S. (1961) Elements of Structural Geology, Asia Publishing House	
25.	Hobbs, Means and Williams (1976). An Outline of Structural Geology. Joh	n
	Wiley.	
26.	John Robberts (1982) Introduction to Geological Maps and Structures, Perg	gamon
	Press.	
27.	. Ken McClay (1991) The mapping of Geological Structures. Geological S	ociety
	of London. Wiley, New edition.	

CO	Course Outcome	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyze evolution of primitive crust and models of crustal evolution and understand the tectonic framework of Indian plate.	An	C, F	Assignment, Final Exam
CO2	Compare cratons, mobile belts and Proterozoic sedimentaray basins of India.	An	С	Assignment, Final Exam
CO3	Evaluate Significance of secondary structures in understanding the deformation history	Е	F, P	Assignment, Final Exam
	emember, U-Understand, Ap-Apply, An-An actual, C- Conceptual, P-Procedural, M-Me	-	ite, C-Create	

			 Mappi	ng of CC)s v	vith PSOs a	nd PO			
	I	PSO1	PSO2	PSO3	3	PSO4	PSO5		РО	
CO 1				3					3	
CO 2				3					3	
CO 3				3					3	
Leve	1	-	1	[2			3	
Correlat	ion	Nil	Slightl	y/Low	I	Moderate /	Medium	S	ubstantial/ High	
			Maj	oping of	Co	s to Assess	ment Rubri	cs		
	Assi	gnment	Seminar	EndS	Sen	nester Exan	ninations		Internal Examin	atior
CO 1		\checkmark			\checkmark				\checkmark	
CO 2			\checkmark		\checkmark \checkmark					
CO3						\checkmark			\checkmark	

Discipline and Type of Course	Geology	Res	Research Project for Honours - RPH				
Course Code and Title	UK8RPHGLY400		Research Internship Project in Geology				
Semester	8			Academic Level: 400 - 499			
Course Details	Credit	Lecture per week	Tutorial per week		Practical per week	Total Hours	
	12			-		180	